ansys接触分析实例52266
基于ANSYS软件的接触问题分析及在工程中的应用
基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。
接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。
ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。
本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。
二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。
解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。
数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。
ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。
接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。
三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。
用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。
2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。
接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。
3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。
可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。
四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。
ANSYSWorkbench接触分析案例详解
ANSYSWorkbench接触分析案例详解本⽂由Workbench⼩学⽣授权转载这篇⽂章囊括了接触分析中常见的问题,并通过思考和验证,给出了解决⽅案和经验总结,相信朋友们按照这篇教程完整的⾛⼀遍分析过程,会对接触分析的理解更近⼀步。
1.建模。
条件:⼀个圆盘与⼀个矩形板,⽣成壳体。
注意:两者分析之前未接触。
2.选取材料。
进⼊材料库,选取⾮线性材料中的铝合⾦(Aluminum Alloy NL)注意:NL表⽰Nonlinear ,译为⾮线性。
3.进⼊分析模块,调出Properties选项4.修改分析类型,将Analysis type由3D改为2D5.双击Model进⼊分析界⾯,修改矩形板的材料为Aluminum Alloy NL,圆盘默认为结构钢(Structural Steel)6.参数设置(1)根据左侧outline依次向下添加(由于此分析不⽤添加局部坐标系,因此修改完材料属性后,直接添加接触)(2)⼯况:矩形板与圆盘为摩擦接触(也可使⽤⽆摩擦接触,读者可以亲⾃尝试)(3)接触⾯为圆盘外圆周,⽬标⾯为矩形板顶边,设置摩擦系数为0.15(4)由于模型为刚-柔接触,因此修改behavior为⾮对称(Asymmetric)(5)在advanced中将接触算法设置为增⼴拉格朗⽇(Augmented Lagrange)(6)探测⽅法设置为⾼斯点探测(on Gauss point )注意:①由于两者的材料都是⾦属,因此摩擦系数 ≤0.2②⾮线性分析中默认的接触算法为增⼴拉格朗⽇(Augmented Lagrange),线性默认为纯罚函数(Pure penalty)③纯罚函数的收敛性很好,接触刚度对其影响⼤,但是它的穿透性不可控制,⽽增⼴拉格朗⽇收敛性表现为穿透较⼤,迭代次数较多,但其可以在⼀定程度上控制穿透性④⾼斯点与节点探测的区别:⾼斯点:适合⼤多情况,⽹格密度⼩、更精确节点:仅适⽤于⾓接触⑤局部坐标系的添加:如果全局坐标系不是所需要的,就必须添加局部坐标系作为附属坐标系7.划分⽹格(Mesh),选中图中模型,根据模型⾃动划分⽹格8.分析设置(Analysis Setting)(1)打开⾃动时间步(Anto Time Stepping)与⼤变形(Large Deflection)(2)修改载荷⼦步依次为50,50,100后,其他均默认9.添加边界条件(Load or Supports)(1)选中矩形板的下边线,将其设置为Displacement(2)X⽅向数值设置为-15mm,Y⽅向数值设置为0(3)选中圆盘的外圆周,将其设置为Fixed support思考:为什么打开⼤变形开关?答:因为在静⼒学中,极限转动⾓度为10°,⼤位移或者⼤转动即视为⾮线性分析,当受⼒物体的变形与其⼏何尺⼨相⽐较⼤,且线性叠加原理不再适⽤时,可视作⼤变形。
ANSYS接触问题(42页,详细)(图文)
接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。
在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。
接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。
――罚函数法。
接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。
三种接触单元:节点对节点、节点对面、面对面。
接触单元的实常数和单元选项设置:FKN:法向接触刚度。
这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。
FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。
FTOLN:最大穿透容差。
穿透超过此值将尝试新的迭代。
这是一个与接触单元下面的实体单元深度(h)相乘的比例系数XX省为0.1。
此值太小,会引起收敛困难。
ICONT:初始接触调整带。
它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。
当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。
可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的) PMIN和PMAX:初始容许穿透容差。
这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。
初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。
ansys面与面接触分析实例
面与面接触实例:插销拨拉问题分析定义单元类型Element/add/edit/delete定义材料属性Material Props/Material ModelsStructural/Linear/Elastic/Isotropic定义材料的摩擦系数建立几何模型Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=2.5,Z2=3.5Modeling/Create/Volumes/Cylinder/By DimensionsModeling/Operate/Booleans/Subtract/Volumes先拾取长方体,再拾取圆柱体。
Modeling/Create/Volumes/Cylinder/By Dimensions划分掠扫网格Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge建立接触单元Modeling/Create/Contact pair,弹出Contact Manager对话框,如下图。
单击最左边的按钮,启动Contact Wizard〔接触向导〕,如下图。
单击Pick Target,选择目标面。
选择接触面定义位移约束施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric B.C/On Areas,选择对称面。
再固定插座的左侧面。
设置求解选项Analysis Type/Sol’s Control求解:Solve/Current LS绘制装配应力图General Postproc/Plot Results/Contour Plot/Nodal Solution,选择Stress/von Mises stress求解拨拉过程选择Z=4.5处的所有节点。
ansys_高级接触问题
• /PSYMS,ESYS,1
• -目标单元外法线方向应该指向接触面。如果单元法向不 指向接触面,用命令使之反转:
• ESURF,,REVE
图3-3
• 例:Seal.dat(图3-3) • Step 5.建立接触面单元 • ·设置接触单元属性、选择可变形体表面节点, • 并在可变形体上建立接触单元(过程与在可变形 • 体上建立目标单元相同)
• ·除了在表面间传递法向压力外,接触单元还传递切向运动(摩擦)。采用切向 罚刚度保证切向的协调性。(图1-2)
• 作为初值,可采用:Ktangent=0.01Knormal • 切向罚刚度与法向罚刚度以同样的方式对收敛性和计算精度产生影响。
• 2、接触刚度的选取 • ·选定一个合适的接触刚度值需要一些经验。 • ·对于面一面接触单元,接触刚度通常指定为基体单元刚度
果收敛有问题,减小刚度值,重新分析 • 在敏感的分析中,还应该改变罚刚度来验证计算结果的有效性。 • -在分析中减小刚度范围,直到结果(接触压力、最大SEQV等)
不再明显改变。
§2 摩擦
• 1、两个接触体的剪切或滑动行为可以是无 摩擦的或有摩擦的
• ·无摩擦时允许物体没有阻力地相互滑动; • ·有摩擦时,物体之间会产生剪切力。 • 2、摩擦消耗能量,并且是路径相关行为。 • 为获得较高的精度,时间步长必须小(图
Surf/Contact > Surf to Surf(ESURF) • ·对于直接生成刚性目标面,在建立目标单元之前需要要指定附加的单元属性
TSHAP
• ·刚性目标面的自动划分不需要TSHAP。ANSYS能根据实 体模型确定合适的目标单元形状。
• -划分线(LMESH) 2-D刚性目标面
ansys面与面接触分析实例doc资料
a n s y s面与面接触分析实例面与面接触实例:插销拨拉问题分析定义单元类型Element/add/edit/delete定义材料属性Material Props/Material Models Structural/Linear/Elastic/Isotropic定义材料的摩擦系数建立几何模型Modeling/Create/Volumes/Block/By DimensionsX1=Y1=0,X2=Y2=2,Z1=2.5,Z2=3.5Modeling/Create/Volumes/Cylinder/By DimensionsModeling/Operate/Booleans/Subtract/Volumes先拾取长方体,再拾取圆柱体。
Modeling/Create/Volumes/Cylinder/By Dimensions划分掠扫网格Meshing/Size Cntrls/ManualSize/Lines/Picked Lines拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge建立接触单元Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。
单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。
单击Pick Target,选择目标面。
选择接触面定义位移约束施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric B.C/On Areas,选择对称面。
再固定插座的左侧面。
设置求解选项Analysis Type/Sol’s Control求解:Solve/Current LS绘制装配应力图General Postproc/Plot Results/Contour Plot/Nodal Solution,选择Stress/von Mises stress求解拨拉过程选择Z=4.5处的所有节点。
ANSYS接触实例分析参考
ANSYS接触实例分析参考ANSYS是工程仿真领域广泛使用的一种有限元分析软件。
在实际工程中,接触问题经常出现,例如机械装配中的接触、摩擦、磨损等现象需要进行分析和优化。
本文将介绍几个ANSYS接触实例,并分析其分析方法和结果。
第一个实例是机械装配中的接触分析。
假设有一个由两个金属块组成的简单装配,要分析它们之间的接触情况。
首先需要建立两个金属块的几何模型,并进行网格划分。
然后,使用ANSYS中的接触分析模块,设置接触类型、接触参数和材料特性等。
接着,施加相应的边界条件和载荷条件,运行分析并获取接触压力和接触面积等结果。
最后,根据结果对接触情况进行评估和优化。
第二个实例是摩擦接触问题的分析。
假设有一个由摩擦带和基体组成的摩擦副,需要分析摩擦力和热量的分布。
首先需要建立摩擦带和基体的几何模型,并进行网格划分。
然后,使用ANSYS中的摩擦接触分析模块,设置摩擦带和基体的材料特性、摩擦系数和接触压力等参数。
接着,施加相应的边界条件和载荷条件,运行分析并获取摩擦力、摩擦热量和温度分布等结果。
最后,根据结果对摩擦副的性能进行评估和优化。
第三个实例是磨损接触问题的分析。
假设有一个由金属零件和砂轮组成的磨削装置,需要分析金属零件表面的磨损情况。
首先需要建立金属零件和砂轮的几何模型,并进行网格划分。
然后,使用ANSYS中的磨损接触分析模块,设置金属零件和砂轮的材料特性、初始接触压力和磨粒等参数。
接着,施加相应的边界条件和载荷条件,运行分析并获取磨损量、磨损深度和磨损形貌等结果。
最后,根据结果对磨削装置进行评估和优化。
以上三个实例只是ANSYS接触分析的一小部分应用,接触分析的对象和问题种类都非常多样。
在实际工程中,可以根据具体问题的特点选择不同的接触分析方法和技术,以获取更准确和可靠的结果。
同时,还可以通过对接触问题的分析和优化,改善产品的性能和可靠性,提高工程效率和经济效益。
总结起来,ANSYS接触实例分析主要包括机械装配中的接触分析、摩擦接触问题的分析和磨损接触问题的分析。
ansys教程接触分析举例2013综述
(21)在Root name of components(组件根名)文本框中输入在第16步中指定 的根名“CYCLIC”。 (22)在NO. of sectors(扇区个数)文本框中输入“6”。 (23)在Sector Angle(扇区角度)文本框中输入“60”。 (24)在Cyclic Coordinate System(周期对称坐标系)文本框中输入结构所位 于的柱坐标系“1”,表示总体柱坐标系。 (25)单击ok按钮,指定这些选项。 (26)随后才进行体网格的划分。
约束情况
分析1-第一载荷步:大变形接触分析。
第二载荷步:将轴从盘拔出的接触。 • 此步中需定义轴的轴向位移。同时定义多个载荷 子步实施迭代求解。下面是定义并求解第二载荷 步的具体操作过程。
施加位移载荷 • 施加位移载荷(将轴沿轴向平移40mm,拔出盘孔) • UM | Select | Entities,弹出Select Entities。选择 下拉框中“Node”。“By Location”,“Z coordinates”, 文本框中输入“140” 。单击Sele All完成选取。 • MM | Solution | Define Loads | Apply | Structural | Displacement | On Nodes,单击对话框中的Pick All按钮,将弹出Apply U,ROT on NOdes (施加节 点位移载荷)对话框。选择“UZ”,然后 Displacement value (位移值)文本框中输入“40”, • solve
结构示意
建模
• 首先建立1/4有限元模型。 • 由于涉及大变形,选用Solid185单元。 • 本问题属于面面柔性接触.使用接触单元 TARGE170和CONTA174来模拟接触。接 触单元在定义时自动添加。 • 定义材料特性 • 建立几何模型并分网
ANSYS高级接触分析
§2 面-面接触单元
• §1 概述
• 面-面接触单元,是模拟任意两个表面间接触的方法。表面可以具有任意形 状。是 ANSYS 中最通用的接触单元。精度高、特性丰富还可使用接触向导, 建模方便。(其它接触单元目前尚不能用向导)。
•
面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触
单元具有很多优点:
• 库仑法则是宏观模型,表述物体间的等效剪力 FT 不能超过正压力 FN 的一部分:
FT <= μ× FN 式中: μ- 摩擦系数 • 一旦所受剪力超过 FT,两物体将发生相对滑动。 4、弹性库仑摩擦模型:允许粘着和滑动。
§3 自动时间步、控制
接触单元的 Keyopt(7)选项控制时间步的预报。 • 0-无控制:不影响时间步尺寸。当自动时间步开关
和土壤的接触
§2 接触单元
§3 关于耦合和约束方程的应用
• 如果接触模型没有摩擦,接触区域始终粘在一起,并且分 析是小挠度、小转动问题,那么可以用耦合或约束方程代 替接触。
• 使用耦合或约束方程的优点是分析还是线性的
接触问题的一般特性
• §1 接触刚度
• 1、所有的 ANSYS 接触单元都采用罚刚度(接触刚度)来 保证接触界面的协调性
• 接触单元就是覆盖在分析模型接触面上的一层 单元。
• 在 ANSYS 中可以采用三种不同的单元来模拟 接触:
◦
面一面接触单元;
◦
点一面接触单元;
◦
点一点接触单元。
§2 接触单元
• 不同的单元类型具有完全不同的单元特性和分 析过程。
• 1. 面一面接触单元用于任意形状的两个表面接 触
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例如: 面一面接触可以模拟金属成型,如轧制
《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言在当今的工程领域中,接触问题广泛存在于各种复杂的工程结构和系统之中。
如何准确地分析、预测和解决这些接触问题,对于提高工程结构的安全性和可靠性具有重要意义。
ANSYS软件作为一种功能强大的工程仿真软件,其在接触问题的分析和处理上具有显著的优势。
本文将基于ANSYS软件,对接触问题进行分析,并探讨其在工程中的应用。
二、ANSYS软件中的接触问题分析1. 接触问题的基本概念接触问题是一种高度非线性问题,涉及两个或多个物体在接触过程中产生的相互作用。
在工程中,接触问题常常出现在机械、结构、热传导、流体等多个领域。
ANSYS软件通过建立接触对,模拟物体之间的接触行为,从而对接触问题进行精确的分析。
2. ANSYS软件中的接触分析方法ANSYS软件提供了多种接触分析方法,包括面面接触、点面接触、点对点接触等。
针对不同的接触问题,可以选择合适的分析方法。
此外,ANSYS还提供了多种接触算法,如拉格朗日乘子法、罚函数法等,以满足不同问题的需求。
三、ANSYS软件在工程中的应用1. 机械工程中的应用在机械工程中,许多零件在运动过程中会发生接触和摩擦。
利用ANSYS软件对这些接触问题进行精确的分析和模拟,可以帮助工程师优化设计,提高零件的耐用性和可靠性。
例如,齿轮的传动过程涉及复杂的接触问题,通过ANSYS软件的分析和模拟,可以预测齿轮的磨损和疲劳情况,从而优化齿轮的设计和制造过程。
2. 结构工程中的应用在结构工程中,建筑物、桥梁、大坝等结构物在受到外部荷载作用时,可能会发生接触问题。
通过ANSYS软件对这些结构的接触行为进行精确的分析和模拟,可以帮助工程师预测结构的受力情况和变形情况,从而保证结构的安全性。
例如,在桥梁的设计和施工过程中,可以利用ANSYS软件对桥梁的支座、伸缩缝等部位的接触问题进行详细的分析和模拟,以确保桥梁的安全性和稳定性。
3. 热传导和流体领域的应用在热传导和流体领域中,接触问题同样广泛存在。
基于ANSYS经典界面的接触分析例子
基于ANSYS经典界面的接触分析例子1.问题描述一个钢销插在一个钢块中的光滑销孔中。
已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。
钢块与钢销的弹性模量均为36e6,泊松比为0.3.由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。
现在要对该问题进行两个载荷步的仿真。
(1)要得到过盈配合的应力。
(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。
2.问题分析由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。
进行该分析,需要两个载荷步:第一个载荷步,过盈配合。
求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。
第二个载荷步,拔出分析。
往外拉动钢销1.7 units,对于耦合节点上使用位移条件。
打开自动时间步长以保证求解收敛。
在后处理中每10个载荷子步读一个结果。
本篇先谈第一个载荷步的计算。
下篇再谈第二个载荷步的计算。
3.读入几何体首先打开ANSYS APDL14.5.然后读入已经做好的几何体。
从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框找到ANSYS自带的文件\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp【OK】后四分之一几何模型被导入。
4.定义单元类型只定义实体单元的类型SOLID185。
至于接触单元,将在下面使用接触向导来定义。
5.定义材料属性只有线弹性材料属性:弹性模量36E6和泊松比0.36.划分网格打开MESH TOOL,先设定关键地方的网格划分份数然后在MESH TOOL中设定对两个体均进行扫略划分按下【Sweep】按钮,在主窗口中选择两个体,进行网格划分。
则结果如下然后创建接触单元。
5.3.9 接触设置综合实例[共10页]
5.3 状态非线性分析——接触5.3.9 接触设置综合实例通过前面例子的学习,已经了解了WB中接触设置。
下面以一个2D压片弯曲挤压胶片,胶片再承受密封流体压力的例子综合描述接触分析。
本例包含刚柔接触、自接触、密封流体压力。
1.建立2D模型如图5-3-99所示,建立一个含压模板、压片、胶片的2D模型。
由于压片上端为曲线,且压片与胶片均处于相对自由状态,所以很难精确定义压模板和胶片与压片相切的位置,因此压模板距压片有微小间隙,胶片与压片呈过盈状态。
压模板在整个过程中几乎不变形,而且也不是本分析所关注的目标,所以将其定义为刚体;压片在整个过程中存在大的弯曲变形,其结果将表现为首尾相接触,将其材料定义为非线性铝合金;胶片为橡胶件,整个过程中存在大应变,且胶片内部存在自接触可能,将其本构定义为Ogden 3rd Order类型。
压模板,命名tie,刚体压片,命名Surface Body,材料本构为非线性铝合金胶片,命名rub,材料本构为Ogden 3rd Order图5-3-99 2D模型2.2D模型及材料设置调用WB默认材料库内的非线性铝合金(General Non-linear Materials→Aluminum Alloy NL),新增一个材料,命名为rub,本构选择Hyperelastic→Ogden 3rd Order,9个参数分别为:MU1=0.043438MPa,A1=1.3,MU2=8.274E−5MPa,A2=5,MU3=−0.0006895MPa,A3=−2,D1=0.029MPa^−1,D2=0MPa^−1,D3=0MPa^−1。
在Geometry→2D Behavior处定义为Plane Stress(平面应力),如图5-3-100所示。
– 435 –第5章 非线性静力学分析– 436 – 3.Virtual Topology (虚拟拓扑)设置虚拟拓扑一般用于合并几个不同平面,使其保证为一个有限元拓扑模型,除此之外,还可用于分割模型。
《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言在复杂的工程问题中,接触问题是一种常见的物理现象,涉及到各种领域如机械、电子、生物医学等。
ANSYS软件作为一款功能强大的工程仿真软件,被广泛应用于解决各种接触问题。
本文将首先介绍基于ANSYS软件的接触问题分析的基本原理和主要方法,然后详细探讨其在工程中的应用,以期望为工程实践中接触问题的解决提供参考。
二、ANSYS软件中接触问题分析的基本原理和主要方法1. 基本原理ANSYS软件中的接触问题分析主要基于有限元法。
通过将实体模型离散化为有限个小的单元,然后对每个单元进行分析,最终得到整个模型的解。
在接触问题分析中,关键是要正确处理接触界面上的力和位移关系,以及接触界面的变化对整体结构的影响。
2. 主要方法(1) 面对面接触法:主要处理平面与平面之间的接触问题,如机械零件之间的接触。
(2) 体对体接触法:用于处理实体之间的接触问题,如人体关节之间的接触。
(3) 热接触法:处理由于热效应引起的接触问题,如热传导过程中的接触问题。
三、ANSYS软件在工程中的应用1. 机械工程中的应用在机械工程中,ANSYS软件被广泛应用于分析各种机械零件的接触问题。
例如,通过面对面接触法分析齿轮与轴承之间的摩擦和磨损,通过体对体接触法分析两个机械部件在装配过程中的接触压力和变形等。
这些分析结果对于优化机械零件的设计和改进装配工艺具有重要意义。
2. 土木工程中的应用在土木工程中,ANSYS软件可用于分析建筑物、桥梁等结构在荷载作用下的接触问题。
例如,通过热接触法分析建筑物的热传导过程中的接触问题,以优化建筑材料的选型和设计。
此外,ANSYS还可用于分析地震等自然灾害对建筑物结构的破坏作用,以及评估结构的抗震性能。
3. 电子工程中的应用在电子工程中,ANSYS软件常被用于分析电子设备中各部件之间的电接触问题。
例如,通过面对面接触法分析电路板上的元器件之间的电连接和热传导问题,以提高电子设备的性能和可靠性。
Ansys 做接触分析
对于接触面的选择的指导原则:1、对于点对面有:1)如果一个面的接触部分四平的或凹的,另一个面的接触部分是尖的或凸的,则平、凹面是目标面。
2)如果两个面都是平的,则任意选择3)如果两个面都是凸的,则较平的的面作为目标面。
4)如果一个接触部分有尖边,另一个没有,则有尖边的面作为目标面。
平的通常为2、对于面对面有:1)如果一个凸面与一个平面或凹面接触,平面或凹面是目标面;2)如果一个面比另一个面硬,则较硬的面应该为目标面;3)如果一个面比另一个面大,则较大的面应该为目标面;4)如果一个面上的网格比较粗,另一个面的网格较细,则较粗的面应该是目标面;5)如果一个面是高阶,另一个面是低阶,低阶面应该是目标面。
总结:弱小的、宽容的、差的通常为目标面3、接触单元常数( ET,K,169 !K - 指定的单元编号 ET,K+1,172)目标单元(刚性)——targe 169 or targe 170Targe 单元的实常数有:R1、R2 定义目标单元几何形状CONTA单元的实常数包括:No. Name Description1 R1 Target circle radius(刚性环半径)2 R2 Superelement thickness(单元厚度)*3 FKN Normal penalty stiffness factor(法向接触刚度因子)*4 FTOLN Penetration tolerance factor(最大允许的穿透)*5 ICONT Initial contact closure(初始闭合因子)6 PINB Pinball region(“Pinball”区域)*7 PMAX Upper limit of initial allowable penetration(初始穿透的最大值)*8 PMIN Lower limit of initial allowable penetration(初始穿透的最小值)*9 TAUMAX Maximum friction stress(最大的接触摩擦)*10 CNOF Contact surface offset(施加于接触面的正或负的偏移值)11 FKOP Contact opening stiffness or contact damping*12 FKT Tangent penalty stiffness factor(切向接触刚度)13 COHE Contact cohesion(滑动抗力粘聚力)14 TCC Thermal contact conductance(热接触传导系数)15 FHTG Frictional heating factor(摩擦耗散能量的热转换率)16 SBCT Stefan-Boltzmann constant17 RDVF Radiation view factor18 FWGT Heat distribution weighing factor19 ECC Electric contact conductance20 FHEG Joule dissipation weight factor21 FACT Static/dynamic ratio(静摩擦系数和动摩擦系数的比率)22 DC Exponential decay coefficient(摩擦衰减系数)23 SLTO Allowable elastic slip24 TNOP Maximum allowable tensile contact pressure25 TOLS Target edge extension factor附注:+值作为比例因子,-值作为绝对值;带*号的实常数比较重要,关乎接触分析的收敛;一般实常数可为缺省值。
ANSYS_接触问题实例
资料仅供参考
资料仅供参考
• 2. 点一面接触单元用于某一点和任意形状 的面的接触
• -可使用多个点-面接触单元模拟棱边和 面的接触;
• -不必事先知道接触的准确位置; • -两个面可以具有不同的网格; • -支持大的相对滑动; • -支持大应变和大转动。 • 例:点面接触可以模拟棱边和面之间的接
• -如一个面比另一个面大,应指定大的面为目标面。
资料仅供参考
例如: 超弹密封
• Step 3.设置单元选项和实常数 • 接触对由实常数号来定义,接触单元和目标单元必须具有相同的实常数。 • Step 4.建立目标单元(网格) • ·此步中所采用的方法依赖于目标面是刚性的还是柔性的。 • -刚性目标面采用: • 直接生成(E命令) • 自动划分(LMESH, AMEAH) • -可变形目标面采用 • Main Menu > Preprocessor > Modeling > Create > Elements >
• Surf to Surf
资料仅供参考
• ·ANSYS将根据基体的网格确定目标单元形状和外法线方 向。
• ·检查外法线方向(这在自动划分刚性目标面时非常重要) 图3-3
• -打开单元坐标系标志并重绘单元 • /PSYMS,ESYS,1 • -目标单元外法线方向应该指向接触面。如果单元法向不
指向接触面,用命令使之反转: • ESURF,,REVE
• 采用足够小的时间步长以获得收敛。 • -对于瞬态分析,冲击时必须使用足够数
量的计算步以描述表面间的动量转移。 • -对于路径相关现象(如接触摩擦),相
对较小的最大时间步长对计算精度是必须 的。
面一面接触单元 资料仅供参考
ANSYS_高级接触分析
跟踪接触位置; 保证接触协调性(防止接触表面相互穿透); 在接触表面之间传递接触应力(正压力和摩 擦)。 接触单元就是覆盖在分析模型接触面上的一层 单元。 在 ANSYS 中可以采用三种不同的单元来模拟 接触: 面一面接触单元; 点一面接触单元; 点一点接触单元。
§2 接触单元
• 不同的单元类型具有完全不同的单元特性和分 析过程。 • 1. 面一面接触单元用于任意形状的两个表面接 触 • 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例如: 面一面接触可以模拟金属成型,如轧制 过程。
• • • • • • • • •
在数学上为保持平衡,需要有穿透值 然而,物理接触实体是没有穿透的 分析者将面对困难的选择: 小的穿透计算精度高,因此接触刚度应该大; 然而,太大的接触刚度会产生收敛困难:模型可能会振荡,接触 表面互相跳开。 接触刚度是同时影响计算精度和收敛的最重要的参数。你必须选 定一个合适的接触刚度。 除了在表面间传递法向压力外,接触单元还传递切向运动(摩 擦)。采用切向罚刚度保证切向的协调性。(图1-2) 作为初值,可采用:Ktangent=0.01 · Knormal 切向罚刚度与法向罚刚度以同样的方式对收敛性和计算精度产生 影响。
§2 接触单元
§2 接触单元
• 3. 点-点接触单元用于模拟单点和另一个确定点 之间的接触。 • 建立模型时必须事先知道确切的接触位置; • 多个点-点接触单元可以模拟两个具有多个单元 表面间的接触; ◦ 每个表面的网格必须是相同的; ◦ 相对滑动必须很小; ◦ 只对小的转动响应有效。 • 例如: 点一点接触可以模拟一些面的接触。如地基 和土壤的接触
§2 面-面接触单元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20章接触分析实例在这个实例中,将对一个盘轴紧配合结构进行接触分析。
第一个载荷步分析轴和盘在过盈配合时的应力,第二个载荷步分析将该轴从盘心拔出时轴和盘的接触应力情况。
20.1 问题描述:在旋转机械中通常会遇到轴与轴承、轴与齿轮、轴与盘连接的问题,根据各自的不同情况可能有不同的连接形式。
但大多数连接形式中存在过盈配合,也就是涉及到接触问题的分析。
这里我们以某转子中轴和盘的连接为例,分析轴和盘的配合应力以及将轴从盘中拔处时盘轴连接处的应力情况。
本实例的轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图20.1所示。
由于模型和载荷都是轴对称的,可以用轴对称方法进行分析。
这里为了后处理时观察结果更直观,我们采用整个模型的四分之一进行建模分析,最后将其进行扩展,来观察整个结构的变形及应力分布、变化情况。
盘和轴用同一种材料,其性质如下:弹性模量:EX=2.1E5泊松比:NUXY=0.3接触摩擦系数:MU=0.220.1 盘轴结构图20.2 建立有限元模型在ANSYS6.1中,首先我们通过完成如下工作来建立本实例的有限元模型,需要完成的工作有:指定分析标题,定义单元类型,定义材料性能,建立结构几何模型、进行网格划分等。
根据本实例的结构特点,我们将首先建立代表盘和轴的两个1/4圆环面,然后对其进行网格划分,得到有限元模型。
20.2.1设置分析标题本实例为进行如图20.1所示的盘轴结构的接触分析,属于非线性结构分析范畴。
跟前面实例一样,为了在后面进行菜单方式操作时的方便,需要在开始分析时就指定本实例分析范畴为“Structural”。
本实例的标题可以命名为:“Analysis of a Axis Contacting a hole in a Disc”,具体的操作过程如下:1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框,如图20.2所示。
在Enter new jobname (输入新文件名)文本框中输入文字“CH20”,为本分析实例的数据库文件名。
并单击New log and error files (新的日志和错误文件)单选框,使其变为“Yes”,为本实例的分析过程创建新的日志。
单击按钮关闭对话框,完成文件名的修改。
图20.2 修改文件名对话框2.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框,如图20.3所示。
在Enter new title (输入新标题)文本框中输入文字“Analysis of a AxisContacting a hole in a Disc”,为本分析实例的标题名。
单击按钮,完成对标题名的指定。
图20.3 修改标题对话框3.选取菜单路径Utility Menu | Plot | Replot,指定的标题“Analysis of a Axis Contacting a hole in a Disc”将显示在图形窗口的左下角(图略)。
4.选取菜单路径Main Menu | Preference,将弹出Preference of GUI Filtering (菜单过滤参数选择)对话框。
单击Structual(结构)选项使之被选中,以将菜单设置为与结构分析相关的选项。
单击按钮关闭,完成分析范畴的指定。
20.2.2定义单元类型本实例分析的问题中涉及到大变形,故选用Solid185单元类型来建立本实例的模型。
本接触问题属于面面接触,目标面和接触面都是柔性的,将使用接触单元TARGE170和CONTA174来模拟接触面。
接触单元在分析过程中使用接触向导时可以自动添加,这里就不再添加。
下面为定义单元类型的具体操作过程。
1.选取菜单路径Main Menu | Preprocessor | Element Type | Add/Edit/Delete,将弹出Element Types (单元类型)对话框。
单击对话框中的按钮,将弹出Library of Element Types (单元类型库)对话框,如图20.4所示。
图20.4 单元类型库对话框2.在单元类型库对话框中,靠近左边的列表中,单击“Structural Solid”一次,使其高亮度显示,指定添加的单元类型为结构实体单元。
然后,在靠近右边的列表中,单击“Brick 8node 185”一次,选定单元类型Solid185 为第一类单元。
单击对话框中的按钮,关闭Library of Element Types 对话框。
然后,Element Types (单元类型)对话框会重新显示,且在对话框中的单元列表框中列出了定义的单元类型1:Solid185,如图20.5所示。
20.5 定义的单元类型3.单击Element Types (单元类型定义)对话框中的按钮,关闭对话框,完成单元类型的定义。
20.2.3 定义材料特性本实例中盘轴使用同一种材料类型,所以只需定义一种材料就可以了。
下面是具体的操作过程。
1.选取菜单路径Main Menu | Preprocessor | Material Props | Material Models,将弹出Define Material Model Behavior (材料模型定义)对话框,如图20.6所示。
图20.6 材料模型定义对话框2.在对话框的右边选项框中,依次双击Structural | | Linear | | Elastic | | Isotropic,将弹出1号材料的弹性模量EX和泊松比PRXY的定义对话框,如图20.7所示。
图20.7 线性各向同性材料定义对话框3.在线性各向同性材料属性对话框中的EX (弹性模量)文本框中输入“2.1E5”,PRXY (泊松比)文本框中输入0.3。
单击对话框中的按钮关闭对话框。
4.在Define Material Model Behavior (材料模型定义)对话框的左边列表框中将列出定义的材料1的属性。
在对话框选取路径Material | Exit关闭对话框,完成对材料模型的定义。
20.2.4 建立几何模型并分网下面来建立本实例的轴对称几何模型,并进行合理的分网。
本实例的轴对称模型比较简单,可以用多种途径很方便地建立。
前面我们讲过对于这种旋转体几何模型可以先建立一个形面并对其进行网格划分,然后将这个形面绕其对称轴旋转需要的角度而得到;也可以直接建立圆环,再对其进行实体网格划分而得到整个模型的网格。
这里我们采用后面一种方法,具体操作过程如下。
1.创建四分之一圆盘。
选择菜单路径Main Menu | Preprocessor | Modeling | Create | Volumes | Cylinder | Partial Cylinder 命令,将打开Partial Cyclinde (r 创建部分圆环)对话框,如图20.8所示。
图20.8 创建部分圆环对话框2.在创建部分圆环对话框中的输入圆心坐标为:WP X =0、WP Y =0,内径Rad-1=34,起始角度为Theta-1=0,外径为Rad-2=100,结束角度为Theta-2=90,圆盘厚度为Depth =25,如图20.8所示。
单击按照设置的值建立圆盘模型,在ANSYS 图形显示对话框中将会显示刚创建圆盘(图略)。
3.创建代表轴的圆环。
接着,在创建部分圆环对话框中输入相应的值来建立代表四分之一轴的圆环。
输入的值为:WP X =0、WP Y =0,内径Rad-1=25,起始角度为Theta-1=0,外径为Rad-2=35,结束角度为Theta-2=90,圆盘厚度为Depth =150。
然后单击对话中的按钮关闭对话框。
在ANSYS 图形显示对话框中将会显示刚创建圆盘。
4.调整所建实体的视图。
选择菜单路径Utility Menu | PlotCtrls | Pan Zoom Rotate ,打开Pan-Zoom -Rotate (平移-缩放-旋转)对话框,并单击对话框右上角的按钮,将建立的模型调到比较合适的位置。
调整后的两个圆环几何体如图20.9所示。
读者可以单击对话框下部的动态显示选择框,然后通过鼠标右键来调整视图位置。
图20.9 建立的盘轴几何模型5.将圆环2(轴)移动到合适的位置。
选择菜单路径Main Menu | Preprocessor | Modeling | Move / Modify | Volumes,将弹出Move Volume (移动体)拾取对话框,在图形输出窗口中单击代表轴的圆环将其选中,然后单击对话框中的按钮关闭对话框。
将弹出Move Volume (移动体)对话框,如图20.10所示。
图20.10 移动体对话框6.在对话框中的Z-offset in Active CS (Z轴方向平移量)文本框中输入“-10”,将该体沿Z轴负方向平移10mm ,然后单击按钮关闭此对话框。
7.对创建的体进行网格划分。
选取菜单路径Main Menu | Preprocessor | Meshing | Mesh Tool打开分网工具对话框,如图20.11所示。
图20.11 分网工具对话框8.对端面上的线进行分网控制。
在网格划分工具对话框(Mesh Tool)中的尺寸控制(SizeControls)区中,单击Lines (线单元)的按钮,将弹出Element Sizes on Picked Lines (选定线的单元尺寸定义) 拾取对话框。
在图形输出窗口中单击轴某个端面上的两条圆弧线,然后单击拾取对话框中的按钮,将弹出Element Sizes on Picked Lines (选定线的单元尺寸) 定义对话框,如图20.12所示。
图20.12 对线进行网格控制9.在线单元尺寸控制对话框中的No. of element divisions (单元划分个数)文本框中输入“15”,指定轴沿周向划分15个单元。
单击对话框中的按钮对设置进行确认。
10.对轴的网格进行控制。
重复上面的步骤8、9的过程,在图形输出窗口中选则同一端面上的径向边,将它们划分为2份。
再选择轴的高度上的某条线,将其划分20份。
11.完成对轴的网格划分。
单击分网工具对话框中的Mesh下拉框中的“Volume”,指定分网对象为体。
再单击Shape (分网形状)控制区的“Hex/Wedge”单选按钮,指定形状为六面体。
单击其下面的“Sweep”单选按钮,指定分网方式为扫掠。
再单击对话框中的按钮,将弹出Volume Sweeping (扫掠体)拾取对话框,单击图形显示窗口中的轴,将其选中,单击拾取对话框中的按钮,对轴进行网格划分(关于Sweep方式划分网格的详细讲解可参阅本书第2章网格划分部分)。