2020届大连市中考数学模拟试卷(有答案)(Word版)(已纠错)
2020年大连八十中中考数学模拟试卷(4月份) (含答案解析)
2020年大连八十中中考数学模拟试卷(4月份)一、选择题(本大题共10小题,共30.0分)1.比实数√5小的数是()A. 2B. 3C. 4D. 52.在平面直角坐标系中,点P(−2,−3)关于y轴对称的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列运算正确的是()A. m2+2m3=3m5B. m2⋅m3=m6C. (−m)3=−m3D. (mn)3=mn34.下面四个几何体中,其中左视图是矩形的个数是()A. 1个B. 2个C. 3个D. 0个5.若菱形的对角线分别为6和8,则菱形的周长是()A. 24B. 14C. 10D. 206.在一个不透明的袋子中装有两个黑球、两个白球,这些球除颜色外都相同.若从中随机摸出一个球,记下颜色,放回袋中摇匀,再随机摸出一个,两次都摸到黑球的概率是()A. 12B. 13C. 14D. 167.如图,BD平分∠ABC,点E在BC上,EF//AB.若∠CEF=100°,∠ABD的度数为()A. 60°B. 50°C. 40°D. 30°8.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x 斤,每只燕重y 斤,可列方程组为( )A. {4x −y =5y +x 5x +6y =1B. {5x +y =4y +x 5x +6y =1C. {4x +y =5y +x 5x +6y =1D. {4x +y =5y +x5x −6y =1 9. 某中学篮球队12名队员的年龄情况如下表: 年龄/岁12 13 14 15 16 人数 1 3 4 2 2关于这12名队员的年龄,下列说法中正确的是( )A. 众数为14B. 极差为3C. 中位数为13D. 平均数为1410. 如图,在平面直角坐标系中,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,点B 的坐标为(8,6),将△OCE 沿OE 折叠,使点C 恰好落在对角线OB 上D 处,则E 点坐标为( )A. (3,6)B. (52,6)C. (32,6)D. (1,6)二、填空题(本大题共6小题,共18.0分) 11. 因式分解:3a 3−3a =______.12. 将数1420000用科学记数法表示为______.13. 如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余种下草坪,使草坪面积为300平方米,若设道路宽为x 米,则根据题意课列出方程为___________。
2020年辽宁省大连中考数学模拟试卷
中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列各数中,比-2小的数是()A. -3B. -1C. 0D. 12.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为( )A. (-2,3)B. (-2,-3)C. (2,-3)D. (-3,-2)3.下列运算正确的是()A. 7a-a=6B. a2•a3=a5C. (a3)3=a6D. (ab)4=ab44.下面立体图形的左视图是()A. B. C. D.5.菱形的两条对角线长分别为6,8,则它的周长是()A. 5B. 10C. 20D. 246.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A. B. C. D.7.如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A. 17.5°B. 35°C. 55°D. 70°8.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A. B.C. D.9.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册10.如图,矩形OABC的边OA在x轴上,OA=8,OC=4,把△ABC沿直线AC折叠,得到△ADC,CD交x轴于点E,则点E的坐标是()A. (4,0)B. (3,0)C. (0,3)D. (5,0)二、填空题(本大题共6小题,共18.0分)11.因式分解:x3-4x=______.12.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为______元.13.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为______.14.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为______.15.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC=25°,则∠BAD=______.16.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为______米(结果保留根号).三、计算题(本大题共1小题,共9.0分)17.如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(-2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.四、解答题(本大题共9小题,共93.0分)18.计算:-(-1)2+(-)-1+(-5)0.19.解不等式组:.20.如图,已知▱ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.21.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10462根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有______人,最喜欢篮球的学生数占被调查总人数的百分比为______%;(2)被调查学生的总数为______人,其中,最喜欢篮球的有______人,最喜欢足球的学生数占被调查总人数的百分比为______%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.22.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运60kg.A型机器人搬运1200kg所用时间与B型机器人搬运900kg所用时间相等,两种机器人每小时分别搬运多少化工原料.23.已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.24.如图,在△ABC中,AB=AC=5,D为AB上一动点,D点从A点以1个单位/秒的速度向B点运动,运动到B点即停止,经过D点作DE∥BC,交AC于点E,以DE为一边在BC一侧作正方形DEFG,在D点运动过程中,设正方形DEFG与△ABC的重叠面积为S,运动时间为t秒,如图2是s与t的函数图象.(1)求BC的长;(2)求a的值;(3)求S与t的函数关系式.25.在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.(1)如图1,若AB=AC,∠BAD=30°,AD=6,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).26.如图,二次函数y=ax2+bx-12的图象交x轴于A(-3,0),B(5,0)两点,与y轴交于点C.点D是抛物线上的一个动点.(1)求抛物线的解析式;(2)设点D的横坐标为m,并且当m≤x≤m+5时,对应的函数值y满足-m,求m的值;(3)若点D在第四象限内,过点D作DE∥y轴交BC于E,DF⊥BC于F.线段EF 的长度是否存在最大值?若存在,请求出这个最大值及相应点D的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:比-2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.故选:A.根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.本题考查实数大小的比较,是基础性的题目.2.【答案】A【解析】解:点A(2,3)关于y轴对称点的坐标为B(-2,3).故选:A.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.【答案】B【解析】【分析】本题主要考查幂的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方.根据合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方逐一计算可得.【解答】解:A.7a-a=6a,此选项错误;B.a2•a3=a5,此选项正确;C.(a3)3=a9,此选项错误;D.(ab)4=a4b4,此选项错误;故选B.4.【答案】C【解析】解:立体图形的左视图是:.故选:C.直接利用几何体的形状得出其左视图即可.此题主要考查了简单几何体的三视图,正确掌握左视图的观察角度是解题关键.5.【答案】C【解析】【分析】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选C.6.【答案】A【解析】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为,故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】B【解析】解:∵DF∥AC,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠FAC=35°,故选:B.根据两直线平行,同位角相等,可得∠FAC=∠1,再根据角平分线的定义可得∠BAF=∠FAC.本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.8.【答案】A【解析】解:由题意可得,,故选:A.根据题意可以列出相应的方程组,从而可以解答本题.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.9.【答案】B【解析】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.10.【答案】B【解析】解:由题意可得,BC∥OA,∠BCA=∠ACD,∴∠BCA=∠CAE,∴∠ACD=∠CAE,∴EC=EA,设OE=a,则AE=8-a,EC=8-a,∵∠COE=90°,OC=4,∴a2+42=(8-a)2,解得,a=3,∴点E的坐标是(3,0),故选:B.根据翻折的性质和平行线的性质可以求得EA=EC,然后根据勾股定理即可求得OE的长,进而求得点E的坐标.本题考查翻折变换、坐标与图形的性质、矩形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】x(x+2)(x-2)【解析】解:x3-4x=x(x2-4)=x(x+2)(x-2).故答案为:x(x+2)(x-2).首先提取公因式x,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.12.【答案】3×1010【解析】解:300亿元=3×1010元.故答案为:3×1010.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.13.【答案】(35-2x)(20-x)=600(或2x2-75x+100=0)【解析】解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(35-2x)米,宽为(20-x)米,∴可列方程为(35-2x)(20-x)=600(或2x2-75x+100=0),故答案为(35-2x)(20-x)=600(或2x2-75x+100=0).把阴影部分分别移到矩形的上边和左边,可得种植面积为一个矩形,根据种植的面积为600列出方程即可.考查列代数式;利用平移的知识得到种植面积的形状是解决本题的突破点;得到种植面积的长与宽是解决本题的易错点.14.【答案】2【解析】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.易得扇形的弧长,除以2π即为圆锥的底面半径.本题考查了扇形的弧长公式,圆的周长公式,用到的知识点为:圆锥侧面展开图所得扇形的弧长等于其底面圆的周长.15.【答案】70°【解析】解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.根据旋转的性质可得AC=CD,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,由∠BAD=∠BAC+∠CAD可得答案.本题考查了旋转的性质,等腰直角三角形的判定与性质,熟记各性质并准确识图是解题的关键.16.【答案】100+100【解析】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°,∵CD=100米,∴AD=CD=100米,DB=米,∴AB=AD+DB=100+100(米),故答案为:100+100根据三角函数和直角三角形的性质解答即可.此题考查了考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.17.【答案】解:(1)∵把A(-2,6)代入y=得:m=-12,∴y=-,∵把(4,n)代入y=-得:n=-3,∴B(4,-3),把A、B的坐标代入y=kx+b得:,解得:k=-,b=3,即y=-x+3,答:反比例函数的解析式是y=-,一次函数的解析式是y=-x+3.(2)不等式kx+b≤的解集是-2≤x<0或x≥4.【解析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标,分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;(2)根据一次函数与反比例函数的图象即可得出答案.本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.18.【答案】解:-(-1)2+(-)-1+(-5)0===-10.【解析】现将题目中的式子化简,然后根据合并同类项的方法可以解答本题.本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确它们各自的计算方法.19.【答案】解:解不等式x-3(x-1)≥5,得:x≤-1,解不等式-1≤,得:x≥-7,则不等式组的解集为-7≤x≤-1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】证明:∵F是BC边的中点,∴BF=CF,∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠C=∠FBE,∠CDF=∠E,∵在△CDF和△BEF中∴△CDF≌△BEF(AAS),∴BE=DC,∵AB=DC,∴AB=BE.【解析】根据平行四边形性质得出AB=DC,AB∥CD,推出∠C=∠FBE,∠CDF=∠E,证△CDF≌△BEF,推出BE=DC即可.本题考查了平行四边形性质,全等三角形的性质和判定,平行线的性质的应用,关键是推出△CDF≌△BEF.21.【答案】(1)4;32;(2)50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.【解析】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)见答案.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.22.【答案】解:设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运(x+60)kg化工原料,由题意得:=,解得:x=180,经检验,x=180是原方程的解,且符合题意,∴x+60=240.答:A型机器人每小时搬运240kg化工原料,B型机器人每小时搬运180kg化工原料.【解析】设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运(x+60)kg 化工原料,根据工作时间=工作总量÷工作效率结合A型机器人搬运1200kg所用时间与B型机器人搬运900kg所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【答案】证明:(1)连接AD,∵∠DAC=∠DEC,∠EBC=∠DEC,∴∠DAC=∠EBC,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DCA+∠DAC=90°,∴∠EBC+∠DCA=90°,∴∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°,∴AC⊥BH;(2)∵∠BDA=180°-∠ADC=90°,∠ABC=45°,∴∠BAD=45°,∴BD=AD,∵BD=8,∴AD=8,在直角三角形ADC中,AD=8,AC=10,根据勾股定理得:DC=6,则BC=BD+DC=14,∵∠EBC=∠DEC,∠BCE=∠ECD,∴△BCE∽△ECD,∴,即CE2=BC•CD=14×6=84,∴CE==2.【解析】(1)连接AD,由圆周角定理即可得出∠DAC=∠DEC,∠ADC=90°,再根据直角三角形的性质即可得出结论;(2)由∠BDA=180°-∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC的长,进而求出BC的长,由已知的一对角线段和公共角,根据两对对应角相等的两三角形相似可得三角形BCE与三角形EDC相似,由相似得比例即可求出CE的长.本题考查的是圆周角定理,相似三角形的判定与性质及勾股定理,根据题意作出辅助线是解答此题的关键.24.【答案】解:(1)由题意t=2时,正方形DEFG在如图位置,此时AD=2,BD=3,设DE=4x,∵DE∥BC,∴,∴=,∴BC=10x,根据对称性可知BG=FC=3x,在RT△BDG中,∵BD2=DG2+BG2,∴9=(3x)2+(4x)2,∵x>0,∴x=,∴BC=10x=6,(2)由图1可知t=2时,a的值就是图1中的正方形面积,即a=DE2=.(3)在图2中,作AH⊥BC于H,交DE于K,由(1)可知AH===4,∵DK∥BH,∴,∴,∴DK=t,DE=2DK=t,当0<t≤2时,s=,当2<t≤5时,∵DM∥AH,∴,∴,∴DM=,∴s=(5-t)•t=-t2+t.综上所述s=.【解析】(1)根据图中信息得到t=2时,正方形DEFG的边FG在BC边上,设DE=4x,在△BDG中表示出DM,BM利用勾股定理解决即可.(2)a的值就是图1中的正方形面积.(3)分两种情形①0<t≤2,②2<t≤5求出重叠部分面积即可.本题考查了勾股定理、平行线分线段成比例定理、等腰三角形的判定与性质、正方形的性质以及面积的计算,本题难度较大,解题的关键理解题意是画出图形.25.【答案】(1)解:∵∠ADB=90°,∠BAD=30°,AD=6,∴cos∠BAD=,∴AB===12,∴AC=AB=12,∵点P、M分别为BC、AB边的中点,∴PM=AC=6,(2)如图2,在ED上截取EQ=PD,∵∠ADB=90°,∴∠BDP+∠ADE=90°,∵AD=AE,∴∠ADE=∠AED,∵把△ABD绕点A逆时针旋转一定角度,得到△ACE,∴∠AEC=∠ADB=90°∵∠AED+∠PEC=90°,∴∠BDP=∠PEC,在△BDP和△CEQ中,,∴△BDP≌△CEQ,∴BP=CQ,∠DBP=∠QCE,∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE,∴∠EPC=∠PQC,∴PC=CQ,∴BP=CP(3)BF2+FC2=2AD2,理由:如图3,连接AF,∵EF⊥AC,且AE=EC,∴FA=FC,∠FAC=∠FCA,∵EF⊥AC,且AE=EC,∴∠DAC=∠DCA,DA=DC,∵AD=BD,∴BD=DC,∴∠DBC=∠DCB,∵∠FAC=∠FCA,∠DAC=∠DCA,∴∠DAF=∠DCB,∴∠DAF=∠DBC,∴∠AFB=∠ADB=90°,在Rt△ADB中,DA=DB,∴AB2=2AD2,在Rt△ABF中,BF2+FA2=AB2=2AD2,∵FA=FC∴BF2+FC2=2AD2.【解析】(1)在直角三角形中,利用锐角三角函数求出AB,即可;(2)先利用互余判断出,∠BDP=∠PEC,得到△BDP和△CEQ,再用三角形的外角得到∠EPC=∠PQC,即可;(3)利用线段垂直平分线上的点到两端点的距离相等,判断出∠AFB=90°即可.此题是三角形综合题,主要考查了锐角三角函数的意义,同角或等角的余角相等,三角形的性质,全等三角形的性质和判定,线段垂直平分线上的点到两端点的距离相等以及等腰三角形的性质,(1)利用三角形的中位线是解它的关键,(2)判断∠BDP=∠PEC,是解它的关键,(3)线段垂直平分线的性质是解它的关键,此题难度不大.26.【答案】解:(1)∵二次函数y=ax2+bx-12的图象过点A(-3,0),B(5,0)∴解得:∴抛物线的解析式为y=x2-x-12(2)∵y=x2-x-12=(x-1)2-∴当x=1时,二次函数有最小值y=-∵当m≤x≤m+5时,对应的函数值y满足-m∴对称轴:x=1在m≤x≤m+5的范围内,即m≤1≤m+5解得:-4≤m≤1取点(m,0)与点(m+5,0)的中点M(m+)①当m+≤1时,即-4≤m≤-,点M在对称轴左侧∴x=m到对称轴的距离比x=m+5到对称轴的距离远∴x=m时,y取得最大值∴m2-m-12=-m解得:m1=(舍去),m2=-②当m+>1时,即-<m≤1,点M在对称轴右侧∴x=m+5到对称轴的距离比x=m到对称轴的距离远∴x=m+5时,y取得最大值∴(m+5)2-(m+5)-12=-m解得:m1=-10(舍去),m2=0综上所述,m的值为-或0.(3)∵当x=0时,y=x2-x-12=-12∴C(0,-12)∵B(5,0),∠BOC=90°∴直线BC:y=x-12,BC=∴Rt△BOC中,cos∠BCO=∵DE∥y轴∴∠DEF=∠BCO,x E=x D设D(d,d2-d-12)(0<d<5),则E(d,d-12)∴DE=d-12-(d2-d-12)=-d2+4d=-(d-)2+5∵DF⊥BC∴∠DFE=90°∴cos∠DEF==cos∠BCO=∴EF=DE=-(d-)2+∴当d=时,EF最大值为此时,y D=×()2-×-12=-11∴点D坐标为(,-11)时,线段EF长度的最大值为.【解析】(1)已知抛物线过点A、B,用待定系数法即可求其解析式.(2)把二次函数配方求得顶点为(1,-),当x=1时,二次函数有最小值y=-.而在m≤x≤m+5范围,函数值y对应的最小值也为-,故x=1在m≤x≤m+5的范围内,即m≤1≤m+5,解得-4≤m≤1.因为不确定x=m还是x=m+5时取得相应的最大值,故需分类讨论.若x=m离对称轴较远,则x=m时取得最大值-m,代入计算即求得m的值;若x=m+5离对称轴距离较远,则x=m+5时取得最大值,代入计算即求得m的值.(3)由DE∥y轴可得∠DEF=∠BCO,点D与点E横坐标相同.设点D横坐标为d,用d 表示点D纵坐标.求出直线BC解析式后,即能用d表示点E坐标,进而能用d表示DE的长度.由于DF⊥BC于E,所以cos∠DEF=.在Rt△BOC中易求cos∠BCO的值,由∠DEF=∠BCO得cos∠DEF=cos∠BCO,能用含d的二次式表示EF,配方即求得EF的最大值.本题考查了二次函数的图象与性质,求二次函数最大值,解一元二次方程,三角函数的应用.第(2)题在指定范围内求函数最值,一般以对称轴为分界、结合想取值范围的两个端点与对称轴的距离作分类讨论.。
【精品初三数学】[2020年大连中考仿真模拟卷-数学]+详解答案
2020年大连中考仿真模拟卷数学2020.4考试时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1.-2的倒数是()A.-2 B.12-C.12D.22.如图是由6个大小相同的小正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.3.人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为()A.7.7×10﹣6B.7.7×10﹣5C.0.77×10﹣6D.0.77×10﹣54.将点P(﹣3,4)先向右平移4个单位长度,再向下平移3个单位长度后的坐标是()A.(1,7)B.(﹣7,7)C.(1,1)D.(﹣7,1)5.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.6.如图所示的几何体的俯视图是()A.B.C.D.7.下列计算错误..的是( )A.B.a0=1 C.-2+|-2|=0 D.8.[2016·济南]某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是( )A.12B.13C.16D.199.如图,将边长为2的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.4 C.6 D.810.二次函数y=ax2+bx+c的部分图象如图,则下列说法错误的是()A.对称轴是直线x=﹣1B.abc<0C.b2﹣4ac>0D.方程ax2+bx+c=0的根是x1=﹣3和x2=1第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(本题共6小题,每小题3分,计18分)11.如图,点O为直线AB上一点,∠AOC=55°,过点O作射线使得OD⊥OC,则∠BOD的度数是_____.12.某区10名学生参加实际汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么10名学生所得分数的中位数是_____.13.如图,直线334y x=-+与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.14.某运输队只有大、小两种货车,已知1辆大车能运3吨货物,3辆小车能运1吨货物,100吨货物恰好由100辆车一次运完.设有x辆大车,y辆小车,根据题意可列方程组为________.15.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为31°,则树OA的高度约为______米(结果精确到0.1米,sin31°≈0.5150,cos31°≈0.8572,tan31°≈0.6009)16.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C 村,甲乙之间的距离()s km 与骑行时间()t h 之间的函数关系如图所示,下列结论: ①A ,B 两村相距10km ; ②出发1.25h 后两人相遇;③甲每小时比乙多骑行8km ; ④相遇后,乙又骑行了15min 时两人相距2km . 其中正确的有_____________________.(填序号)三、解答题(本大题共4小题,共39分。
2020年辽宁省大连市中山区中考数学模拟试卷((有答案))
2020年辽宁省大连市中山区中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a34.计算:=()A.1B.2C.1+D.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,406.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为11.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=km.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.(9分)解方程:x2﹣5x+3=0.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2020年辽宁省大连市中山区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.计算:=()A.1B.2C.1+D.【分析】按同分母分式的减法法则计算即可.【解答】解:法一、===1.故选:A.法二、=+﹣=1.故选:A.【点评】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,40【分析】已知给出了一个内角是40°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为40°时,另外两个内角=(180°﹣40°)÷2=70°;(2)若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°﹣40°﹣40°=100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分【分析】根据题目中的数据和加权平均数的计算方法可以解答本题.【解答】解:70×+80×+60×=14+32+24=70(分),故选:B.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到黑球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次都摸到黑球的有1种情况,∴两次都摸到黑球的概率是,故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④【分析】根据角平分线、高、等腰直角三角形的性质依次判断即可得出答案.【解答】解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠1=∠3,②∵∠1=∠2=22.5°,∴∠ABD=∠BAD,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵AB=BC,∴BD+DH=AB,③无法证明,④可以证明,故选:C.【点评】本题主要考查了角平分线、高、等腰直角三角形的性质,比较综合,难度适中.二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为﹣5.【分析】根据题意得出x+2+2x+10=﹣2+(﹣1)+(2x+10),进而求出答案.【解答】解:由题意可得:x+2+2x+10=﹣2+(﹣1)+(2x+10),整理得:3x+12=2x+7,解得:x=﹣5,故答案为:﹣5.【点评】此题主要考查了有理数的加法,正确得出关于x的等式是解题关键.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.11.如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy =k可得k=﹣2m2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为10.【分析】作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=BE,再根据BD=BF+DF求BD.【解答】解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC﹣CE=2,在Rt△BEF中,∵∠B=60°,∴BF=BE=1,∴BD=BF+DF=1+4=5,由垂径定理,得AB=2BD=10.故答案为:10【点评】本题考查了垂径定理,等边三角形的性质.关键是通过作辅助线,得出等边三角形,30°的直角三角形,利用垂径定理求AB.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是<a<或﹣4<a<﹣3.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且3<m<4,∴当a>0时,3<<4,解得<a<;当a<0时,3<﹣a<4,解得﹣4<a<﹣3.故答案为:<a<或﹣4<a<﹣3.【点评】本题考查的是抛物线与x轴的交点,关键是在解答此题时要注意进行分类讨论,不要漏解.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=2km.【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC 的长.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),故答案是:2.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于8π.【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【解答】解:侧面积=4×4π÷2=8π.故答案为8π.【点评】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(9分)解方程:x2﹣5x+3=0.【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣5,c=3,∵△=25﹣12=13,∴x=,则x1=,x2=.【点评】此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般形式,找出a,b及c的值,然后当根的判别式大于等于0时,代入求根公式即可求出解.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.【分析】由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF全等,利用全等三角形的对应边相等即可得证.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AED=∠CFB,∴△ADE≌△CBF,∴AE=CF.【点评】此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.【分析】(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据工作时间=工作总量÷工作效率结合甲车主单独完成运输任务比乙车主单独完成任务要多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率及总费用=每日所需费用×运输天数,分别求出甲车主单独完成、乙车主单独完成及甲、乙两车主合作完成所需时间及总费用,比较后即可得出结论.【解答】解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)分别求出三种外包方案所需时间及总费用.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.【分析】(1)根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;(2)作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.【解答】解:(1)∵点A(m,6)和点B(﹣3,n)在双曲线,∴6m=6,﹣3n=6,m=1,n=﹣2.∴点A(1,6),点B(﹣3,﹣2).…(2分)将点A、B代入直线y=kx+b,得,解得…(4分)∴直线AB的表达式为:y=2x+4.…(5分)(2)分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N.…(6分)则∠AMO=∠BNO=90°,AM=1,BN=3,…(7分)∴AM∥BN,…(8分)∴.…(10分)【点评】本题是一次函数和反比例函数的综合问题,考查了反比例函数和一次函数的交点问题,将点的坐标代入解析式中可得交点坐标,对于交点问题:可利用方程组的解来求两函数的交点坐标;本题还考查了平行线分线段成比例定理.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.【分析】(1)连接OC,如图,利用圆周角定理得∠2+∠3=90°,再证明∠1=∠3,则∠1+∠2=90°,然后根据切线的判定定理可得到PC与⊙O相切;(2)先利用勾股定理得到PC=8,再证明△PAC∽△PCB,利用相似比得=,然后在Rt△ABC中,利用勾股定理得到BC2+BC2=122,从而解BC的方程即可.【解答】(1)证明:连接OC,如图,∵AB为⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵∠1=∠B,∠3=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠PCO=90°,∴OC⊥PC,∴PC与⊙O相切;(2)解:在Rt△POC中,PC===8,∵∠CPA=∠BPC,∠1=∠B,∴△PAC∽△PCB,∴===,在Rt△ABC中,∵AC2+BC2=AB2,∴BC2+BC2=122,∴BC=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.【分析】(1)正方形的证明题有时用计算方法证明比几何方法简单,此题设正方形边长为a,DE为x,则根据折叠知道DM=,EM=EA=a﹣x,然后在Rt△DEM中就可以求出x,这样DE,DN,EM就都用a表示了,就可以求出它们的比值了;(2)△CMG的周长与点M的位置无关.设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,然后利用正方形的性质和折叠可以证明△DEM∽△CMG,利用相似三角形的对应边成比例可以把CG,MG分别用x,y分别表示,△CMG的周长也用x,y表示,然后在Rt△DEM中根据勾股定理可以得到4ax﹣x2=4ay,结合△CMG的周长,就可以判断△CMG的周长与点M的位置无关.【解答】(1)证明:设正方形边长为a,DE为x,则DM=,EM=EA=a﹣x在Rt△DEM中,∠D=90°,∴DE2+DM2=EM2x2+()2=(a﹣x)2x=EM=DE:DM:EM=3:4:5;(2)解:△CMG的周长与点M的位置无关.证明:设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,∵∠EMG=90°,∴∠DME+∠CMG=90度.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,又∵∠D=∠C=90°△DEM∽△CMG,∴即∴CG=△CMG的周长为CM+CG+MG=在Rt△DEM中,DM2+DE2=EM2即(2a﹣x)2+y2=(2a﹣y)2整理得4ax﹣x2=4ay∴CM+MG+CG===4a.所以△CMG的周长为4a,与点M的位置无关.【点评】正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.【分析】(1)根据同交的余角相等证明∠AFE=∠BEG,则可以根据两角对应相等的两个三角形相似即可证得;(2)根据tan∠AEF=可得AF:AE=3:4,则设AF=3x,AE=4x,则EF=DF=5x,根据AD=6即可求得x的值.则BE即可求得,然后根据△AEF∽△BGE,求得△EBG的边长,从而求解.【解答】解:(1)由折叠可知:∠FEQ=∠D=90°,EF=DF∵∠AEF+∠AFE=90°,∠AEF+∠BEG=90°∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE;(2)在Rt△AEF中,tan∠AEF=∴AF:AE=3:4设AF=3x,AE=4x,则EF=DF=5x∴3x+5x=6∴∴AF=,AE=3,EF=.∵△AEF∽△BGE,∴即,∴BG=4,GE=5.∴△EBG的周长为3+4+5=12.【点评】本题考查了图形的折叠与相似三角形的判定与性质,以及三角函数的定义,正确求得x的值是本题的关键.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P 的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C=AM+MN+AN=AC+AN=3+.△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位△APC置.。
大连市2020年中考数学模拟试题含参考答案与评分标准doc初中数学
8.图3中圆柱的主视图面积为48,那么该圆柱的侧面积为( )
A.48 B.48πC.96 D.96π
二、填空题(此题共有9小题,每题3分,共27分)
9.运算 的结果是____________.
10.化简 的结果是___________.
11.化简 的结果是_____________________.
三、解答题(此题共有3小题,18题、19题、20题各12分,共36分)
18.:如图7,AB∥CD,∠1 =∠2.
求证:△ABE≌△CDF(要求:写出证明过程中的要紧依照)
19.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行〝柑橘损坏率〞统计,并绘制成如图8所示的统计图,依照统计图提供的信息解决下面咨询题:
∴ ,
∴ ,……………………………………………………………………3分
∴ ⊙O的切线.…………………………………………………………5分
(2)连接 .
∵OB=OC,OC=2,
∴OB=2,……………………………………………………………………6分
在Rt△ABO中,
∵tan∠BOC= ,……………………………………………………………7分
19.解:〔1〕0.1,………………………………………………………………2分
0.9;………………………………………………………………………………4分
〔2〕9000;……………………………………………………………………………6分
(3)设每千克柑橘定价为 元.……………………………………………………7分
∴ ,……………………………………………………………4分
辽宁大连2020年中考数学模拟试卷 二(含答案)(含答案)
辽宁大连2020年中考数学模拟试卷二一、选择题1.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B.﹣m<﹣nC.|m|﹣|n|>0D.2+m<2+n2.如图,倒扣在台面上的一次性纸杯的俯视图是( )A. B. C. D.3.目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为( )A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10104.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)5.如图,直线l经过二、三、四象限,l的解析式是y=(m﹣2)x﹣2,则m的取值范围在数轴上表示为()A. B.C. D.6.如图,不是中心对称图形的是( )A. B. C. D.7.下列计算正确的是( )A.(a 3)2=a 5B.a 2+a 5=a 7C.(ab)3=ab 3D.a 2•a 5=a 78.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.361 9.将矩形ABCD 按如图所示的方式折叠,BE ,EG ,FG 为折痕,若顶点A ,C ,D 都落在点O 处,且点B ,O ,G 在同一条直线上,同时点E ,O ,F 在另一条直线上,则的值为( )A .B .C .D .二、填空题 10.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位置,并利用量角器量得∠EFB=65°,则∠AED ′等于 度.11.若甲组数据1,2,3,4,5的方差是2甲s ,乙组数据6,7,8,9,10的方差是2乙s ,则2甲s ____2乙s .(填“ ”、“<”或“=”)12.若等腰三角形的一个内角为50°,则它的顶角为 。
2020届辽宁省大连市中考数学模拟试题(有答案)(word版)(已审阅)
大连市初中毕业升学考试数学一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.-3的相反数是( ) A.31 B.31- C.3 D.-3 2.在平面直角坐标系中,点(1,5)所在的象限是( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.方程2x+3=7的解A. x=5B. x=4C. x=3.5D. x=24.如图,直线AB ∥CD ,AE 平分∠CAB ,AE 与CD 相交于点E , ∠ACD=40°则∠BAE 的度数是( )A. 40°B. 70°C. 80°D. 140°5.不等式组⎩⎨⎧++2322x x xx <>的解集是( )A. x >-2B. x <1C. -1<x <2D.-2<x <16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,、2、3、4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球的标号的积小于4的概率是( ) A.61 B. 125 C. 31 D. 21 7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x ,则该文具店五月份销售铅笔的支数( )A. 100(1+x )B. 100(1+x )2C. 100(1+x 2) D. 100(1+2x ) 8. 如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm )A. 40πcm 2B. 65πcm 2C. 80πcm 2D. 105πcm 2二、填空题(本题共8小题,每小题3分,共24分)9.因式分解:x 2-3x=______________________ 10.若反比例函数xky =的图象经过点(1,-6),则k 的值为_________________ 11.如图,将△ABC 绕A 顺时针旋转得到△ADE ,点C 和点E 是对应点, 若∠CAE=90°,AB=1,则BD=_________ 1213.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是_________________14.若关于x 的方程2x 2+x-a=0有两个不相等的实数根,则实数a 的取值范围是_____________15.如图,一艘渔船位于灯塔P 的北偏东30°方向距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P的距离约为___________海里(结果取整数)。
2019-2020学年辽宁省大连市中考数学模拟试题(有标准答案)(word版)
大连市初中毕业升学考试数学一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.-3的相反数是( ) A.31 B.31- C.3 D.-3 2.在平面直角坐标系中,点(1,5)所在的象限是( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.方程2x+3=7的解A. x=5B. x=4C. x=3.5D. x=2 4.如图,直线AB ∥CD ,AE 平分∠CAB ,AE 与CD 相交于点E , ∠ACD=40°则∠BAE 的度数是( )A. 40°B. 70°C. 80°D. 140° 5.不等式组⎩⎨⎧++2322x x xx <>的解集是( )A. x >-2B. x <1C. -1<x <2D.-2<x <16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,、2、3、4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球的标号的积小于4的概率是( ) A.61 B. 125 C. 31 D. 21 7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x ,则该文具店五月份销售铅笔的支数( )A. 100(1+x )B. 100(1+x )2C. 100(1+x 2) D. 100(1+2x ) 8. 如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm ) A. 40πcm 2B. 65πcm 2C. 80πcm 2D. 105πcm 2二、填空题(本题共8小题,每小题3分,共24分) 9.因式分解:x 2-3x=______________________ 10.若反比例函数xky =的图象经过点(1,-6),则k 的值为_________________ 11.如图,将△ABC 绕A 顺时针旋转得到△ADE ,点C 和点E 是对应点, 若∠CAE=90°,AB=1,则BD=_________ 12.下表是某校女子排球队队员的年龄分布13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是_________________(第8题)(第11题)14.若关于x 的方程2x 2+x-a=0有两个不相等的实数根,则实数a 的取值范围是_____________15.如图,一艘渔船位于灯塔P 的北偏东30°方向距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为___________海里(结果取整数)。
2020年大连市中考数学模拟试卷及答案解析
2020年大连市中考数学模拟试卷一.选择题(共10小题,满分30分)1.(3分)若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零2.(3分)点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个B.2个C.3个D.4个3.(3分)计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体6.(3分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.367.(3分)现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( )A .13B .23C .49D .59 8.(3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x(x −1)=28B .12x(x +1)=28C .x (x ﹣1)=28D .x (x +1)=289.(3分)观察图中给出的直线y =k 1x +b 和反比例函数y =k 2x 的图象,下列结论中错误的是( )A .k 2>b >k 1>0B .当﹣6<x <2时,有k 1x +b >k 2xC .直线y =k 1x +b 与坐标轴围成的△ABO 的面积是4D .直线y =k 1x +b 与反比例函数y =k 2x 的图象的交点坐标为(﹣6,﹣1),(2,3)10.(3分)如图,将△ABC 绕点B 逆时针旋转α,得到△EBD ,若点A 恰好在ED 的延长线上,则∠CAD 的度数为( )A .90°﹣αB .αC .180°﹣αD .2α二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,长方形的长宽分别为a ,b ,且a 比b 大5,面积为10,则a 2b ﹣ab 2的值。
2020年大连市中考数学模拟试卷及答案解析
2020年大连市中考数学模拟试卷一.选择题(共10小题,满分30分)1.(3分)若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零2.(3分)点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个B.2个C.3个D.4个3.(3分)计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体6.(3分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.367.(3分)现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( ) A .13B .23C .49D .598.(3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .12x(x −1)=28B .12x(x +1)=28C .x (x ﹣1)=28D .x (x +1)=289.(3分)观察图中给出的直线y =k 1x +b 和反比例函数y =k2x 的图象,下列结论中错误的是( )A .k 2>b >k 1>0B .当﹣6<x <2时,有k 1x +b >k2xC .直线y =k 1x +b 与坐标轴围成的△ABO 的面积是4D .直线y =k 1x +b 与反比例函数y =k2x 的图象的交点坐标为(﹣6,﹣1),(2,3)10.(3分)如图,将△ABC 绕点B 逆时针旋转α,得到△EBD ,若点A 恰好在ED 的延长线上,则∠CAD 的度数为( )A .90°﹣αB .αC .180°﹣αD .2α二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,长方形的长宽分别为a ,b ,且a 比b 大5,面积为10,则a 2b ﹣ab 2的值为.12.(3分)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(3分)如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC 的宽度AC是OA的一半,且OA=30cm,则扇面ABDC的周长为cm.14.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为.15.(3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)16.(3分)如图,在矩形ABCD中,点E在边CD上,将矩形ABCD沿AE所在直线折叠,点D恰好落在边BC上的点F处.若AB=8,DE=5,则折痕AE的长为.三.解答题(共4小题,满分39分)17.(9分)计算:(14)−1−√12+(√2+1)(√2−1)+√2×√1818.(9分)解不等式组:{x +3≥22(x +4)>4x +2.19.(9分)如图,在▱ABCD 中,AE 、CF 分别平分∠BAD 、∠BCD . 求证:(1)AE =CF ; (2)AE ∥CF .20.(12分)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视a0.3一般570.38不重视b c说不清楚90.06(1)样本容量为,表格c的值为,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数为;(3)根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?21.(9分)甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?22.(9分)已知a、b、c是△ABC的三边长,且a2+2b2+c2﹣2b(a+c)=0,试判断△ABC 的形状,并证明你的结论.23.(10分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB 于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=12,求AC的长.24.(11分)如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.25.(12分)【阅读材料】小明遇到这样一个问题:如图1,点P在等边三角形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.小明发现,以AP为边作等边三角形APD,连接BD,得到△ABD;由等边三角形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,进而可求得PB的长.(1)请回答:在图1中,∠PDB=°,PB=.【问题解决】(2)参考小明思考问题的方法,解决下面问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且P A=1,PB=√17,PC=2√2,求AB的长.【灵活运用】(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα=43,点P在△ABC外,且PB=3,PC=1,直接写出P A长的最大值.26.(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.2020年大连市中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分)1.(3分)若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:D.2.点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个B.2个C.3个D.4个解:点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有:(1,0),(0,﹣3),(0,0)共3个.故选:C.3.(3分)计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab2解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.4.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.5.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体解:由主视图和俯视图可得几何体为三棱柱,故选:A.6.(3分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=12AC,BO=DO=12BD=3,AC⊥BD,∴AO=√AD2−DO2=√25−9=4,∴AC=8,∴菱形ABCD 的面积=12×AC ×BD =12×6×8=24, 故选:B .7.(3分)现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( ) A .13B .23C .49D .59解:画树状图为:共有9种等可能的结果数,其中两人抽取的数字之和为偶数的有5种结果, 所以甲获胜的概率为59,故选:D .8.(3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .12x(x −1)=28B .12x(x +1)=28C .x (x ﹣1)=28D .x (x +1)=28解:设比赛组织者应邀请x 个队参赛, 依题意,得:12x (x ﹣1)=28.故选:A .9.(3分)观察图中给出的直线y =k 1x +b 和反比例函数y =k2x 的图象,下列结论中错误的是( )A .k 2>b >k 1>0B .当﹣6<x <2时,有k 1x +b >k 2xC .直线y =k 1x +b 与坐标轴围成的△ABO 的面积是4D .直线y =k 1x +b 与反比例函数y =k2x 的图象的交点坐标为(﹣6,﹣1),(2,3)解:把(2,3)代入y =k 2x 得k 2=2×3=6,则反比例函数解析式为y =6x, 把(﹣6,﹣1),(2,3)代入y =k 1x +b 得{−6k 1+b =−12k 1+b =3,解得{k 1=12b =2,则一次函数解析式为y =12x +2;∴k 2>b >k 1>0;所以A 选项的结论正确;当﹣6<x <0或x >2时,有k 1x +b >k2x ,所以B 选项的结论错误;当y =0时,12x +2=0,解得x =﹣4,则A (﹣4,0),当x =0时,y =12x +2=2,则B (0,2),∴S △AOB =12×2×4=4,所以,C 选项的结论正确;直线y =k 1x +b 与反比例函数y =k2x 的图象的交点坐标为(﹣6,﹣1),(2,3),所以D 选项的结论正确. 故选:B .10.(3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,长方形的长宽分别为a,b,且a比b大5,面积为10,则a2b﹣ab2的值为50.解:∵长方形的长宽分别为a,b,且a比b大5,面积为10,∴a﹣b=5,ab=10,则a2b﹣ab2=ab(a﹣b)=5×10=50. 故答案为:50.12.(3分)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是 189 .解:这5名学生跳绳次数从小到大排列为163、184、189、195、201, 所以该组数据的中位数是189, 故答案为:189.13.(3分)如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30cm ,则扇面ABDC 的周长为 (30π+30) cm .解:由题意得,OC =AC =12OA =15, AB̂的长=120π×30180=20π, CD ̂的长=120π×15180=10π, ∴扇面ABDC 的周长=20π+10π+15+15=30π+30(cm ), 故答案为:(30π+30).14.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为 {4x +6y =28x =y +2 .解:由题意可得, {4x +6y =28x =y +2, 故答案为:{4x +6y =28x =y +2.15.(3分)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 点6m 的位置,在D 处测得旗杆顶端A 的仰角为53°,若测角仪的高度是1.5m ,则旗杆AB 的高度约为 9.5 m .(精确到0.1m .参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m,故答案为:9.516.(3分)如图,在矩形ABCD中,点E在边CD上,将矩形ABCD沿AE所在直线折叠,点D恰好落在边BC上的点F处.若AB=8,DE=5,则折痕AE的长为5√5.解:∵四边形ABCD是矩形,∴AB=CD=8,BC=AD,∠B=∠D=∠C=90°,∴CE=CD﹣DE=8﹣5=3,由折叠的性质得:FE=DE=5,AF=AD,∴CF=√EF2−CE2=√52−32=4,设AD=BC=AF=x,则BF=x﹣4,在Rt △ABF 中,由勾股定理得:82+(x ﹣4)2=x 2, 解得:x =10, ∴AD =10,∴AE =√AD 2+DE 2=√102+52=5√5; 故答案为:5√5.三.解答题(共4小题,满分39分)17.(9分)计算:(14)−1−√12+(√2+1)(√2−1)+√2×√18 解:原式=4﹣2√3+2﹣1+√2×3√2 =5﹣2√3+6 =11﹣2√3.18.(9分)解不等式组:{x +3≥22(x +4)>4x +2.解:{x +3≥2①2(x +4)>4x +2②∵解不等式①得:x ≥﹣1, 解不等式②得:x <3,∴不等式组的解集为﹣1≤x <3.19.(9分)如图,在▱ABCD 中,AE 、CF 分别平分∠BAD 、∠BCD . 求证:(1)AE =CF ; (2)AE ∥CF .证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC ,∠BAD =∠DCB , ∴∠ADE =∠CBF ,∵AE 、CF 分别平分∠BAD 、∠BCD , ∴∠DAE =12∠DAB ,∠BCF =12∠DCB , ∴∠DAE =∠BCF , ∴△ADE ≌△CBF (ASA ), ∴AE =CF .(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴AE∥CF.20.(12分)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视a0.3一般570.38不重视b c说不清楚90.06(1)样本容量为150,表格c的值为0.26,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数为598;(3)根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?解:(1)由题意可得出:样本容量为:57÷0.38=150(人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,故答案为150,0.26; 如图所示:;(2)若该校共有初中生2300名,该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人); 故答案为598;(3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.四.解答题(共3小题,满分28分)21.(9分)甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件? 解:设乙每小时做x 个零件,甲每小时做(x +6)个零件, 根据题意得:60x=90x+6,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +6=18.答:乙每小时做12个零件,甲每小时做18个零件.22.(9分)已知a、b、c是△ABC的三边长,且a2+2b2+c2﹣2b(a+c)=0,试判断△ABC 的形状,并证明你的结论.解:△ABC是等边三角形,理由:∵a2+2b2+c2﹣2b(a+c)=0∴a2+b2+c2﹣2ba﹣2bc+b2=0,∴(a﹣b)2+(b﹣c)2=0,则a=b,b=c,故a=b=c,则△ABC是等边三角形.23.(10分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB 于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=12,求AC的长.解:(1)连接OB∵PB是⊙O的切线,∴∠PBO=90°∵OA=OB,BA⊥PO于D ∴AD=BD,∠POA=∠POB 又∵PO=PO∴△P AO≌△PBO(SAS)∴∠P AO =∠PBO =90°∴直线P A 为⊙O 的切线.(2)证明:∵∠P AO =∠PDA =90°∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°∴∠OAD =∠OP A∴△OAD ∽△OP A∴OD OA =OA OP∴OA 2=OD •OP又∵EF =2OA∴EF 2=4OD •OP ;(3)∵OA =OC ,AD =BD ,BC =6∴OD =12BC =3设AD =x∵tan ∠F =12∴FD =2x ,OA =OF =2x ﹣3在Rt △AOD 中,由勾股定理,得(2x ﹣3)2=x 2+32解之得,x 1=4,x 2=0(不合题意,舍去)∴AD =4,OA =2x ﹣3=5∵AC 是⊙O 的直径∴AC =2OA =10.∴AC 的长为10.五.解答题(共3小题,满分35分)24.(11分)如图1,在平面直角坐标系中,OB =10,F 是y 轴正半轴上一点.(1)若OF =2,求直线BF 的解析式;(2)设OF =t ,△OBF 的面积为s ,求s 与t 的函数关系(直接写出自变量t 的取值范围);(3)如图3,在(2)的条件下,过点B 作BA ⊥x 轴,点C 在x 轴上,OF =OC ,连接AC ,CD ⊥直线BF 于点D ,∠ACB =2∠CBD ,AC =13,OF =OC ,AC .BD 交于点E ,求此时t 的值.解:(1)∵OB =10,OF =2,∴B (﹣10,0),F (0,2),设直线BF 的解析式为y =kx +b ,∵直线y =kx +b 经过点B (﹣10,0),F (0,2),∴{0=−10k +b 2=b, 解得:{k =15b =2, ∴直线BF 的解析式为y =15x +2;(2)△OBF 的面积为S =12OB ⋅OF =12×10×t =5t (t >0); (3)如图,延长AB 至点R ,使BR =AB ,连接CR ,延长CD 交y 轴于点T ,过点T ,作TM ∥x 轴交BA 的延长线于点M ,过点T 作TK ⊥CR 交RC 的延长线于点K ,连接RT ,∵AB ⊥BC ,AB =BR ,∴BC 垂直平分AR ,∴AC =CR =13,∴∠ACB =∠RCB ,设∠CBD =α,则∠ACB =2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.25.(12分)【阅读材料】小明遇到这样一个问题:如图1,点P在等边三角形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.小明发现,以AP为边作等边三角形APD,连接BD,得到△ABD;由等边三角形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,进而可求得PB的长.(1)请回答:在图1中,∠PDB=90°,PB=5.【问题解决】(2)参考小明思考问题的方法,解决下面问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且P A=1,PB=√17,PC=2√2,求AB的长.【灵活运用】(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα=43,点P在△ABC外,且PB=3,PC=1,直接写出P A长的最大值.解:(1)如图1中,∵△ACP≌△ABD,∴∠PDB=∠APC=150°,PC=BD=4,AD=AP=3,∵△ADP为等边三角形,∴∠ADP=60°,DP=AD=3,∴∠BDP=150°﹣60°=90°,∴PB=√32+42=5.故答案为:90°,5;(2)如图2中,把△ACP绕点C逆时针旋转90°得到△BCD.由旋转性质可知;BD=P A=1,CD=CP=2√2,∠PCD=90°,∴△PCD是等腰直角三角形,∴PD=√2PC=√2×2√2=4,∠CDP=45°,∵PD2+BD2=42+12=17,PB2=(√17)2=17,∴PD2+BD2=PB2,∴∠PDB=90°,∴∠BDC=135°,∴∠APC=∠CDB=135°,∵∠CPD=45°,∴∠APC+∠CPD=180°,∴A,P,D共线,∴AD=AP+PD=5,在RtADB 中,AB =√AD 2+BD 2=√52+12=√26.(3)如图3中,作CD ⊥CP ,使得CD =34PC =34,则PD =√PC 2+CD 2=54,∵tan ∠BAC =BC AC =43,∴BC AC =PC CD ,∵∠ACB =∠PCD =90°,∴∠ACD =∠BCP ,∴△ACD ∽△BCP ,∴AD PB =CD PC =34, ∴AD =94,∵94−54≤P A ≤94+54,∴1≤P A ≤72,∴P A 的最大值为72. 26.(12分)如图,在平面直角坐标系xOy 中,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线x =2,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P 为抛物线上一点(不与点A 重合),连接PC .当∠PCB =∠ACB 时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y 轴的方向向下平移,平移后的抛物线的顶点为点D ,点P 的对应点为点Q ,当OD ⊥DQ 时,求抛物线平移的距离.解:(1)∵对称轴为直线x =2,点A 的坐标为(1,0),∴点B 的坐标是(3,0).将A (1,0),B (3,0)分别代入y =x 2+bx +c ,得{1+b +c =09+3b +c =0. 解得{b =−4c =3. 则该抛物线解析式是:y =x 2﹣4x +3.由y =x 2﹣4x +3=(x ﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P 作PN ⊥x 轴于N ,过点C 作CM ⊥PN ,交NP 的延长线于点M ,∵∠CON =90°,∴四边形CONM 是矩形.∴∠CMN =90°,CO =MN 、∴y =x 2﹣4x +3,∴C (0,3).∵B (3,0),∴OB =OC =3.∵∠COB =90°,∴∠OCB =∠BCM =45°.又∵∠ACB =∠PCB ,∴∠OCB ﹣∠ACB =∠BCM ﹣∠PCB ,即∠OCA =∠PCM .∴tan ∠OCA =tan ∠PCM .∴PM CM =13. 故设PM =a ,MC =3a ,PN =3﹣a .∴P (3a ,3﹣a ),将其代入抛物线解析式y =x 2﹣4x +3,得(3a )2﹣4(3﹣a )+3=3﹣a . 解得a 1=119,a 2=0(舍去).∴P (113,169).(3)设抛物线平移的距离为m ,得y =(x ﹣2)2﹣1﹣m .∴D (2,﹣1﹣m ).如图2,过点D 作直线EF ∥x 轴,交y 轴于点E ,交PQ 延长线于点F ,∵∠OED =∠QFD =∠ODQ =90°,∴∠EOD +∠ODE =90°,∠ODE +∠QDP =90°.∴∠EOD =∠QDF .∴tan ∠EOD =tan ∠QDF ,∴DE OE=QF DF . ∴2m+1=169−m+1+m 113−2.解得m =15.故抛物线平移的距离为15.。
【中考冲刺】2020年辽宁省大连市中考数学模拟试卷(二)附答案
令 中y=0得x= ,令x=0得y=2,
∴A( ,0),B(0,2),
∴OA= ,OB=2,
连接AB,过点C作CD⊥y轴于D,
设D(0,m),
∵点C在 ,
∴CD=CE=m+1,
∵BD=m-2,BC=OA= , ,
∴ ,
解得m= 或m= (负值舍去),
∴CD=m+1= ,
∴点C的坐标是( , ),
14.我国古代数学著作中有这样一道题:“远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯”.意思是:远远望见一座7层高的雄伟壮丽的佛塔,每层塔点着的红灯数,下层比上层成倍增加,共381盏.则塔尖有______盏灯.
15.如图,菱形 中,对角线 与 相交于点 , ,垂足为 .若 , .则 的长为_______.
【解析】
【分析】
利用垂直的定义得到∠COD=90°,再根据∠AOD+∠COD+∠COB=180°求出答案.
【详解】
∵ ,
∴∠COD=90°,
∵∠AOD+∠COD+∠COB=180°, ,
∴∠COB=180°-∠AOD-∠COD=66°,
故答案为:66.
【点睛】
此题考查垂直的定义,角度的计算,正确计算是解题的关键.
故答案为:( , ).
【点睛】
此题考查了一次函数的性质,一次函数与坐标轴的交点,勾股定理,求直角坐标系中的点的坐标需从该点向某一坐标轴引垂线,求出对应线段的长度得到该点的坐标.
17. .
【解析】
试题分析:根据实数的运算,即可解答.
试题解析:原式=1+2- -3+2
=1+2-3+(- +2 )
2020届辽宁省大连市中山区中考数学模拟试卷((有答案))(加精)
辽宁省大连市中山区中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a34.计算:=()A.1B.2C.1+D.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,406.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为11.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=km.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.(9分)解方程:x2﹣5x+3=0.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.辽宁省大连市中山区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.计算:=()A.1B.2C.1+D.【分析】按同分母分式的减法法则计算即可.【解答】解:法一、===1.故选:A.法二、=+﹣=1.故选:A.【点评】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,40【分析】已知给出了一个内角是40°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为40°时,另外两个内角=(180°﹣40°)÷2=70°;(2)若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°﹣40°﹣40°=100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分【分析】根据题目中的数据和加权平均数的计算方法可以解答本题.【解答】解:70×+80×+60×=14+32+24=70(分),故选:B.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到黑球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次都摸到黑球的有1种情况,∴两次都摸到黑球的概率是,故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④【分析】根据角平分线、高、等腰直角三角形的性质依次判断即可得出答案.【解答】解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠1=∠3,②∵∠1=∠2=22.5°,∴∠ABD=∠BAD,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵AB=BC,∴BD+DH=AB,③无法证明,④可以证明,故选:C.【点评】本题主要考查了角平分线、高、等腰直角三角形的性质,比较综合,难度适中.二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为﹣5.【分析】根据题意得出x+2+2x+10=﹣2+(﹣1)+(2x+10),进而求出答案.【解答】解:由题意可得:x+2+2x+10=﹣2+(﹣1)+(2x+10),整理得:3x+12=2x+7,解得:x=﹣5,故答案为:﹣5.【点评】此题主要考查了有理数的加法,正确得出关于x的等式是解题关键.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.11.如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy =k可得k=﹣2m2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为10.【分析】作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=BE,再根据BD=BF+DF求BD.【解答】解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC﹣CE=2,在Rt△BEF中,∵∠B=60°,∴BF=BE=1,∴BD=BF+DF=1+4=5,由垂径定理,得AB=2BD=10.故答案为:10【点评】本题考查了垂径定理,等边三角形的性质.关键是通过作辅助线,得出等边三角形,30°的直角三角形,利用垂径定理求AB.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是<a<或﹣4<a<﹣3.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且3<m<4,∴当a>0时,3<<4,解得<a<;当a<0时,3<﹣a<4,解得﹣4<a<﹣3.故答案为:<a<或﹣4<a<﹣3.【点评】本题考查的是抛物线与x轴的交点,关键是在解答此题时要注意进行分类讨论,不要漏解.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=2km.【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC 的长.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),故答案是:2.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于8π.【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【解答】解:侧面积=4×4π÷2=8π.故答案为8π.【点评】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(9分)解方程:x2﹣5x+3=0.【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣5,c=3,∵△=25﹣12=13,∴x=,则x1=,x2=.【点评】此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般形式,找出a,b及c的值,然后当根的判别式大于等于0时,代入求根公式即可求出解.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.【分析】由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF全等,利用全等三角形的对应边相等即可得证.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AED=∠CFB,∴△ADE≌△CBF,∴AE=CF.【点评】此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.【分析】(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据工作时间=工作总量÷工作效率结合甲车主单独完成运输任务比乙车主单独完成任务要多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率及总费用=每日所需费用×运输天数,分别求出甲车主单独完成、乙车主单独完成及甲、乙两车主合作完成所需时间及总费用,比较后即可得出结论.【解答】解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)分别求出三种外包方案所需时间及总费用.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.【分析】(1)根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;(2)作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.【解答】解:(1)∵点A(m,6)和点B(﹣3,n)在双曲线,∴6m=6,﹣3n=6,m=1,n=﹣2.∴点A(1,6),点B(﹣3,﹣2).…(2分)将点A、B代入直线y=kx+b,得,解得…(4分)∴直线AB的表达式为:y=2x+4.…(5分)(2)分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N.…(6分)则∠AMO=∠BNO=90°,AM=1,BN=3,…(7分)∴AM∥BN,…(8分)∴.…(10分)【点评】本题是一次函数和反比例函数的综合问题,考查了反比例函数和一次函数的交点问题,将点的坐标代入解析式中可得交点坐标,对于交点问题:可利用方程组的解来求两函数的交点坐标;本题还考查了平行线分线段成比例定理.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.【分析】(1)连接OC,如图,利用圆周角定理得∠2+∠3=90°,再证明∠1=∠3,则∠1+∠2=90°,然后根据切线的判定定理可得到PC与⊙O相切;(2)先利用勾股定理得到PC=8,再证明△PAC∽△PCB,利用相似比得=,然后在Rt△ABC中,利用勾股定理得到BC2+BC2=122,从而解BC的方程即可.【解答】(1)证明:连接OC,如图,∵AB为⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵∠1=∠B,∠3=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠PCO=90°,∴OC⊥PC,∴PC与⊙O相切;(2)解:在Rt△POC中,PC===8,∵∠CPA=∠BPC,∠1=∠B,∴△PAC∽△PCB,∴===,在Rt△ABC中,∵AC2+BC2=AB2,∴BC2+BC2=122,∴BC=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.【分析】(1)正方形的证明题有时用计算方法证明比几何方法简单,此题设正方形边长为a,DE为x,则根据折叠知道DM=,EM=EA=a﹣x,然后在Rt△DEM中就可以求出x,这样DE,DN,EM就都用a表示了,就可以求出它们的比值了;(2)△CMG的周长与点M的位置无关.设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,然后利用正方形的性质和折叠可以证明△DEM∽△CMG,利用相似三角形的对应边成比例可以把CG,MG分别用x,y分别表示,△CMG的周长也用x,y表示,然后在Rt△DEM中根据勾股定理可以得到4ax﹣x2=4ay,结合△CMG的周长,就可以判断△CMG的周长与点M的位置无关.【解答】(1)证明:设正方形边长为a,DE为x,则DM=,EM=EA=a﹣x在Rt△DEM中,∠D=90°,∴DE2+DM2=EM2x2+()2=(a﹣x)2x=EM=DE:DM:EM=3:4:5;(2)解:△CMG的周长与点M的位置无关.证明:设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,∵∠EMG=90°,∴∠DME+∠CMG=90度.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,又∵∠D=∠C=90°△DEM∽△CMG,∴即∴CG=△CMG的周长为CM+CG+MG=在Rt△DEM中,DM2+DE2=EM2即(2a﹣x)2+y2=(2a﹣y)2整理得4ax﹣x2=4ay∴CM+MG+CG===4a.所以△CMG的周长为4a,与点M的位置无关.【点评】正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.【分析】(1)根据同交的余角相等证明∠AFE=∠BEG,则可以根据两角对应相等的两个三角形相似即可证得;(2)根据tan∠AEF=可得AF:AE=3:4,则设AF=3x,AE=4x,则EF=DF=5x,根据AD=6即可求得x的值.则BE即可求得,然后根据△AEF∽△BGE,求得△EBG的边长,从而求解.【解答】解:(1)由折叠可知:∠FEQ=∠D=90°,EF=DF∵∠AEF+∠AFE=90°,∠AEF+∠BEG=90°∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE;(2)在Rt△AEF中,tan∠AEF=∴AF:AE=3:4设AF=3x,AE=4x,则EF=DF=5x∴3x+5x=6∴∴AF=,AE=3,EF=.∵△AEF∽△BGE,∴即,∴BG=4,GE=5.∴△EBG的周长为3+4+5=12.【点评】本题考查了图形的折叠与相似三角形的判定与性质,以及三角函数的定义,正确求得x的值是本题的关键.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P 的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C=AM+MN+AN=AC+AN=3+.△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位△APC置.。
辽宁大连2020年中考数学模拟试卷 一(含答案)(含答案)
辽宁大连2020年中考数学模拟试卷一一、选择题1.﹣9的相反数是( )A.﹣9 B.﹣ C.9 D.2.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A.正视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大3.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104 B.64×105 C.6.4×106 D.0.64×1074.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限C.第三象限D.第四象限5.不等式2(x+1)<3x的解集在数轴上表示出来应为( )A. B. C. D.6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.7.已知32m=8n,则m、n满足的关系正确的是( )A.4m=nB.5m=3nC.3m=5nD.m=4n8.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为( )A.2B.15C.18D.219.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=( )A.﹣20 B.﹣16 C.﹣12 D.﹣8二、填空题10.如图,AB∥CD,AF交CD于点O,且OF平分∠EOD,如果∠A=38°,那么∠EOF=___________°。
11.已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为_______.12.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心,BC长为半径作弧,交AB于点D,交AC于点E,连结BE,则∠ABE的大小为度.13.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了题.14.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是 cm.15.如图,已知菱形ABCD在平面直角坐标系中,A(-4,0),D(0,3),连OC,则直线OC解析式为 .16.若一元二次方程ax 2+bx+1=0有两个相同的实数根,则a 2-b 2+5的最小值为__________.三、计算题17.化简:112222+---x x x x x .18.计算:.四、解答题19.如图,点D ,E 分别在AB ,AC 上,且AD=AE ,∠BDC=∠CEB .求证:BD=CE .20.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D 四个等级,其中相应等级的里程依次为200 km ,210 km ,220 km ,230 km ,根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有多少辆?请补全条形统计图.(2)估计这种电动汽车一次充电后行驶的平均里程数.21.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件.为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求每次下调的百分率;(2)经调查,若该商品每降价1元,每天可多销售8件,那么每天要想获得512元的利润,每件应降价多少元?22.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.23.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH.①△CBH∽△OBC;②求OH+HC的最大值.五、综合题24.已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.25.速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.参考答案1.答案为:C2.B3.答案为:C4.B5.D.6.答案为:D.7.B8.B9.C.解析:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示:则△BDE ≌△FDE ,∴BD=FD ,BE=FE ,∠DFE=∠DBE=90°易证△ADF ∽△GFE ∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D 、E 在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt △ADF 中,由勾股定理:AD 2+AF 2=DF 2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C .10.答案为:38;11.答案为:2.12.答案为:21.13.答案为:19;14.答案为:210.15.答案为:y=0.8x ;16.答案为:1;17.原式=1x x . 18.答案为:+2+.19.证明:∵∠ADC+∠BDC=180°,∠BEC+∠AEB=180°,又∵∠BDC=∠CEB,∴∠ADC=∠AEB.在△ADC和△AEB中,,∴△ADC≌△AEB(ASA).∴AB=AC.∴AB﹣AD=AC﹣AE.即BD=CE.20.100辆.补全条形统计图如图.(2)估计这种电动汽车一次充电后行驶的平均里程数为217 km.21.解:(1)设每次下调的百分率为,由题意,得.解得.经检验:不符合题意,故=10%.答:每次下调的百分率为10%.(2)设每件商品降价元,则每天多销售件.由题意,得.解得.答:每件应降价2元.22.解:23.24.解:(1)过点C作CH⊥x轴,垂足为H∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2∴OB=4,OA=由折叠知,∠COB=30°,OC=OA=∴∠COH=60°,OH=,CH=3∴C点坐标为(,3);(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(,0)两点,∴,解得:,∴此抛物线的解析式为:y=﹣x2+2x.(3)存在.因为的顶点坐标为(,3)所以顶点坐标为点C作MP⊥x轴,垂足为N,设PN=t,因为∠BOA=30°,所以ON=t∴P(t,t)作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E把t代入得:y=﹣3t2+6t∴M(t,﹣3t2+6t),E(,﹣3t2+6t)同理:Q(,t),D(,1)要使四边形CDPM为等腰梯形,只需CE=QD(这时△PQD≌△MEC)即3﹣(﹣3t2+6t)=t﹣1,解得:,t2=1(不合题意,舍去)∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,);25.解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK= (AK+CK)= AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.第11 页共11 页。
2019-2020学年大连市中考数学模拟试卷(有标准答案)(Word版)
辽宁省大连市中考数学试卷一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球3.计算﹣的结果是()A.B.C.D.4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a65.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= .10.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是岁.11.五边形的内角和为.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.18.解不等式组:.19.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,=5.1),点A在y轴上,且AD∥x轴,S▱ABCD(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.【考点】2A:实数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.【解答】解:在实数﹣1,0,3,中,最大的数是3,故选:C.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球【考点】U3:由三视图判断几何体.【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.3.计算﹣的结果是()A.B.C.D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==故选(C)4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方进行计算即可.【解答】解:原式=4a6,故选D.5.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等.再根据邻补角的性质,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=108°,∵∠2+∠3=180°,∴∠2=72°,即∠2的度数等于72°.故选:C.6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= ﹣4 .【考点】1D:有理数的除法.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣4.故答案为:﹣410.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是15 岁.【考点】W5:众数.【分析】根据表格中的数据确定出人数最多的队员年龄确定出众数即可.【解答】解:根据表格得:该校女子排球队队员年龄的众数是15岁,故答案为:1511.五边形的内角和为540°.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为 5 cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【解答】解:连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA===5.故答案为:5.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1 .【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】设甲种票买了x张,乙种票买了y张,根据“36名学生购票恰好用去860元”作为相等关系列方程组.【解答】解:设甲种票买了x张,乙种票买了y张,根据题意,得:,故答案为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为102 n mile.(结果取整数,参考数据:≈1.7,≈1.4)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意得出∠MPA=∠PAD=60°,从而知PD=AP•sin∠PAD=43,由∠BPD=∠PBD=45°根据BP=,即可求出即可.【解答】解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP•sin∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP===43×≈102(n mile).故答案为:102.16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4 (用含m的代数式表示).【考点】FF:两条直线相交或平行问题.【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m﹣6;当直线y=2x+b经过点B时,得出b=m﹣4;即可得出答案.【解答】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.【考点】79:二次根式的混合运算.【分析】首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可.【解答】解:原式=3+2﹣2+4=7.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣3>1,得:x>2,解不等式>﹣2,得:x<4,∴不等式组的解集为2<x<419.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS证明△BEA≌△DFC,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠DCA,∴180°﹣∠BAC=180°﹣∠DCA,∴∠EAB=∠FAD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,在△BEA和△DFC中,,∴△BEA≌△DFC(AAS),∴AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20 %.(2)被调查学生的总数为150 人,统计表中m的值为45 ,统计图中n的值为36 .(3)在统计图中,E类所对应扇形的圆心角的度数为21.6°.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)观察图表休息即可解决问题;(2)根据百分比=,计算即可;(3)根据圆心角=360°×百分比,计算即可;(4)用样本估计总体的思想解决问题即可;【解答】解:(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?【考点】B7:分式方程的应用.【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得: =,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S=5.▱ABCD(1)填空:点A的坐标为(0,1);(2)求双曲线和AB所在直线的解析式.【考点】G7:待定系数法求反比例函数解析式;FA:待定系数法求一次函数解析式;G5:反比例函数系数k的几何意义;L5:平行四边形的性质.【分析】(1)由D得坐标以及点A在y轴上,且AD∥x轴即可求得;(2)由平行四边形得面积求得AE得长,即可求得OE得长,得到B得纵坐标,代入反比例函数得解析式求得B得坐标,然后根据待定系数法即可求得AB所在直线的解析式.【解答】解:(1)∵点D的坐标为(2,1),点A在y轴上,且AD∥x轴,∴A(0,1);故答案为(0,1);(2)∵双曲线y=经过点D(2,1),∴k=2×1=2,∴双曲线为y=,∵D(2,1),AD∥x轴,∴AD=2,=5,∵S▱ABCD∴AE=,∴OE=,∴B点纵坐标为﹣,把y=﹣代入y=得,﹣ =,解得x=﹣,∴B(﹣,﹣),设直线AB得解析式为y=ax+b,代入A(0,1),B(﹣,﹣)得:,解得,∴AB所在直线的解析式为y=x+1.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,则AC=2x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;(2)分两种情形①如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN 是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ•sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【考点】RB:几何变换综合题.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出===,可得=,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得==,可得=,即=,由此即可解决问题;【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= ﹣2a﹣1 (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.【考点】HF:二次函数综合题.【分析】(1)①由A点坐标可求得c,再把B点坐标代入可求得b与a的关系式,可求得答案;②用a可表示出抛物线解析式,令y=0可得到关于x的一元二次方程,利用根与系数的关系可用a表示出EF的值,再利用函数性质可求得其取得最小值时a的值,可求得抛物线解析式;(2)可用b表示出抛物线解析式,可求得其对称轴为x=﹣b,由题意可得出当x=0、x=1或x=﹣b时,抛物线上的点可能离x轴最远,可分别求得其函数值,得到关于b的方程,可求得b 的值.【解答】解:(1)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0,),∴c=,∵抛物线经过点B(2,﹣),∴﹣=4a+2b+,∴b=﹣2a﹣1,故答案为:﹣2a﹣1;②由①可得抛物线解析式为y=ax2﹣(2a+1)x+,令y=0可得ax2﹣(2a+1)x+=0,∵△=(2a+1)2﹣4a×=4a2﹣2a+1=4(a﹣)2+>0,∴方程有两个不相等的实数根,设为x1、x2,∴x1+x2=,x1x2=,∴EF2=(x1﹣x2)2=(x1+x2)2﹣4x1x2==(﹣1)2+3,∴当a=1时,EF2有最小值,即EF有最小值,∴抛物线解析式为y=x2﹣3x+;(2)当a=时,抛物线解析式为y=x2+bx+,∴抛物线对称轴为x=﹣b,∴只有当x=0、x=1或x=﹣b时,抛物线上的点才有可能离x轴最远,当x=0时,y=,当x=1时,y=+b+=2+b,当x=﹣b时,y=(﹣b)2+b(﹣b)+=﹣b2+,①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x<1范围内,满足条件;②当|﹣b2+|=3时,b=±3,对称轴为直线x=±3,不在0<x<1范围内,故不符合题意,综上可知b的值为1或﹣5.。
2020年辽宁省大连市中考数学模拟试卷含答案解析
3.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是( )
A.AC=ABB.∠C= ∠BODC.∠C=∠BD.∠A=∠BOD
4.不等式|x﹣1|<1的解集是( )
A.x>2B.x<0C.1<x<2D.0<x<2
5.在平面直角坐标系中,抛物线y=﹣ (x+1)2﹣ 的顶点是( )
A.绝对值B.倒数C.相反数D.算术平方根
【考点】算术平方根;相反数;绝对值;倒数.
【分析】利用绝对值的代数意义,倒数,相反数,算术平方根定义判断即可.
【解答】解:正整数5的绝对值为5;倒数为 ;相反数为﹣5;算术平方根为 ,得到的数值仍为正整数的是绝对值,
故选A.
2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界平均水平,因此,珍惜水、保护水是我们每一位公民的责任,其中数据28000用科学记数法表示为( )
所以米堆的斛数是 ≈22,
故选B.
二、填空题(本题共8小题,每小题3分,满分24分)
9.因式分解:2a2﹣4a=2a(a﹣2).
【考点】因式分解-提公因式法.
【分析】原题中的公因式是2a,用提公因式法来分解因式.
【解答】解:原式=2a(a﹣2).
故答案为:2a(a﹣2).
10.某舞蹈队10名队员的年龄分布如表所示:
13.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的 ,则AB:DE=.
14.如图,点A是反比例函数图象上y= 一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则k=.
15.在平面直角坐标系中,有平行四边形ABCD,点A坐标为(2,0),点C(5,﹣3),点B(4,1),则D点坐标为.
辽宁大连2020年中考数学模拟试卷 三(含答案)(含答案)
辽宁大连2020年中考数学模拟试卷三一、选择题1.将式子3-5-7写成和的形式,正确的是()A.3+5+7B.-3+(-5)+(-7)C.3-(+5)-(+7)D.3+(-5)+(-7)2.如图所示的几何体的俯视图是()3.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108B.3×107C.3×106D.0.3×1084.在直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,表示下列某个不等式的解集,其中正确的是()A.x>2B.x<2C.x≥2D.x≤﹣26.下列四个图形中,不是中心对称图形的是( )A. B. C. D.7.已知10 x=3,10 y=4,则102x+3y =( )A.574B.575C.576D.5778.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.9.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD 沿直线PD折叠,使点C落到点C/处;作∠BPC/的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()二、填空题10.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于度.11.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S2=1.9,乙队队员身高甲的方差是S乙2=1.2,那么两队中队员身高更整齐的是队.(填“甲”或“乙”)12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.13.明德小学为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑两条宽度相同的道路,余下部分作草坪,现在有一位学生设计了如图所示的方案,求图中道路的宽是米时,草坪面积为540平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省大连市中考数学试卷一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球3.计算﹣的结果是()A. B. C. D.4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a65.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.二、填空题(每小题3分,共24分)9.计算:﹣12÷3=.10.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是岁.11.五边形的内角和为.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.18.解不等式组:.19.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b=(用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.【考点】2A:实数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.【解答】解:在实数﹣1,0,3,中,最大的数是3,故选:C.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球【考点】U3:由三视图判断几何体.【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.3.计算﹣的结果是()A. B. C. D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==故选(C)4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方进行计算即可.【解答】解:原式=4a6,故选D.5.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等.再根据邻补角的性质,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=108°,∵∠2+∠3=180°,∴∠2=72°,即∠2的度数等于72°.故选:C.6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.二、填空题(每小题3分,共24分)9.计算:﹣12÷3=﹣4.【考点】1D:有理数的除法.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣4.故答案为:﹣410.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是15岁.【考点】W5:众数.【分析】根据表格中的数据确定出人数最多的队员年龄确定出众数即可.【解答】解:根据表格得:该校女子排球队队员年龄的众数是15岁,故答案为:1511.五边形的内角和为540°.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为5cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【解答】解:连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA===5.故答案为:5.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1.【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】设甲种票买了x张,乙种票买了y张,根据“36名学生购票恰好用去860元”作为相等关系列方程组.【解答】解:设甲种票买了x张,乙种票买了y张,根据题意,得:,故答案为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为102n mile.(结果取整数,参考数据:≈1.7,≈1.4)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意得出∠MPA=∠PAD=60°,从而知PD=AP•sin∠PAD=43,由∠BPD=∠PBD=45°根据BP=,即可求出即可.【解答】解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP•sin∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP===43×≈102(n mile).故答案为:102.16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4(用含m的代数式表示).【考点】FF:两条直线相交或平行问题.【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m﹣6;当直线y=2x+b经过点B时,得出b=m﹣4;即可得出答案.【解答】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.【考点】79:二次根式的混合运算.【分析】首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可.【解答】解:原式=3+2﹣2+4=7.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣3>1,得:x>2,解不等式>﹣2,得:x<4,∴不等式组的解集为2<x<419.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS证明△BEA≌△DFC,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠DCA,∴180°﹣∠BAC=180°﹣∠DCA,∴∠EAB=∠FAD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,在△BEA和△DFC中,,∴△BEA≌△DFC(AAS),∴AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.(2)被调查学生的总数为150人,统计表中m的值为45,统计图中n的值为36.(3)在统计图中,E类所对应扇形的圆心角的度数为21.6°.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)观察图表休息即可解决问题;(2)根据百分比=,计算即可;(3)根据圆心角=360°×百分比,计算即可;(4)用样本估计总体的思想解决问题即可;【解答】解:(1)最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?【考点】B7:分式方程的应用.【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为(0,1);(2)求双曲线和AB所在直线的解析式.【考点】G7:待定系数法求反比例函数解析式;FA:待定系数法求一次函数解析式;G5:反比例函数系数k的几何意义;L5:平行四边形的性质.【分析】(1)由D得坐标以及点A在y轴上,且AD∥x轴即可求得;(2)由平行四边形得面积求得AE得长,即可求得OE得长,得到B得纵坐标,代入反比例函数得解析式求得B得坐标,然后根据待定系数法即可求得AB所在直线的解析式.【解答】解:(1)∵点D的坐标为(2,1),点A在y轴上,且AD∥x轴,∴A(0,1);故答案为(0,1);(2)∵双曲线y=经过点D(2,1),∴k=2×1=2,∴双曲线为y=,∵D(2,1),AD∥x轴,∴AD=2,∵S▱ABCD=5,∴AE=,∴OE=,∴B点纵坐标为﹣,把y=﹣代入y=得,﹣=,解得x=﹣,∴B(﹣,﹣),设直线AB得解析式为y=ax+b,代入A(0,1),B(﹣,﹣)得:,解得,∴AB所在直线的解析式为y=x+1.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,则AC=2x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;(2)分两种情形①如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ•sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【考点】RB:几何变换综合题.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出===,可得=,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得==,可得=,即=,由此即可解决问题;【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b=﹣2a﹣1(用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.【考点】HF:二次函数综合题.【分析】(1)①由A点坐标可求得c,再把B点坐标代入可求得b与a的关系式,可求得答案;②用a可表示出抛物线解析式,令y=0可得到关于x的一元二次方程,利用根与系数的关系可用a表示出EF的值,再利用函数性质可求得其取得最小值时a的值,可求得抛物线解析式;(2)可用b表示出抛物线解析式,可求得其对称轴为x=﹣b,由题意可得出当x=0、x=1或x=﹣b时,抛物线上的点可能离x轴最远,可分别求得其函数值,得到关于b的方程,可求得b 的值.【解答】解:(1)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0,),∴c=,∵抛物线经过点B(2,﹣),∴﹣=4a+2b+,∴b=﹣2a﹣1,故答案为:﹣2a﹣1;②由①可得抛物线解析式为y=ax2﹣(2a+1)x+,令y=0可得ax2﹣(2a+1)x+=0,∵△=(2a+1)2﹣4a×=4a2﹣2a+1=4(a﹣)2+>0,∴方程有两个不相等的实数根,设为x1、x2,∴x1+x2=,x1x2=,∴EF2=(x1﹣x2)2=(x1+x2)2﹣4x1x2==(﹣1)2+3,∴当a=1时,EF2有最小值,即EF有最小值,∴抛物线解析式为y=x2﹣3x+;(2)当a=时,抛物线解析式为y=x2+bx+,∴抛物线对称轴为x=﹣b,∴只有当x=0、x=1或x=﹣b时,抛物线上的点才有可能离x轴最远,当x=0时,y=,当x=1时,y=+b+=2+b,当x=﹣b时,y=(﹣b)2+b(﹣b)+=﹣b2+,①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x<1范围内,满足条件;②当|﹣b2+|=3时,b=±3,对称轴为直线x=±3,不在0<x<1范围内,故不符合题意,综上可知b的值为1或﹣5.。