经典求极限方法

合集下载

几道经典极限问题

几道经典极限问题

1、设0,01>>a x ,)(211nn n x a x x +=+,证明:}{n x 收敛并求其极限。

证明:显然0>n x ,又a x a x x n n n ≥+=+)(211(中学中不等式) 又1)1(2121≤+=+nn n x a x x ,所以}{n x 单调减少,有下界,故}{n x 收敛,令A x n n =∞→lim ,由 )(21A a A A +=,则a A =。

2、求20cos 2cos cos 1lim xnx x x n x -→。

解答:+-+-=-→→→2020202cos cos cos lim cos 1lim cos 2cos cos 1lim x x x x x x x nx x x x x n x 210cos 2cos cos )1cos(2cos cos lim x nx x x x n x x n n x --+-→,而21cos 1lim 20=-→x x x , 2020202cos 1lim 2cos 1cos lim 2cos cos cos lim xx x x x x x x x x x x -=-=-→→→, 因为22~cos 1x a x a -,所以22)2(41~2cos 1x x x =-,于是12cos 1lim 20=-→x x x , 同理 ,233cos 2cos cos 2cos cos lim 230=-→xx x x x x x , 2cos 2cos cos )1cos(2cos cos lim 210n x nx x x x n x x n n x =---→ , 所以原式4)1(22221+=+++=n n n 。

3、设0,0>>b a ,求][lim 0xb a x x ⋅+→。

解答:令θ+=n x b ,其中10<<θ,当+→0x 时,+∞→n ,则θ+=n b x , 于是ab n n a b x b a x n x =⋅+=⋅∞→+→)(lim ][lim 0θ。

经典求极限解题方法

经典求极限解题方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m mm n n n n x 0lim 011011ΛΛ3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

利用四则运算求极限例题

利用四则运算求极限例题

利用四则运算求极限例题《利用四则运算求极限例题》是很多数学教育者和学习者都很关注的一个问题。

求极限是很多高等数学中的经典应用,它反映出数学运算手段的完善性和严谨性,特别是对于理解计算和处理复杂问题,它所表达出来的数学思想和思维方法都是非常有价值的。

本文以通俗易懂的方式,通过实例教学的形式,来探讨如何利用常见的四则运算求解极限的问题。

一、极限的定义极限是数学中的一种重要概念,它指的是表达式x趋向某特定值n,当x越接近n的值时,表达式的值越来越靠近n的值,而且求出的结果只有一个,这时可以称x的极限为n。

二、极限的计算1、利用二项式定理计算极限(1)若要计算极限limx→a(1+x)^3/x,令x=a时,(1+x)=1+a,由二项式定理,有:(1+a)^3=(1+a)(1+a)(1+a)=1+3a+3a^2+a^3。

把x=a带入到原式中,可得:limx→al(1+x)^3/x=1+3a+3a^2+a^3.(2)若要计算极限limx→al(1+x^2)^2/x,令x=a时,(1+x^2)=1+a^2,由二项式定理,有:(1+a^2)^2=(1+a^2)(1+a^2)=1+2a^2+a^4,把x=a带入到原式中,可得:limx→al(1+x^2)^2/x=1+2a^2+a^4.2、利用求导法计算极限(1)若要计算极限limx→a5x^2-2x+7,由求导法可得:limx→a5x^2-2x+7=10a-2.(2)若要计算极限limx→a3x^3+4x^2-2,由求导法可得:limx→a3x^3+4x^2-2=9a^2+8a-2.三、极限的求解方法1、利用三角函数求解极限例1:求limx→∞sinx/x,由三角函数的性质,当x趋近于无穷大时,sinx的值趋近于x,因此limx→∞sinx/x=1.例2:求limx→∞cosx/x,由三角函数的性质,若x趋近于无穷大,则cosx趋近于1,因此limx→∞cosx/x=1.2、利用指数函数求解极限例1:求limx→∞2x^2/2^x,由指数函数的性质,当x趋近于无穷大时,2^x的值趋近于无穷大,因此limx→∞2x^2/2^x=0.例2:求limx→0(3x+2)/2^x,由指数函数的性质,当x趋近于0时,2^x的值趋近于1,因此limx→0(3x+2)/2^x=3.结论通过以上的阐述可知,用四则运算求解极限的方法有很多种,其中二项式定理、求导法、三角函数和指数函数更是比较常用,把它们用到实践中,可以有效地帮助学生更好的理解和掌握极限的求解方法。

求函数值域的方法大全

求函数值域的方法大全

求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。

原理是找到函数的变量的极限,在此极限处求函数的极值。

求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。

2、求导法:求导法是求函数的最值的经典方法。

原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。

3、几何法:几何法是求函数最值问题的一种有效方法。

原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。

因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。

4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。

这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。

5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。

大一求极限的例题及答案

大一求极限的例题及答案

大一求极限的例题及答案例1:求极限 lim x→0 (sin x)/x解析:这是一个经典的极限问题,可以利用等价无穷小替换法,即当x→0时,sin x ~ x,所以lim x→0 (sin x)/x = lim x→0 x/x = 1例2:求极限 lim x→∞ (1 + 1/x)^x解析:这是一个重要的极限问题,它的值是自然常数e。

可以利用对数函数的连续性,即lim x→∞ (1 + 1/x)^x = exp(lim x→∞ x * ln(1 + 1/x))= exp(lim x→∞ ln(1 + 1/x) / (1/x))= exp(lim u→0 ln(1 + u) / u)= exp(1)= e其中u = 1/x,且利用了洛必达法则。

例3:求极限 lim n→∞ (n!)/(n^n)解析:这是一个无穷大比无穷大的极限问题,可以利用斯特林公式,即n! ~ sqrt(2πn) * (n/e)^n所以lim n→∞ (n!)/(n^n) = lim n→∞ sqrt(2πn) * (n/e)^n / n^n= lim n→∞ sqrt(2π/n) * (e/n)^n= 0其中利用了无穷小与有界函数的乘积是无穷小的性质。

例4:求极限 lim x→0+ ((ln x)2)/(x2)解析:这是一个无穷小比无穷小的极限问题,可以利用泰勒公式,即ln(1 + u) = u - u^2/2 + o(u^2)当u = x - 1时,ln(x) = (x - 1) - (x - 1)^2/2 + o((x - 1)^2) 所以lim x→0+ ((ln x)2)/(x2) = lim x→0+ (((x - 1) - (x - 1)^2/2 + o((x - 1)2))2)/(x^2)= lim x→0+ ((-4 + o(1))/(4(x - 1)))^2= ∞其中利用了夹逼定理。

例5:求极限lim h→0 ((a^(h+1) - a(h-1))/(h(ah)))解析:这是一个有理函数的极限问题,可以利用指数函数的性质,即a^(h+1) - a^(h-1) = a^h * (a^2 - a^-2)h(a^h) = h * a^h * a^0所以lim h→0 ((a^(h+1) - a(h-1))/(h(ah))) = lim h →0 ((a^h * (a^2 - a^-2))/(h * a^h * a^0)) = lim h→0 ((a^2 - a^-2)/(h * a^0))= (a^2 - a^-2)/0+= ∞。

大学数学经典求极限方法及解析(最全)

大学数学经典求极限方法及解析(最全)

求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

大学数学经典求极限方法(最全)

大学数学经典求极限方法(最全)

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

浅谈两个重要极限解题技巧

浅谈两个重要极限解题技巧

浅谈两个重要极限解题技巧极限是高等数学中的一个重要概念,它是指一个函数在一个点上趋近于某一值的过程。

在实际的解题中,常常会遇到需要求解极限的问题,因此,掌握一些极限的解题技巧对于学生来说至关重要。

本文将浅谈两个重要的极限解题技巧,供广大同学参考学习。

一、夹逼准则夹逼准则也称为挤压定理,它是解决极限问题的一种经典方法。

夹逼准则的思路是通过比较原函数与其他两个已知的函数之间的关系,来推导出原函数的极限。

通常情况下,夹逼准则适用于以下两种情况:1. 原函数与其他两个函数都趋近于同一个值,且中间的那个函数能够通过比较确定原函数的上限或下限。

2. 原函数在某个区间内“夹在”两个已知函数之间,且这两个函数具有相同的极限。

例如,假设我们需要求解函数$f(x)=\frac{x^3+3x^2-1}{x^2+2}$在$x=2$处的极限。

我们可以通过夹逼准则来求解该极限。

具体步骤如下:首先找到两个函数$g(x)$和$h(x)$,它们满足$g(x)\leq f(x)\leq h(x)$,且$g(x)$和$h(x)$在$x=2$处的极限相等,即$\lim_{x\to 2}g(x)=\lim_{x\to 2}h(x)$。

其次,我们需要确定$g(x)$和$h(x)$的表达式。

由于当$x$趋近于2时,分母$x^2+2$的值变得非常接近于4,因此我们可以令$g(x)=3x-1$和$h(x)=\frac{x^3+3x^2+5x+1}{x^2+2}$。

这样,在$x=2$处,$g(x)=5$,$h(x)=5$,且$g(x)\leq f(x)\leq h(x)$。

最后,我们需要证明$\lim_{x\to 2}g(x)=\lim_{x\to 2}h(x)$。

对于函数$g(x)$,我们可以使用极限的定义来证明:$$ \begin{aligned} \lim_{x\to 2}g(x) &=\lim_{x\to 2}(3x-1)\\ &=5 \end{aligned} $$对于函数$h(x)$,我们可以将其进行分解,得到:因此,根据夹逼准则,可以得到:$$ \lim_{x\to 2}\frac{x^3+3x^2-1}{x^2+2}=5 $$二、洛必达法则洛必达法则是解决极限问题的另一种有效方法,它是通过求函数在某一点处的导数来确定函数的极限。

高等数学中求极限方法总结

高等数学中求极限方法总结

高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。

一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。

故在这里总结了10种常用的求极限的方法并举例说明。

1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。

解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。

2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。

罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。

高等数学经典求极限方法

高等数学经典求极限方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】)sin 1tan 1(sin tan lim sin 1tan 1lim3030x x x xx x x x x x +++-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解1.求极限lim(sinn+1-sinn)/(n→∞)。

为了解决这个问题,我们需要运用三角函数和差化积公式,将式子进行转化,然后求出极限。

具体过程如下:sinn+1-sinn=2cos(n+1+n)/(sin^2(n+1)+sin^2(n))2cos(n+1+n)/(sin^2(n+1)+sin^2(n))(sin()/sin())2cos(n+1+n)/(sin^2(n+1)+sin^2(n))(n→∞)2cos因为当n→∞时,sin()/n+1+n→0,而cos是有界函数,有界函数与无穷小的乘积仍然是无穷小,所以原式极限为0.2.令Sn=∑(k/(k+1)!),求极限limSn(n→∞)。

我们可以将Sn的式子变形,得到Sn=1-1/(n+1)。

然后求出极限即可。

具体过程如下:k/(k+1)!)=1/(k!)-1/((k+1)!)k/(k+1)!)=1/1!-1/2!+1/2!-1/3!+。

+1/n!-1/(n+1)!1-1/(n+1)!因此,limSn=lim(1-1/(n+1!))=1.3.求极限lim(1+2q+3q^2+4q^3+。

+nq^(n-1)),其中q<1且q≠0.我们可以将Sn的式子变形,得到qSn=1q+2q^2+3q^3+。

+(n-1)q^(n-1)+nq^n1-q)Sn=(1+q+q^2+q^3+。

+q^(n-1))-nq^n1-q)Sn=(1-q^n)/(1-q)-nq^nSn=[(1-q)/(1-q)^2]-nq^n/(1-q)当q<1且n→∞时,q^n→0,1+q+q^2+q^3+。

+q^(n-1)→1/(1-q),因此limSn=lim[(1-q)/(1-q)^2]-lim(nq^n/(1-q))1/(1-q)^2因此,极限为1/(1-q)^2.注:关于lim(1+2q+3q^2+4q^3+。

+nq^(n-1))/(q→0),当n→∞时,q^n→0,1+2q+3q^2+4q^3+。

夹逼法求函数极限经典例题

夹逼法求函数极限经典例题

夹逼法求函数极限经典例题在初中数学中,函数极限经常作为一个常考概念出现。

如果求出函数极限时,你使用哪些方法呢?如果你能熟练运用夹逼法就能轻松解决。

夹逼法是函数极限学习中的一个重要方法。

夹逼法主要是利用函数的相关性质求解函数的极限。

所谓的夹逼法就是在掌握公式的前提下,使用一种特殊的夹逼法,通过夹住函数的某一元素或者函数一阶极限区域上的一个点来达到求解函数极限的目的。

本例例中求解函数极限就是利用了夹逼法的运算法则来求出某一元素或者函数上限区域上的一个点,所以我们可以说该类型题是一种典型的夹逼法求极限例题。

首先要说明一下夹逼法计算函数的极限并不是很困难的运算法则哦,主要是借助夹逼法可以得到函数的极限条件!所以当你学会夹逼题也会很轻松就能计算出函数极限区域上的一个点了!一、例题(模拟题)解:由定义可知, f (x)在坐标轴上的坐标为 x+1,函数的 f (x)的值在该坐标轴上最大值为1 (即 f (x)在坐标轴上的值为 a-1)’=x-1/n+2,由式中可以看出 f (x)的值不会大于1。

设函数 f (x)在 x轴上的最大最小值为1.分析:此题中,要求函数 f (x)在坐标轴上的最大值不小于2.由于 f (t)为一个连续 n阶数,故在坐标轴上唯一确定的是 t+2.因此,利用夹逼法可得到函数极限区的所有解中,只要 t>0即可得出极限区域上任何一个点可以包含两个素数。

因此正确答案是: a-1/2= b-1/3=0.因此 c为函数 f (x-3)在坐标轴中最大值。

解:请将原函数 f (x-3)分解成为函数 g 0、 g=2、 N 1四个解析式。

运用夹逼法能得出以下结论:此方法适合于复杂的数学题时,如直线解方程,圆解方程.当然这里要说明的是本例中使用夹逼法求极限区域上任意一个点都可以。

但在计算时一定不能仅考虑到变量间相互影响而是考虑到变量间相互独立性和对变量间相互影响。

所以要注意以下几点:求解极限区间及边界条件:首先我们要明确一点,函数有多个值之和时,若求出函数在某一个区间对应的一个极限可以省略某些值或直接将极限区间写成整数是不可行的。

高数中求极限的16中方法

高数中求极限的16中方法

高数中求极限的16中方法首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

经典求极限方法

经典求极限方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m mm n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim0=→x x x 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

高数求极限,夹逼定理与积分方法选择中,分子分母次数齐与不齐的判断

高数求极限,夹逼定理与积分方法选择中,分子分母次数齐与不齐的判断

高数求极限,夹逼定理与积分方法选择中,分子分母次数齐与不齐的判断高等数学中求极限是相当重要的内容,其中夹逼定理及积分方法是求解极限的两种常用方法。

在具体操作过程中,我们还需要根据分子分母次数是否相同来判断应该采用哪种方法。

一、夹逼定理夹逼定理是一种经典的极限求解方法,它可以解决一些比较复杂的极限问题。

其实际意义是通过构造两个较容易确定极限的数列,来证明一个复杂的数列的极限值。

在具体应用夹逼定理时,我们需要注意以下几点:1.需要找到一个已知的数列,其极限值等于所求数列的极限值。

2.需要用一个已知数列的上界和下界来夹逼所求数列。

3.需要证明已知数列的上界和下界极限值是相等的。

四、需要证明所求数列一定夹在已知数列的上下界之间。

二、积分方法积分方法也是求解极限的一种重要方法,它的实质是将原来的极限转化为一个积分问题,然后通过积分计算得到极限值。

在具体操作过程中,我们需要注意以下几点:1.需要将极限转化为一个区间中函数的积分。

2.需要确定积分区间和被积函数的性质。

3.需要注意积分区间的边界值,避免积分不收敛。

三、分子分母次数齐与不齐的判断在确定采用何种方法求解极限时,我们还需要根据分子分母次数是否齐平衡来进行判断。

当分子分母次数齐平衡时,我们可以通过分子除以分母来简化表达式,然后再采用夹逼定理或积分方法来求解极限。

而当分子分母次数不齐平衡时,我们需要通过其他方法来求解,如泰勒展开、洛必达法则等。

综上所述,高等数学中求解极限的几种常用方法必须掌握,其中夹逼定理和积分方法是比较常用的求解极限方法。

在具体应用时,我们需要根据分子分母次数是否齐平衡来决定选择何种方法。

只有掌握了这些方法和技巧,我们才能更加轻松地解决高等数学中的极限问题。

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解1. 求数列极限)sin 1(sin lim n n n -+→∞本题求解极限的关键是运用三角函数和差化积公式,将算式进行转化,进而求出极限,过程如下:n n sin 1sin -+=21sin 21cos2nn n n -+++ =)1121sin(21cos2n n nn n n n n ++++⋅-+++ =)121sin(21cos2nn n n ++++)(0∞→→n ∴ )sin 1(sin lim n n n -+→∞=0这是因为,当∞→n 时,0)1(21sin→++n n ,而21cos n n ++是有界函数,有界函数与无穷小的乘积仍然是无穷小,所以原式极限为0。

2. 令Sn =∑=+nk k k1)!1( ,求数列极限Sn n ∞→lim 解:)!1(1!1)!1(+-=+n n n n ∴∑=+nk k k 1)!1(=))!1(1!1()!1)!1(1()!41!31()!31!21()!21!11(+-+--++-+-+-n n n n =1)(1)!1(1∞→→+-n n 所以, Sn n ∞→lim =[lim →∞n 1)!1(1+-n ]=13. 求数列极限)4321(lim 132-→∞+++++n n nq q q q ,其中1<q 且0≠q 。

解:令Sn =1324321-+++++n nq q q q ,将等式两边同时乘以q ,得到Sn q ⋅=n n nq q n q q q q +-+++++-1432)1(4321 将以上两式相减,可得(1-q )·Sn =n n nq q q q q -+++++-)1(132 上面的算式两边同时除以1-q ,得到Sn =q nq q q q q q nn ---+++++-111132当1<q 且时∞→n ,0→n nq (注:证明附后), 1321-+++++n q q q q →q-11, ∴ Sn n →∞lim =2)1(1q --q nq n n -→∞1lim =2)1(1q -即 )4321(lim 132-→∞+++++n n nqq q q =2)1(1q -附注:关于0lim =∞→nn nq 的证明 若1<q 且0≠q ,当∞→n 时,0→nq 。

高数极限题目及解析

高数极限题目及解析

高数极限题目及解析解析:这是一个经典的极限问题,可以用泰勒公式证明。

另外,也可以通过洛必达法则求解。

方法一(泰勒公式):根据泰勒公式得:$sin x = x - dfrac{x^3}{3!} + dfrac{x^5}{5!} - cdots$ 当 $x to 0$ 时,$dfrac{x^3}{3!}$、$dfrac{x^5}{5!}$ 等高次项可以忽略不计,所以有:$limlimits_{x to 0} dfrac{sin x}{x} = limlimits_{x to 0} dfrac{x - frac{x^3}{3!} + frac{x^5}{5!} - cdots}{x} = limlimits_{x to 0} left(1 - dfrac{x^2}{3!} + dfrac{x^4}{5!} - cdots right) = 1$方法二(洛必达法则):$limlimits_{x to 0} dfrac{sin x}{x} = limlimits_{x to 0} dfrac{cos x}{1} = cos 0 = 1$二、求极限 $limlimits_{x to +infty} left(dfrac{3x - 4}{3x + 4}right)^{2x}$解析:这是一个指数函数的极限问题,可以用换底公式或对数函数的性质求解。

$limlimits_{x to +infty} left(dfrac{3x - 4}{3x +4}right)^{2x} = limlimits_{x to +infty} left[left(dfrac{3x - 4}{3x + 4}right)^{frac{3x + 4}{3x - 4}}right]^{frac{2x(3x -4)}{3x + 4}}$令 $y = dfrac{3x - 4}{3x + 4}$,则当 $x to +infty$ 时,$y to 1$,所以有:$limlimits_{x to +infty} left(dfrac{3x - 4}{3x +4}right)^{frac{3x + 4}{3x - 4}} = limlimits_{y to 1}y^{frac{3}{1-y}} = limlimits_{y to 1} e^{3ln y/(1-y)} = e^3$ 另外,$dfrac{2x(3x - 4)}{3x + 4} = dfrac{6x^2 - 8x}{3x + 4} = 2x - dfrac{8x}{3x + 4}$,当 $x to +infty$ 时,$dfrac{8x}{3x + 4} to 0$,所以有:$limlimits_{x to +infty} left(dfrac{3x - 4}{3x +4}right)^{2x} = e^3$三、求极限 $limlimits_{x to 0} dfrac{ln(1 + sin x)}{sin x}$解析:这是一个自然对数函数的极限问题,可以用泰勒公式或洛必达法则求解。

求极限的几种类型,柯西准则,归结原理 ,求行列式的几种经典类型,

求极限的几种类型,柯西准则,归结原理 ,求行列式的几种经典类型,

求极限的几种类型,柯西准则,归结原理,求行列式的几种经典类型,
1.求极限的几种类型:
(1) 0/0型,(2) 无穷大/无穷大型,(3) ∞-∞型,(4) 有界/无穷大型,(5) 无穷大/有界型
2.柯西准则
3.归结原理
4.求行列式的几种经典类型:
(1)三阶行列式:通常用对角线法则和余子式展开法求解。

(2)二阶行列式:可直接应用定义求解。

(3)行列式中的某一行(或某一列)全为可以化简为低一阶的行列式。

(4)三角行列式:三角行列式是一种特殊的行列式,其特点是除了主对角线上的元素外,其余元素都为零。

三角行列式可以用来计算一些特定问题的行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

主要考第二个重要极限。

例5:求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1+,最后凑指数部分。

【解】2221212112111lim 121lim 11lim e x x x x x x x xx x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫⎝⎛-++∞→xx a x a x ,求a 。

5.用等价无穷小量代换求极限 【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x-,()abx ax x x b~11,21~cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。

例7:求极限0ln(1)lim1cos x x x x →+=-【解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-.例8:求极限x xx x 30tan sin lim -→【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 6.用罗必塔法则求极限例9:求极限220)sin 1ln(2cos ln lim xx x x +-→ 【说明】∞∞或0型的极限,可通过罗必塔法则来求。

【解】220)sin 1ln(2cos ln lim x x x x +-→xx xx x x 2sin 12sin 2cos 2sin 2lim 20+--=→ 3sin 112cos 222sin lim20-=⎪⎭⎫⎝⎛+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xxxx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 00)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f7.用对数恒等式求)()(lim x g x f 极限例11:极限xx x 20)]1ln(1[lim ++→【解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lime eexx xx x x ==+++→→【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -因为===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -例12:求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解1】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭= 20ln 2cos ln 3lim x x x →+-=()01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim 22cos 6x x x x →=-⋅=-+【解2】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭= 2cos 1ln 3limx x x →-+=(1)20cos 11lim 36x x x →-==- 8.利用Taylor 公式求极限例13 求极限 ) 0 ( ,2lim 20>-+-→a xa a x x x . 【解】 ) (ln 2ln 1222ln x a x a x ea ax x +++==,) (ln 2ln 1222x a x a x ax++-=-;). (ln 2222x a x a a x x +=-+-∴ a xx a x x a a x x x x 22222020ln ) (ln lim 2lim =+=-+→-→ . 例14 求极限011lim (cot )x x x x→-.【解】 00111sin cos lim (cot )lim sin x x x x x x x x x x x→→--= 323230()[1()]3!2!lim x x x x x x x xοο→-+--+= 333011()()12!3!lim 3x x x x ο→-+==.9.数列极限转化成函数极限求解例15:极限21sin lim n n n n ⎪⎭⎫ ⎝⎛∞→【说明】这是∞1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。

【解】考虑辅助极限611sin 11011sin 222lim lim 1sin lim -⎪⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛-+∞→+∞→===⎪⎭⎫ ⎝⎛+e eex x y y y y x x x x x x所以,6121sin lim -∞→=⎪⎭⎫ ⎝⎛e n n n n10.n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法 (1)用定积分的定义把极限转化为定积分来计算;(2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n 【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。

⎰=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→10)(211limdx x f n n f n f n f n n 【解】原式=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∞→222112111111lim n n n n n n 1212ln2111102+--=+=⎰dx x例17:极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 【说明】(1)该题遇上一题类似,但是不能凑成⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛∞→n n f n f n f n n 211lim的形式,因而用两边夹法则求解;(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。

【解】⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 因为11211122222+≤++++++≤+n n nn n n nn n又 nn nn +∞→2lim11lim2=+=∞→n n n所以 ⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim =1 12.单调有界数列的极限问题例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==(Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 61sin 01sin 110032221lim lim sin 1lim --→⎪⎭⎫ ⎝⎛-→→===⎪⎭⎫ ⎝⎛+++e ee x x x x x x x x x x xx (使用了罗必塔法则)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.。

相关文档
最新文档