株洲市初中数学函数基础知识全集汇编含解析
初中数学函数知识点归纳总结(实用)
初中数学函数知识点归纳总结(实用)函数占据了初中数学知识点的很大部分,因此学好函数十分重要。
下面是由编辑为大家整理的“初中数学函数知识点归纳总结(实用)”,仅供参考,欢迎大家阅读本文。
一次函数知识点1.一次函数如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数。
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数。
2.一次函数的图像及性质(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
(3)正比例函数的图像总是过原点。
(4)k,b与函数图像所在象限的关系:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;当k>0,b<0时,直线通过一、三、四象限;当k<0,b>0时,直线通过一、二、四象限;当k<0,b<0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
二次函数知识点1.二次函数表达式(一)顶点式y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
(二)交点式y=a(x-x₁)(x-x₂) [仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]函数与图像交于(x₁,0)和(x₂,0)(三)一般式y=aX²+bX+c=0(a≠0)(a、b、c是常数)2.二次函数的对称轴二次函数图像是轴对称图形。
对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
(完整版)初中数学函数知识点归纳
初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。
初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。
一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。
2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。
k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。
(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。
(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。
3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。
八年级函数知识点讲解全集
八年级函数知识点讲解全集函数是数学的一个重要分支,广泛应用于物理、化学、经济、金融、计算机科学等各个领域。
在中学数学课程中,函数也是一种重要的知识点,本文将为读者全面讲解八年级函数知识点。
一、函数的定义函数是一种数学映射关系,将自变量的取值映射到因变量的取值。
通常用f(x)来表示函数,其中x为自变量,f(x)为因变量,表示x经过函数映射后得到的结果。
二、函数的图像函数的图像是指在坐标系中表示函数映射关系的图形。
可以通过给定自变量的取值,然后计算得出因变量的取值,将这些点依次连线可以得到函数的图像。
例如,y=x²的图像如下所示:[图片]从图中可以看出,x自变量的取值为-3时,y因变量的取值为9。
因此可以将这个点(-3,9)表示在坐标系上,以此类推,将所有点依次连接起来,就可以得出这个函数的图像。
三、函数的性质函数在数学上有几个基本的性质,包括:定义域、值域、单调性、奇偶性、周期性等。
1. 定义域函数的定义域是指所有可能的自变量取值范围,通常用D(f)表示。
例如,y=√x的定义域为非负实数集合,即D(f)=[0,+∞)。
2. 值域函数的值域是指所有可能的因变量取值范围,通常用R(f)表示。
例如,y=x²的值域为非负实数集合,即R(f)=[0,+∞)。
3. 单调性函数的单调性是指函数在定义域上的增减情况。
可以分为递增和递减两种情况,通常用符号“≤”和“≥”表示,在数学上表示为:递增:f(x₁) ≤ f(x₂),其中x₁ < x₂递减:f(x₁) ≥ f(x₂),其中x₁ < x₂4. 奇偶性函数的奇偶性是指函数的图像关于坐标轴的对称性。
奇函数的特点是关于原点对称,即f(-x)=-f(x),例如y=x³;偶函数的特点是关于y轴对称,即f(-x)=f(x),例如y=x²。
5. 周期性周期函数是指函数图像在一定的范围内存在重复的规律。
对于周期为T的函数,有以下性质:f(x+T) = f(x),其中T > 0例如,y=sin(x)是一个周期为2π的函数。
初中函数知识点总结大全(含有高中衔接内容)
一次函数一、定义与定义式:有如下关系:y和因变量x自变量y=kx+b 则此时称的一次函数。
x是y 的正比例函数。
x是y时,b=0特别地,当为常数,k≠0)k(y=kx 即:二、一次函数的性质:k 的变化值成正比例,比值为x的变化值与对应的 1.y k(y=kx+b 即:取任何实数)b 为任意不为零的实数轴上的截距。
y为函数在b时,x=0当2. 三、一次函数的图像及性质:个步骤3.作法与图形:通过如下1 )列表;1(()描点;2)连线,可以作出一次函数的图像——一条直线。
因此,作一次3(x(通常找函数图像与点,并连成直线即可。
2函数的图像只需知道轴的交点)y轴和),都满y,x(P)在一次函数上的任意一点1.性质:(2 ,0轴交点的坐标总是(y)一次函数与2。
(y=kx+b足等式:,b) )正比例函数的图像总是过原点。
0,-b/k轴总是交于(x与与函数图像所在象限:b,k.3 的增大而增大;x随y时,直线必通过一、三象限,0>k当<k当的增大而减小。
x随y时,直线必通过二、四象限,0 时,直线必通过一、二象限;0>b当时,直线通过原点b=0当时,直线必通过三、四象限。
0<b当)表示的是正0,0(O时,直线通过原点b=O特别地,当比例函数的图像。
k时,直线只通过一、三象限;当0>k这时,当时,0<直线只通过二、四象限。
四、确定一次函数的表达式:,x2(B);y1,x1(A已知点的B、A),请确定过点y2 一次函数的表达式。
y=kx+b)设一次函数的表达式(也叫解析式)为1(),都满足等y,x(P)因为在一次函数上的任意一点2(个方程:y1=kx1+b …… 2。
所以可以列出y=kx+b式和① ②y2=kx2+b …… 的值。
b,k)解这个二元一次方程,得到3()最后得到一次函数的表达式。
4(五、一次函数在生活中的应用:。
s=vt的一次函数。
v是速度s一定,距离t当时间1.一定,水池中水量f当水池抽水速度2. 的一t是抽水时间g 。
初中数学函数知识点汇总
初中数学函数知识点汇总在初中数学的学习中,函数是一个非常重要的概念,它贯穿了整个数学知识体系。
为了帮助同学们更好地理解和掌握函数的相关知识,下面将对初中数学中的函数知识点进行详细的汇总。
一、函数的定义函数是指在一个变化过程中,如果有两个变量 x 和 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与之对应,那么我们就说 x 是自变量,y 是 x 的函数。
例如,汽车以 60 千米/小时的速度匀速行驶,行驶的路程 s 与时间 t 之间的关系可以表示为 s = 60t。
在这个例子中,时间 t 是自变量,路程 s 是 t 的函数。
二、函数的表示方法1、解析法用数学式子表示两个变量之间的函数关系,这种方法叫做解析法。
例如,y = 2x + 1 就是一个用解析法表示的函数。
2、列表法通过列出表格来表示两个变量之间的函数关系,这种方法叫做列表法。
例如,| x | 1 | 2 | 3 | 4 |||||||| y | 3 | 5 | 7 | 9 |3、图象法用图象来表示两个变量之间的函数关系,这种方法叫做图象法。
例如,一次函数 y = 2x + 1 的图象是一条直线。
三、函数的图象1、坐标轴在平面直角坐标系中,通常用水平的数轴 x 轴表示自变量,垂直的数轴 y 轴表示函数值。
2、点的坐标平面内任意一点 P 的坐标可以用一对有序实数(x,y)来表示,其中 x 表示点 P 在 x 轴上的坐标,y 表示点 P 在 y 轴上的坐标。
3、函数图象的画法(1)列表:列出一些自变量和对应的函数值。
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
1、一次函数的定义形如 y = kx + b(k,b 为常数,k ≠ 0)的函数,叫做一次函数。
当 b = 0 时,y = kx(k ≠ 0)叫做正比例函数,所以说正比例函数是一种特殊的一次函数。
初中数学函数知识点
初中数学函数知识点初中数学函数知识点(一)一、函数的基本概念1. 函数的定义与表达式:函数是一种具有确定性的关系,将一个数(自变量)唯一地对应到另一个数(因变量)。
函数通常用符号表示,如f(x)、g(x)等。
2. 自变量与因变量:自变量是指函数中输入的数,通常用x表示;因变量是指自变量通过函数转化所得到的输出数,通常用y表示。
3. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
4. 函数的图象:函数的图象是自变量与因变量的对应关系在平面直角坐标系上的图形表示。
二、一次函数1. 一次函数的形式:一次函数是指函数的表达式中只有一次幂的项,通常表示为f(x) = kx + b,其中k、b为常数。
2. 一次函数的图象:一次函数的图象是一条直线,其斜率k表示该直线的倾斜程度,截距b表示该直线与y轴的交点。
3. 一次函数的特点:当斜率k>0时,函数单调递增;当斜率k<0时,函数单调递减;当斜率k=0时,函数为常值函数。
三、二次函数1. 二次函数的形式:二次函数是指函数的表达式中含有x的二次幂的项,通常表示为f(x) = ax^2 + bx + c,其中a、b、c为常数且a≠0。
2. 二次函数的图象:二次函数的图象是一条抛物线,其开口方向由二次项的系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点:二次函数的图象上最高(或最低)的点称为顶点,其横坐标为 x = -b / (2a),纵坐标为 f(-b / (2a))。
4. 二次函数的轴对称性:二次函数的图象以顶点为对称轴关于y轴对称。
四、绝对值函数1. 绝对值函数的形式:绝对值函数是指函数的表达式中含有绝对值运算符| |,通常表示为f(x) = |x|。
2. 绝对值函数的图象:绝对值函数的图象是一条以原点为中心的V字形曲线,其左右两段的斜率大小相等。
3. 绝对值函数的特点:当自变量为正数时,函数的值与自变量相等;当自变量为负数时,函数的值为自变量取相反数。
(完整版)初中数学函数知识点归纳新
函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)3、坐标轴上点的坐标特征:x轴上的点,y为零;y轴上的点,x为零;原点的坐标为(0,0 )。
4、点的对称特征:已知点P(m, n),关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n)横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P(x,y )的几何意义:点P(x,y )到x轴的距离为|y| ,点P(x,y )到y轴的距离为|x|。
点P(x,y )到坐标原点的距离为x2y28两点之间的距离:X轴上两点为A& ,0)、B(X2,0) |AB| | x2捲|丫轴上两点为C(°, y1)、D(°, y2)|CD| | y2 y1 |已知A(x i,yj、BgM)AB|= (x2川(y2汀9、中点坐标公式:已知A(x「y i)、B(X2,y2)M为AB的中点,则:M=(^ 乞,上竺)2 210、点的平移特征:在平面直角坐标系中,将点(x,y )向右平移a个单位长度,可以得到对应点(x-a,y);将点(x,y )向左平移a个单位长度,可以得到对应点(x+a ,y);将点(x,y )向上平移b个单位长度,可以得到对应点(x,y + b);将点(x,y )向下平移b个单位长度,可以得到对应点(x,y —b)。
函数的基本知识:基本概念1、变量:在一个变化过程中可以取不同数值的量。
初中数学函数基础知识全集汇编含答案解析
初中数学函数基础知识全集汇编含答案解析一、选择题1.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】判断出△AEF 和△ABC 相似,根据相似三角形对应边成比例列式求出EF ,再根据三角形的面积列式表示出S 与x 的关系式,然后得到大致图象选择即可.【详解】解:∵EF ∥BC ,∴△AEF ∽△ABC , ∴55EF x BC -= , ∴EF=55x -•10=10-2x , ∴S=12(10-2x )•x=-x 2+5x=-(x-52)2+254,∴S 与x 的关系式为S=-(x-52)2+254(0<x <5), 纵观各选项,只有D 选项图象符合.故选:D .【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S 与x 的函数关系式是解题的关键.2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A .B .C .D .【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A 、B 、D 的路程始终都在变化,故错误;C 、修车是的路程没变化,故C 正确;故选:C .【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】B【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.4.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .【答案】D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确.5.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后的时间x (时)之间的函数关系如图所示,则当16x ≤≤,y 的取值范围是( )A .864311y ≤≤B .64811y ≤≤C .883y ≤≤D .816y ≤≤【答案】C【解析】【分析】根据图像分别求出03x 剟和314x <„时的函数表达式,再求出当x=1,x=3,x=6时的y 值,从而确定y 的范围.【详解】解:设当03x 剟时,设y kx =, 38k ∴=, 解得:83k =, 83y x ∴=; 当314x <„时,设y ax b =+,∴38140a b a b +=⎧⎨+=⎩, 解得:81111211a b ⎧=-⎪⎪⎨⎪=⎪⎩, 81121111y x ∴=-+; ∴当1x =时,83y =,当3x =时,y 有最大值8,当6x =时,y 的值是6411, ∴当16x 剟时,y 的取值范围是883y 剟. 故选:C .本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.7.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.8.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a +2﹣a =2∴当点E 与点D 重合时,由勾股定理得a 2+2(3)=4∴a =1 ∴菱形的高为3 ∴菱形的面积为23.故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意分三种情况讨论△APQ 面积的变化,进而得出△APQ 的面积y (cm 2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP =x ,Q 点运动路程为2x ,①当点Q 在AD 上运动时,y =12AP•AQ =12x•2x =x 2,图象为开口向上的二次函数; ②当点Q 在DC 上运动时, y =12AP•DA =12x×3=32x ,是一次函数; ③当点Q 在BC 上运动时, y =12AP•BQ =12x•(12−2x )=−x 2+6x ,为开口向下的二次函数, 结合图象可知A 选项函数关系图正确,故选:A .【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ 的面积变化.10.如图1,在扇形OAB 中,60O ∠=︒,点P 从点O 出发,沿O A B →→以1/cm s 的速度匀速运动到点B ,图2是点P 运动过程中,OBP V 的面积()2y cm随时间()x s 变化的图象,则a ,b 的值分别为( ) 图1图2A .4,43π B .4,443π+ C .222π3 D .222223π 【答案】B【解析】【分析】结合函数图像中的(a ,3OB=OA=a ,S △AOB =3a 的值,再利用弧长公式进而求得b 的值即可.【详解】解:由图像可知,当点P 到达点A 时,OB=OA=a ,S △AOB =43过点A 作AD ⊥OB 交OB 于点D ,则∠AOD=90°,∴在Rt △AOD 中,sin ∠AOD=AD AO , ∵∠AOB=60°, ∴sin60°=3AD AD AO a ==, ∴AD=32a , ∵S △AOB =43,∴13432a a ⨯⨯=, ∴a=4(舍负),∴弧AB 的长为:60441803ππ⨯⨯=, ∴443b π=+. 故选:B .【点睛】本题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形结合思想的应用.11.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.12.在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F 在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.【详解】如图,连接DE与AC交于点M,则当点F运动到点M处时,三角形△BEF的周长y最小,且AM>MC.过分析动点F的运动轨迹可知,y是x的二次函数且有最低点,利用排除法可知图象大致为:故选B.【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.13.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.14.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.15.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A .1 个B .2 个C .3 个D .4个【答案】C【解析】【分析】【详解】 解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .16.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误;当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,正确;正确的有3个,故选:C.【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.17.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.18.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.19.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C︒)与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B.骆驼从0时到t时刻之间的最高体温与当日最低体温的差C.骆驼在t时刻的体温与当日平均体温的绝对差D.骆驼从0时到t时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y有可能表示的是骆驼从0时到t时刻之间的最高体温与当日最低体温的差.故选:B.【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.20.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.【答案】A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=12CM•CE=212x;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=12CD•(DE+CM)=12(2)2x x⨯⨯-+=2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=1()2CD DE CM+﹣212DG=12×2×(x﹣2+x)﹣21(4)2x-=﹣212x+10x﹣18,故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.。
初中数学专题复习函数的基础知识(含答案)
第16课时函数的基础知识一、知识点:1.平面直角坐标系:平面直角坐标系概念, 坐标平面内点的坐标特征, 不同位置点的坐标特征.2. 函数: 函数概念, 函数自变量取值范围, 函数的表示法(解析法,列表法,图象法), 函数的图象.二、中考课标要求三、中考知识梳理1.平面直角坐标系的有关概念平面直角坐标系的有关概念不要死记硬背,应紧密结合坐标系来认识;在坐标平面内会正确地描点,对于坐标平面内的点要借助图形正确地写出,特别注意各象限内点的坐标符号.2.坐标平面内点的坐标特征注意两坐标轴上点的坐标的不同,且x轴、y轴不属于任何一个象限.3.不同位置点的坐标特征对于平行于两坐标轴的直线上点的坐标特点应借助于平面直角坐标系来应用.对于对称点的坐标特征应遵循:关于x轴对称的两点,横坐标不变,纵坐标相反; 关于y轴对称的两点,横坐标相反,纵坐标不变;关于原点对称的两点, 横纵坐标都互为相反数,或借助图形来完成,切忌死背.注意P(x,y)到两坐标轴的距离与线段长度的区分.4.函数概念对于函数的概念要正确地理解两个变量的关系.5.自变量取值范围自变量的取值范围首先要考虑自变量所在代数式是分式还是偶次根式还要整式,然后从自变量取值必须使解析式有意义等方面来求解,注意实际问题要实际对待.6.函数的图象描点法画函数图象的三个步骤:列表、描点、连线,选取点时,尽量选取有代表性的合理的点,连线时,应用光滑的曲线连结.对观察实际问题的图象,要正确理解横纵坐标表示的意义.四、中考题型例析1.坐标平面内点的坐标特征例1 (2003·潍坊)如果点M(a+b,ab)在第二象限,那么点N(a,b)在第____象限.解析:由M在第二象限,可知a+b<0,ab>0可确定a<0,b<0,从而确定N在第三象限.答案:三.点评:本题主要考查各象限内点的坐标特征,即点P(x,y)在第一象限⇔x>0,y>0; 点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.例2 (2004.广州)点P在第二象限,若该点到x到y轴的距离为1,则点P的坐标是( )解析:点P(x,y)到x轴的距离是│y│,到y轴的距离是│x│,且P在第二象限知x<0,y>0,可确定点P的坐标.答案:A.2.不同位置点的坐标特征例3 (2003·辽宁)在平面直角坐标系中,点P(-1,1)关于x轴的对称点在( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:点P(-1,1)关于x轴对称点的横坐标不变,纵坐标相反,∴P(-1,1)关于x 轴的对称点坐标为(-1,-1)在第三象限.答案:C.点评:关于x轴对称点的横坐标相等,纵坐标互为相反数;关于y 轴对称点的纵坐标相等,横坐标互为相反数;关于原点对称点的横、纵坐标都互为相反数.例4 (2003·潍城)已知点A(m,-2),点B(3,m-1),且直线AB ∥x 轴,则m 值为____. 解析:根据平行于x 轴的直线上所有点的纵坐标相同,可得m-1=-2,可得m=-1. 答案:-1.点评:平行于x 轴的直线上所有点的纵坐标相同,平行于y 轴的直线上所有点的横坐标相同.3.自变量取值范围例5 (2003·南通)函数y=x中自变量x 的取值范围是( ) A.x ≥-1 B.x>0 C.x>-1且x ≠0 D.x ≥-1且x ≠0 解析:要使y=x有意义,需既使分式有意义,又使偶次根式有意义,即x ≠0且x+1≥0,得x ≥-1且x ≠0.答案:D.点评:考查自变量取值范围是历年中考热点,本题中既要使根式有意义又要使分式有意义,需两者都考虑.4. 函数图象例6 (2003·四川)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快骑车速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合这个同学行驶情况的图象大致是( ).t soABtsoCtsoDtso解析:A 表示小明一直在停下来修车,而没继续向前走,B 表示没有停下来修车,相反速度骑的比原来更快,D 表示修车时又向回走了一段路才修好后又加快速度去学校.选项C 符合题意.答案:C.点评:会看图象中横纵坐标表示的实际意义是解题的关键,此题主要考查函数知识及数形结合的数学思想.5.实际问题中函数解析式的求法例7 (2003·新疆)乌鲁木齐至库尔勒的铁路长约600km,火车从乌鲁木齐出发, 其平均速度为58km/h,则火车离库尔勒的距离s(km)与行驶时间t(h)的函数关系式是________.解析:已知s 表示火车离库尔勒的距离,t 表示火车从乌鲁木齐出发行驶的时间, 火车速度已知,所以s=总路程-火车从乌鲁木齐出发行驶的路程.答案:s=600-58t.点评:此题主要考查实际问题中函数解析式的求法.理解题意, 弄清题目中数量关系是解题的关键.基础达标验收卷一、选择题1.(2004.哈尔滨)已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在( ) A.第一象限 B.第二象限; C.第三象限 D.第四象限2.(2004.呼和浩特)在函数中,自变量x 的取值范围是( ) A.x>1 B.x>3 C.x ≠1 D.x ≠33.(2004.南京)在平面直角坐标系中,点P(2,1)关于原点对称的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(2003.重庆)三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a 3m ,平均每天流出的水量控制在b 3m .当蓄水位低于135m 时, b< a; 当蓄水位达到135m 时,b=a.设库区的蓄水量y(3m )是时间t(天)的函数,那么这个函数的大致图象是( )OtyAOBty OCt yODty5.(2004.沈阳)小丽的家与学校的距离为0d km,她从家到学校先以匀速1v 跑步前进,后以匀速221()v v v <走完余下的路程,共用0t h . 下列能大致表示小丽距学校的距离y(km)与离家时间t(h)之间关系的图象是( )t 0d 0Oty At 0d 0OBtyt 0d 0OCty t 0d 0ODty6.(2004.长沙)如图是一个数值转换机,若输入的a 值为2, 则输出的结果应为( )240.5a a →→-→⨯→输入输出A.2B.-2C.1D.-1 二、填空题1.(2003·上海)已知函数f(x)=1x x+,那么f(2-1)=_______. 2.(2003·寒亭)直角坐标系中,第四象限内的点M 到x 轴、y 轴的距离分别为3,2, 则M 点的坐标是________. 3.(2004·哈尔滨)函数y=153x x +--中自变量x 的取值范围是_________. 4.(2003·长沙)图表示长沙市2003年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是______度; (2)这天共有_______个小时的气温在31度以上;(3)这天在_______(时间)范围内温度在上升;(4)请你预测一下,次日凌晨1点的气温大约是多少度?答:_______.三、解答题1.(2003·武汉)小强在劳动技术课中要制作一个周长为80cm 的等腰三角形,请你写出底边长y(cm)与一腰长为x(cm)的函数关系式,并求出自变量x 的取值范围.2.(2003·南宁)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x天后,剩余的淤泥量为y(万米3),求y与x的函数关系.(不要求写出x的取值范围.(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥. 若需保留的淤泥量约为22 万米3,求清涂淤泥所需天数.3.(2002.吉林)一农民带了若干千克自产的土豆进城出售,为了方便, 他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆千克数与他手中持有的钱线(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,问他一共带了多少千克土豆.能力提高练习一、学科内综合题1.(2004·济南)如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1) 四点,则该圆圆心的坐标为( ).A.(2,-1)B.(2,2)C.(2,1)D.(3,1)2.(2002·聊城)如图,正方形ABCD 的边长为2cm,P 是边CD 上一点,连结AP 并延长与BC 的延长线交于点E.当点P 在边CD 上移动时,△ABE 的面积随之变化.(1)设PD=xcm(0<x ≤2),求△ABE 的面积y 与x 的函数关系式,并画出函数的图象;(2)根据(1)中的函数关系式,确定点P 在什么位置时S △ABE=400cm 2.EPD CBA二、开放探索题 3.(2003·黄冈)同学们都做过《代数》课本第三册第87页第4题: 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位, 写出每排的座位数m 与这排的排数n 的函数关系式并写出自变量n 的取值范围. 上题中,在其他条件不变的情况下,请探究下列问题:(1)当后面每一排都比前一排多2个座位时,则每排的座位数m 与这排的排数n 的函数关系式是________(1≤n ≤25,且n 是整数).(2)当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m 与这排的排数n 的函数关系式分别是_____________、___________(1≤n ≤25,且n 是整数).(3)某礼堂共有p 排座位,第一排有a 个座位,后面每排都比前一排多b 个座位, 试写出每排的座位数m 与这排的排数n 的函数关系式,并指出自变量n 的取值范围.三、实际应用题4.(2002·吉林)一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫了.图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( ).5.( 2004·四川) 汽车由重庆驶往相距400km 的成都. 如果汽车的平均速度是100km/h,那么汽车距成都的路程s(km)与行驶时间t(h)的函数关系用图象表示应为( ).6.(2004·安徽)初三(2)班同学为了探索泥茶壶盛水喝起来凉的原因, 对泥茶壶和塑料壶盛水散热情况进行对比实验.在同等的情况下,把稍高于室温(25.5℃)的水放入两壶中,每隔一小时同时测出两壶水温,所得数据如下表:室温25.5℃时两壶水温的变化 (单位:℃)(1)请在同一坐标系中,画出泥茶壶与塑料壶水温的变化曲线;(2)比较泥茶壶和塑料壶水温变化情况的不同点.四、跨学科综合题7.(2002·辽宁)两个物体A、B所受压强分别为P A(P a)与P B(P a)(P A、P B为常数),它们所受压力F(N)与受力面积S(m2)的函数关系图象分别是射线L A、L B,如图所示,则( )A.P A<P BB.P A=P BC.P A>P BD.P A≤P B8.(2002·安徽) 我们知道,溶液的酸碱度由PH确定,当PH>7时, 溶液呈碱性; 当PH<7时,溶液呈酸性,若将给定的HCI溶液加水稀释,那么在下列图象中,能反映HCI溶液的PH与所加水的体积(V)的变化关系的是( )答案:基础达标验收卷一、1.B 2.A 3.C 4.A 5.D 6.D二、1.2+2 2.(2,-3) 3.3<x≤54.(1)37; (2)9; (3)3点~15点;(4)23 ℃~26℃均可.三、1.解:y=80-2x ∵x+x=2x>y,∴0<y=80-2x<2x. 解得20<x<40,∴y=80-2x(20<x<40).2.解:(1)160×0.7=112(万米2);(2)y=-0.6x+112;(3)当y=22时,22=-0.6x+112,0.6x=112-22,0.6x=90,x=150(天).答:需要150天.3.解:(1)农民自带的零钱是5元.(2)(20-5)÷30=0.5(元).答:降价前他每千克土豆卖0.5元.(3)(26-20)÷0.4+30=45(千克)答:他一共带了45千克土豆.能力提高练习1.C2.(1)y=4x(0<x≤2),图略.(2)当PD=0.01cm时,S△ABE=400cm2.3.每排的座位数m与这样的排数n的函数关系式是m=n+19;自变量n的取值范围是1≤n≤25,且n是正整数.(1)m=2n+18;(2)m=3n+17,m=4n+16;(3)m=bn+a-b,自变量n的取值范围是:1≤n≤p.4.C5.C6.解:(1)泥茶壶水温的变化曲线(略).(2)泥茶壶中水温开始下降幅度比塑料壶中水温下降幅度大;当两壶中水温基本稳定后,泥茶壶中水温低于室温,而塑料壶中水温等于室温.7.A 8.C.。
初中数学函数知识点总结归纳
初中数学函数知识点总结归纳数学函数知识点总结归纳:1. 函数的概念:函数是一种特殊的关系,它将每个自变量映射到唯一的因变量。
函数可以用符号表示为y=f(x),其中x为自变量,y为因变量。
2. 函数的性质:函数具有唯一性、定义域、值域、奇偶性、周期性、单调性等性质。
3. 函数的表示形式:- 显式函数:将自变量直接代入表达式中求得因变量,例如y=2x+3。
- 隐式函数:将自变量和因变量同时含于方程中,无法直接解出因变量,例如x^2+y^2=1。
- 函数关系式:用一般的代数式表示函数关系,例如f(x) = ax^2+bx+c。
- 图像表达:用图像表示函数关系。
4. 基本函数:- 常数函数:f(x)=C,C为常数,其图像为一条平行于x轴的直线。
- 一次函数:f(x) = ax+b,a≠0,其中a为斜率,b为截距,其图像为一条斜率为a 的直线。
- 平方函数:f(x) = ax^2,a≠0,a为开口方向和变化速度,其图像为抛物线。
- 绝对值函数:f(x) = |x|,它的图像为一条以原点为对称中心的V字形线段。
5. 图像变换:- 上下平移:f(x)+c表示将图像上下平移c个单位。
- 左右平移:f(x+c)表示将图像左右平移c个单位。
- 垂直伸缩:af(x)表示将图像在y轴方向上伸缩a倍。
- 水平伸缩:f(ax)表示将图像在x轴方向上伸缩a倍。
- 翻折变换:-f(x)表示将图像关于x轴翻折。
- 翻转变换:f(-x)表示将图像关于y轴翻转。
6. 复合函数:将一个函数的输出作为另一个函数的输入,构成一个新的函数。
7. 反函数:若函数f的定义域为A,值域为B,当f(x) = y时,存在一个唯一的x使得f(x) = y,此时称f的反函数为f^-1(y) = x。
8. 函数的求值:- 函数方程的求值:将自变量代入函数方程中计算出因变量的值。
- 函数关系式的求值:将自变量代入函数关系式中计算出因变量的值。
- 函数图像的求值:根据图像的坐标轴读取函数图像上对应点的因变量值。
中考必备初中数学函数知识点归纳大全
初中函数知识函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特色:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特色:x 轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0,0 )。
两坐标轴的点不属于任何象限。
4、点的对称特色:已知点关于x轴的对称点坐标是关于y轴的对称点坐标是关于原点的对称点坐标是P(m,n),(m,-n), 横坐标同样,纵坐标反号(-m,n) 纵坐标同样,横坐标反号(-m,-n) 横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特色:平行于x轴的直线上的随意两点:纵坐标相等;平行于y轴的直线上的随意两点:横坐标相等。
6、各象限角均分线上的点的坐标特色:第一、三象限角均分线上的点横、纵坐标相等。
第二、四象限角均分线上的点横、纵坐标互为相反数。
7、点P(x,y)的几何意义:点P(x,y)到x轴的距离为|y| ,1初中函数知识点P(x,y)到y轴的距离为|x| 。
点P(x,y)到坐标原点的距离为22 x y8、两点之间的距离:X轴上两点为A(x1,0)、B(x2,0)|AB||x2x1|Y轴上两点为C(0,y1)、D(0,y2)|CD||y2 y1|已知A(x1,y1)、B(x2,y2) AB|= (x2x1)2(y2y1)29、中点坐标公式:已知A(x1,y1)、B(x2,y2)M为AB的中点,则:M=(x2x1,y2y1)2210、点的平移特色:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以获得对应点(x-a,y);将点(x,y)向左平移a个单位长度,可以获得对应点(x+a,y);将点(x,y)向上平移b个单位长度,可以获得对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以获得对应点(x,y-b)。
完整版)初中函数知识点总结非常全
完整版)初中函数知识点总结非常全没有学不好的数学系列之一:初中函数知识点详解知识点一:平面直角坐标系平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
知识点二:不同位置的点的坐标的特征点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当a不等于b时,(a,b)和(b,a)是两个不同点的坐标。
各象限内点的坐标特征如下:点P(x,y)在第一象限当且仅当x大于0,y大于0;点P(x,y)在第二象限当且仅当x小于0,y大于0;点P(x,y)在第三象限当且仅当x小于0,y小于0;点P(x,y)在第四象限当且仅当x大于0,y小于0.坐标轴上的点的特征如下:点P(x,y)在x轴上当且仅当y等于0,x为任意实数;点P(x,y)在y轴上当且仅当x等于0,y为任意实数;点P(x,y)既在x轴上,又在y轴上当且仅当x、y同时为零,即点P坐标为(0,0)。
两条坐标轴夹角平分线上点的坐标特征如下:点P(x,y)在第一、三象限夹角平分线上当且仅当x与y相等;点P(x,y)在第二、四象限夹角平分线上当且仅当x与y互为相反数。
和坐标轴平行的直线上点的坐标特征如下:位于平行于x轴的直线上的各点的纵坐标相同;位于平行于y轴的直线上的各点的横坐标相同。
关于x轴、y轴或远点对称的点的坐标特征如下:点P与点p’关于x轴对称当且仅当横坐标相等,纵坐标互为相反数;点P与点p’关于y轴对称当且仅当纵坐标相等,横坐标互为相反数;点P与点p’关于原点对称当且仅当横、纵坐标均互为相反数。
初中数学《函数》知识点汇总
初中数学《函数》知识点汇总函数、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和,并且对于x的每一个确定的值,都有唯一确定的值与其对应,那么我们就把x称为自变量,把称为因变量,是x的函数。
*判断是否为X的函数,只要看X取值确定的时候,是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;()实际问题中,函数定义域还要和实际情况相符合,使之有意义。
、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
初中数学函数知识点汇总
初中数学函数知识点汇总初中数学函数知识点汇总1、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) ① k不为零② x指数为1 ③ b 取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴2、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx b (k不为零) ① k不为零②x指数为1 ③ b取任意实数一次函数y=kx b的图象是经过(0,b)和(-k/b,0)两点的一条直线,我们称它为直线y=kx b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx b(k、b是常数,k0)(2)必过点:(0,b)和(-k/b,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位.初中数学一次函数知识点汇总3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),(-k/b,0).即横坐标或纵坐标为0的点。
初中数学函数知识点汇总
中考数学二次函数知识点1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.①当0>a时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点. ①a 的符号决定抛物线的开口方向:当0>a时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<a b (即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 10.几种特殊的二次函数的图像特征如下:函数解析式开口方向 对称轴顶点坐标2axy =当0>a 时 开口向上 当0<a 时开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2ab x 2-= (ab ac a b 4422--,)11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点 (1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点 二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121一次函数与反比例函数考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
初中数学《函数》知识点汇总【DOC范文整理】
初中数学《函数》知识点汇总
函数
变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断y是否为X的函数,只要看X取值确定的时候,y 是否有唯一确定的值与之对应
定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:
关系式为整式时,函数定义域为全体实数;
关系式含有分式时,分式的分母不等于零;
关系式含有二次根式时,被开放方数大于等于零;
关系式中含有指数为零的式子时,底数不等于零;
实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
描点法画函数图形的一般步骤
步:列表;
第二步:描点;
第三步:连线。
函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
初中数学函数知识点汇总
函数及其图像一、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)2、坐标轴上的点的特征在x 轴上纵坐标为0 , 在y 轴上横坐标为, 原点坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)到x 轴的距离等于y (2)到y 轴的距离等于x (3)到原点的距离等于22y x +三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数的三种表示法(1)解析法(2)列表法(3)图像法3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线4、自变量取值范围四、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
株洲市初中数学函数基础知识全集汇编含解析一、选择题1.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.2.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C、D的正误.【详解】解:∵s随t的增大而减小,∴选项A、B错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,∴s随t的增大减小得比开始的快,∴选项C错误;选项D正确;故选:D.【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键x>;②对角线相等的四边形4.下列说法:①函数y=x的取值范围是6是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计-的结果为7:⑥相等的圆心角所对的弧相等;算2|理数.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】x≥;故错误;解:①函数y=x的取值范围是6②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;==是无理数;故正确.故选:B.【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.5.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1 2 3 4 v 0.01 2.9 8.03 15.1A .v=2m ﹣2B .v=m 2﹣1C .v=3m ﹣3D .v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式. 解:当m=4时,A 、v=2m ﹣2=6;B 、v=m 2﹣1=15;C 、v=3m ﹣3=9;D 、v=m+1=5.故选B .6.如图,在Rt ABC ∆中,点D 为AC 边中点,动点P 从点D 出发,沿着D A B →→的路径以每秒1个单位长度的速度运动到B 点,在此过程中线段CP 的长度y 随着运动时间x 的函数关系如图2所示,则BC 的长为( )A .1323B .3C .5511D .53【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD 的长,从而求出AD 和AC ,然后根据图象和图形的对应关系和垂线段最短即可求出CP ⊥AB 时AP 的长,然后证出△APC ∽△ACB ,列出比例式即可求出AB ,最后用勾股定理即可求出BC .【详解】解:∵动点P 从点D 出发,线段CP 的长度为y ,运动时间为x 的,根据图象可知,当x =0时,y=2∴CD=2∵点D 为AC 边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=()211s +时,y 最小,即CP 最小 根据垂线段最短∴此时CP ⊥AB ,如下图所示,此时点P 运动的路程DA +AP=()()1211211⨯+=+所以此时AP=(21111AD -=∵∠A=∠A ,∠APC=∠ACB=90°∴△APC ∽△ACB∴AP AC AC AB = 即1144AB= 解得:AB=1111在Rt △ABC 中,22455AB AC -= 故选C .【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.7.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s (米)和所用时间t (分钟)的关系图.则下列说法中正确的是( ).①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④B.①②③C.①②④D.①②③④【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.函数中,自变量x的取值范围是()x1A.x≠1B.x>0 C.x≥1D.x>1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x>1.故选D.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B .【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A .y=x+2B .y=x 2+2C .y=2x +D .y=12x +【答案】C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+,20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误;故选C .考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.12.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】【分析】根据函数的意义即可求出答案.解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.13.在平面直角坐标系xoy 中,四边形0ABC 是矩形,且A ,C 在坐标轴上,满足3OA = ,OC=1.将矩形OABC 绕原点O 以每秒15°的速度逆时针旋转.设运动时间为t 秒()06t ≤≤ ,旋转过程中矩形在第二象限内的面积为S ,表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC 的初始位置是( )A .B .C .D .【答案】D【解析】【分析】 【详解】解:根据图形可知当t=0时,s=0,所以矩形OABC 的初始位置不可能在第二象限,所以A 、C 错误;因为1OC =,所以当t=2时,选项B 中的矩形在第二象限内的面积为S=13312⨯=,所以B 错误, 因为3OA =t=2时,选项D 中的矩形在第二象限内的面积为S=131322⨯=,故选D . 考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象.14.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.15.如图所示的图象(折线ABCDE )描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s (千米)与行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C .D .【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v ,由于v 分为三个阶段,①小正方形向右未完成穿入大正方形,2214(1)S vt vt vt =⨯-⨯=-≤.②小正方形穿入大正方形但未穿出大正方形,22113S =⨯-⨯=,③小正方形穿出大正方形,22(11)3(1)S vt vt vt =⨯-⨯-=+≤,∴符合变化趋势的是A 和C ,但C 中面积减小太多不符合实际情况,∴只有A 中的符合实际情况.故选A .17.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.18.下列图象中不是表示函数图象的是( )A .B .C .D .【答案】C【解析】【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A 选项:满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故A 是函数;B 选项:满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故B 是函数;C 选项:不满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故C 不是函数;D 选项:满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故D 是函数, 故选:C .【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.19.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C ︒)与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B.骆驼从0时到t时刻之间的最高体温与当日最低体温的差C.骆驼在t时刻的体温与当日平均体温的绝对差D.骆驼从0时到t时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y有可能表示的是骆驼从0时到t时刻之间的最高体温与当日最低体温的差.故选:B.【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.20.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.。