数理逻辑测试题

合集下载

初中数理逻辑试题及答案

初中数理逻辑试题及答案

初中数理逻辑试题及答案一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是()A. 0或1B. 0或-1C. 1或-1D. 无法确定2. 下列哪个选项是偶数()A. 2B. 3C. 4D. 53. 一个三角形的三个内角之和等于()A. 90°B. 180°C. 270°D. 360°4. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 无法确定5. 一个数的绝对值是它本身,这个数是()A. 非负数B. 非正数C. 非负数或非正数D. 无法确定二、填空题(每题2分,共10分)1. 一个数的平方是25,那么这个数是_________。

2. 一个数的立方是-8,那么这个数是_________。

3. 一个数的倒数是1/2,那么这个数是_________。

4. 一个数的绝对值是5,那么这个数是_________。

5. 如果一个数的平方根是3,那么这个数是_________。

三、解答题(每题5分,共30分)1. 证明:对于任意实数a和b,(a+b)² = a² + 2ab + b²。

2. 已知一个数的平方是16,求这个数。

3. 一个等腰三角形的底角是45°,求顶角的度数。

4. 一个数的立方是27,求这个数。

5. 一个数的绝对值是3,求这个数。

四、逻辑推理题(每题5分,共10分)1. 如果一个数既是偶数又是质数,那么这个数是()A. 2B. 4C. 6D. 82. 如果一个数的绝对值是它本身,那么这个数是()A. 正数B. 负数C. 零D. 正数或零五、应用题(每题10分,共20分)1. 一个长方形的长是宽的两倍,如果宽是5cm,求长方形的周长。

2. 一个数的平方比它的立方小64,求这个数。

答案:一、选择题1. A2. A3. B4. A5. A二、填空题1. ±52. -23. 24. ±55. 9三、解答题1. 证明:(a+b)² = (a+b)(a+b) = a² + ab + ba + b² = a² + 2ab + b²。

数理逻辑练习题及答案-3

数理逻辑练习题及答案-3

命题逻辑的推理1.判断下面推理是否正确。

先将简单命题符号化,再写出前提、结论、推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一,则明天是星期三;今天是星期一。

所以明天是星期三。

(2)若今天是星期一,则明天是星期二;明天是星期二。

所以今天是星期一。

(3)若今天是星期一,则明天是星期三;明天不是星期三。

所以今天不是星期一。

(4)若今天是星期一,则明天是星期二;今天不是星期一。

所以明天不是星期二。

(5)若今天是星期一,则明天是星期二或星期三。

(6)今天是星期一当且仅当明天是星期三;今天不是星期一。

所以明天不是星期三。

2.构造下面推理的证明:(1)前提:p→(q→r), p, q结论:r∨s(2)前提:p→q, ┐(q∧r), r结论:┐p(3)前提:p→q结论:p→(p∧q)(4)前提:q→p, q s, s t, t∧r结论:p∧q(5)前提:p→r, q→s, p∧q结论:r∧s(6)前提:┐p∨r, ┐q∨s, p∧q结论:t→(r∨s)3.用附加前提法证明下面各推理:(1)前提:p→(q→r), s→p, q结论:s→r(2)前提:(p∨q)→(r∧s), (s∨t)→u结论:p→u4.用归谬法证明下面推理:(1)前提:p→┐q, ┐r∨q, r∧┐s结论:┐p(2)前提:p∨q, p→r, q→s结论:r∨s5.构造下面推理的证明。

(1)如果小王是理科学生,他必学好数学;如果小王不是文科生,他必是理科生;小王没学好数学。

所以,小王是文科生。

(2)明天是晴天,或是雨天;若明天是晴天,我就去看电影;若我看电影,我就不看书。

所以,如果我看书,则明天是雨天。

答案1.设p:今天是星期一,q:明天是星期二,r:明天是星期三。

(1)推理的形式结构为(p→r)∧p→r此形式结构为重言式,即(p→r)∧p r所以推理正确。

(2)推理的形式结构为(p→q)∧q→p此形式结构不是重言式,故推理不正确。

考验罗辑思维的题目

考验罗辑思维的题目

考验罗辑思维的题目
以下是一些可以考验逻辑思维的题目:
1.猜数字:甲乙丙丁四人,分别拥有1、2、3、4这四个数字中
的两个数字。

他们各自猜了对方的数字,其中甲说:“乙有两个数码,一个是2,另一个数码我不知道。

”乙说:“丁和乙数码之和被3除余1。

”丙说:“丁和甲数码之和正好是10。

”丁说:“乙不是数码2。

”那么谁是2的持有者?2.三条路:在一个岛屿上有三条路通往不同的地方,你来到这
个岛屿,如何选择才能最大程度地确保自己能到达目的地?
3.称量水:如果你有无穷多的水和一个3公升的提捅和一个5
公升的提捅,如何准确地称出4公升的水?
4.两人路口:一个岔路口分别通向诚实国和说谎国。

来了两个
人,已知一个是诚实国的,另一个是说谎国的。

诚实国的人永远说实话,说谎国的人永远说谎话。

现在你要去说谎国,但不知道应该走哪条路,需要问这两个人中的哪一个?
5.12个球:有12个球,其中有一个球的重量与其他球不同,但
外观相同。

你只有一架天平,如何用三次称重的方法确定哪个球的重量是轻还是重?
6.九点十线:在9个点上画10条直线,每条直线上至少有三个
点,如何画?
7.时钟指针重合:在一天的24小时之中,时钟的时针、分针和
秒针完全重合在一起的时候有几次?都分别是什么时间?
8.四棵树的距离:如何种植4棵树木,使其中任意两棵树的距
离相等?
以上题目可以测试你的逻辑推理能力。

数学逻辑推理题目

数学逻辑推理题目

20 道数学逻辑推理题目一、数字推理题1. 找规律填数字:2,4,6,8,()。

-答案:10。

规律是后一个数比前一个数大2。

2. 1,3,7,15,()。

-答案:31。

规律是后一个数比前一个数依次多2、4、8、16。

3. 2,5,11,23,()。

-答案:47。

规律是后一个数比前一个数依次多3、6、12、24。

4. 3,6,9,12,()。

-答案:15。

规律是后一个数比前一个数大3。

5. 4,8,16,32,()。

-答案:64。

规律是后一个数是前一个数的2 倍。

二、图形推理题1. 观察图形:○△□,△□○,□○△,下一个图形是什么?-答案:○△□。

规律是三个图形依次循环。

2. 有一组图形,第一个是正方形,第二个是圆形,第三个是三角形,第四个是正方形,第五个是圆形,那么第六个图形是什么?-答案:三角形。

规律是正方形、圆形、三角形依次循环。

3. 观察图形序列:△△△△△△△△△,下一个图形是什么?-答案:△。

规律是△后面的△依次增加一个。

4. 一组图形为:△○□,□△○,○□△,下一组图形是什么?-答案:△○□。

规律是三个图形依次循环换位。

5. 图形序列:△△△△△△△△△,下一个图形是什么?-答案:△。

规律是△后面的△依次增加一个。

三、逻辑推理题1. 小明、小红、小刚三人中,一人是医生,一人是教师,一人是警察。

已知小明不是医生,小红不是教师,小刚不是警察。

那么小明是(),小红是(),小刚是()。

-答案:教师、警察、医生。

通过排除法推理得出。

2. 桌子上有三个盒子,一个盒子里装着糖,一个盒子里装着饼干,一个盒子里装着糖和饼干。

三个盒子上分别贴着标签:A 盒“糖”,B 盒“饼干”,C 盒“糖和饼干”。

但标签都贴错了。

现在从一个盒子里取出一个物品,如果是糖,那么这个盒子里实际装着什么?-答案:糖和饼干。

因为标签都贴错了,如果从贴着“糖”标签的盒子里取出糖,那么这个盒子实际装着糖和饼干。

3. 甲、乙、丙三人参加跑步比赛,甲说:“我不是第一名。

数学逻辑考试题目及答案

数学逻辑考试题目及答案

数学逻辑考试题目及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x + 3,求f(-1)的值。

A. -5B. -1C. 5D. 1答案:A2. 以下哪个选项是正确的等式?A. 2x + 3 = 3x + 1B. 3x - 2 = 2x + 3C. 4x = 2x + 2xD. 5x - 5 = 5x + 5答案:C3. 计算以下表达式的值:(2^3) + (3^2)。

A. 11B. 17C. 19D. 23答案:B4. 已知直角三角形的两直角边长分别为3和4,求斜边的长度。

A. 5B. 7C. 9D. 12答案:A5. 一个数的两倍加上3等于15,求这个数。

A. 6B. 9C. 12D. 15答案:A6. 以下哪个分数是最简形式?A. 6/8B. 4/6C. 3/5D. 8/12答案:C7. 一个圆的半径是5,求其面积。

A. 25πB. 50πC. 75πD. 100π答案:B8. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 22答案:A9. 计算以下表达式的值:(5 - 3) * 2。

A. 2B. 4C. 6D. 8答案:B10. 一个数的立方是-8,求这个数。

A. -2B. 2C. -4D. 4答案:A二、填空题(每题2分,共20分)11. 若a + b = 7,且a = 3,则b的值为______。

答案:412. 一个数的平方根是4,这个数是______。

答案:1613. 计算以下表达式的值:(-2)^2 - 3 * 2。

答案:514. 一个数的立方根是2,这个数是______。

答案:815. 计算以下表达式的值:(1/2) + (1/3)。

答案:5/616. 一个数除以5余2,这个数可以表示为5n + 2,其中n是整数,若这个数是13,则n的值为______。

答案:217. 计算以下表达式的值:(3/4) * (4/5)。

答案:3/518. 一个数的倒数是1/3,这个数是______。

逻辑智力数学测试题(3篇)

逻辑智力数学测试题(3篇)

第1篇测试说明:本测试共包含50道题目,涵盖逻辑推理、数学计算和智力挑战等多个方面。

请在规定时间内完成所有题目。

注意,部分题目可能需要结合逻辑推理和数学知识共同解答。

注意事项:1. 每题均有唯一正确答案。

2. 部分题目可能需要多步骤解答。

3. 答题时请仔细阅读题目,确保理解题意。

开始测试:一、逻辑推理题(10题,每题2分,共20分)1. 小明、小红和小李是三个好朋友,他们分别来自三个不同的城市:北京、上海和广州。

已知:- 小明不是来自上海;- 小红来自北京;- 小李不是来自广州。

那么,以下哪个选项是正确的?A. 小明来自北京,小红来自上海,小李来自广州B. 小明来自上海,小红来自广州,小李来自北京C. 小明来自广州,小红来自上海,小李来自北京D. 小明来自广州,小红来自北京,小李来自上海2. 以下哪个选项是正确的?A. 所有的猫都是狗B. 所有的狗都是猫C. 有些猫是狗D. 有些狗是猫3. 小王、小张和小李三个人的职业分别是医生、教师和工程师。

已知: - 小张不是工程师;- 小李不是医生;- 小王不是教师。

那么,以下哪个选项是正确的?A. 小王是医生,小张是教师,小李是工程师B. 小王是工程师,小张是医生,小李是教师C. 小王是教师,小张是工程师,小李是医生D. 小王是医生,小张是工程师,小李是教师4. 以下哪个选项是正确的?A. 所有的A都是BB. 所有的B都是AC. 有些A是BD. 有些B是A5. 小明、小红和小李三个人的职业分别是医生、教师和工程师。

已知: - 小明不是工程师;- 小红不是教师;- 小李不是医生。

那么,以下哪个选项是正确的?A. 小明是医生,小红是教师,小李是工程师B. 小明是工程师,小红是医生,小李是教师C. 小明是教师,小红是工程师,小李是医生D. 小明是医生,小红是工程师,小李是教师6. 以下哪个选项是正确的?A. 所有的A都是BB. 所有的B都是AC. 有些A是BD. 有些B是A7. 小王、小张和小李三个人的职业分别是医生、教师和工程师。

数理逻辑练习题及答案

数理逻辑练习题及答案

命题逻辑基本概念1.将下列命题符号化。

(1)刘晓月跑得快,跳得高。

(2)老王是山东人或河北人。

(3)因为天气冷,所以我穿了羽绒服。

(4)王欢与李乐组成一个小组。

(5)李辛与李末是兄弟。

(6)王强与刘威都学过法语。

(7)他一面吃饭,一面听音乐。

(8)如果天下大雨,他就乘班车上班。

(9)只有天下大雨,他才乘班车上班。

)除非天下大雨,他才乘班车上班。

10)除非天下大雨,他才乘班车上班。

(10)下雪路滑,他迟到了。

(1111)下雪路滑,他迟到了。

)2与4都是素数,这是不对的。

(1212))“2或4是素数,这是不对的”是不对的。

13)“2(132.将下列命题符号化,并给出各命题的真值:(1)若3+2=4,则地球是静止不动的。

(2)若3+2=4,则地球是运动不止的。

(3)若地球上没有树木,则人类不能生存。

(4)若地球上没有水,则是无理数。

3.将下列命题符号化,并给出各命题的真值:(1)2+2=4当且仅当3+3=6。

(2)2+2=4的充要条件是3+3≠6。

(3)2+2≠4与3+3=6互为充要条件。

(4)若2+2≠4,则3+3≠6,反之亦然。

2+3=5。

4.设p:2+3=5q:大熊猫产在中国。

r:复旦大学在广州。

求下列复合命题的真值:(1)(pq)→r(2)(r→(p∧q))┐p)┐r→(┐p∨┐q∨r)r)(3)┐r→(┐p∨┐q∨∧q∧┐r)((┐p∨┐q)→r)(p∧(4)(p5.用真值表判断下列公式的类型:)p→(p∨q q∨r)(1)p→(p∨(2)(p→┐q)→┐q)┐(q→r)∧r r(3)┐(q→r)∧(4)(p→q)→(┐q→┐p)(5)(p∧r)(┐p∧┐q)(p∧r)(┐p∧┐q)(6)((p→q)∧(q→r))→(p→r)(7)(p→q)(rs)答案1.(1)p ∧q ,其中,,其中,p p :刘晓月跑得快,:刘晓月跑得快,q q :刘晓月跳得高。

(2)p ∨q ,其中,,其中,p p :老王是山东人,:老王是山东人,q q :老王是河北人。

集合与数理逻辑用语测试题3份

集合与数理逻辑用语测试题3份

测试一填空:(每空2分,共30分)1.用适当的符号(、、、=、)填空:(1)0_______;(2)5______{质数};(3){,}______{,,};(4){1,3}_____{|-4+3=0};(5){0,-1}_____{|+=0}.2.用列举法表示9的平方根的全体构成的集合________.3.用性质描述法表示大于-2的整数全体构成的集合________.4.用充分条件、必要条件、充要条件填空(1)>0是,都是正数的________;(2)=4是=-2或=2的________;(3)>5是>4的________;(4)sin=是=45°的___________.5.已知=,={|≥-4},={|<6},则∪=_________,∩=________,=_______,=_________.选择题:(每题5分,共25分)6.设,={|<3},则正确结论是( ).(A)(B)(C){}(D){}7.{正实数}∩{整数}等于( ).(A){正有理数} (B){整数} (C){正整数} (D){自然数}8.下列句子不是命题的是( ).(A)5+1-3=4 (B)正数都大于0(C)>5 (D)9.下列命题是真命题的是( ).(A)8≤8(B)3+4=5或2>3(C)(-2)=-8,且|-1|=-1.(D)如果2≠3,则1=210.“,至少有一个是正数”的否定是( ).(A),都是正数(B),都不是正数(C),都是负数(D),不都是正数解答题:(共45分)11.写出下列集合之间的关系,并用图形表示:={有理数},={偶数},={奇数},={|是能被4整除的数}.(8分)12.设全集={绝对值不大于3的整数},={-1,1,2},={-2,-1}.求∪,∩,∩,∪.(12分)13.写出集合{,}的所有子集和真子集.(8分)14.写出下列命题的否定,并判断真假.(12分)(1)是无理数;(2)对实数,都有-4+4>0;(3)实数,使得+1=0;(4)15能被3整除或能被7整除.15.用充分条件和必要条件叙述下面的真命题:如果是整数,则(+1)是偶数.(5分)答案、提示和解答:1.(1) ;(2)(3);(4)=;(5)=.2.{-3,3}.3.{|>-2}.4.(1)必要条件;(2)充要条件;(3)充分条件;(4)必要条件.5.∪=;∩={|-4≤<6};={|<-4};={|≥6}.6.D7.C.8.C .9.A .10.B. 11.; C.图示如下:(第11题)12.={-3,-2,-1,0,1,2,3},∪={-2,-1,1,2};∩={-1};∩={-3,0,3};∪={-3,-2,0,1,2,3}.13.{,}的所有子集有,{},{},{,}.真子集有,{},{}.14.(1)不是无理数(假);(2)实数,使得-4+4≤0 (真);(3)对实数,都有+1≠0 (真);(4)15不能被3整除,且不能被7整除(假).15.“是整数”是“(+1)是偶数”的充分条件,“(+1)是偶数”是“是整数”的必要条件.测试二填空:(每空2分,共30分)1.用适当的符号(,,,=,)填空:(1)0_______;(2)-4_______;(3){}_______{,};(4){1,3,5}_______;(5){|=+1}_______{|<0}.2.用列表法表示方程-5+4=0的解集为_______.3.正奇数的全体构成的集合用性质描述法可表示为_______.4.用充分条件、必要条件、充要条件填空:(1)=0或=0是=0的_______;(2)-2=0是+-6=0_______;(3)>1是>4的_______;(4)“+是整数”是“、都是整数”的____________.5.已知全集={|≤5,},={2,4},={1,4,5},则∪__________;∩__________;__________;∪__________.选择题:(每小题5分,共25分)6.下列关系式中,正确的一个是( ).(A)0(B){0}(C){0}(D){0}7.已知命题:(1)或={}(2){0},且.(3)9是奇数,且是质数(4)如果2>7,则3>5.其中为假命题的是( ).(A)(1)、(3) (B)(2)、(4) (C)(2)、(3)、(4) (D)(2)、(3)8.是∪=的( ).(A)充分但不必要条件(B)必要但不充分条件(C)充要条件(D)既不充分又不必要条件9.“,,都不等于0”的否定是( ).(A),,都等于0 (B),,不都等于0(C),,中至少有一个不等于0 (D),,c中至少有一个等于010.已知集合={(,y)|2+=3},={(,)|-4=6},则∩等于( ).(A){(2,-1)}(B)(2,-1) (C){(-2,1)}(D)解答题:(共45分)11.(8分)写出集合{2,3,4}的所有子集和真子集.12.(8分)已知全集=,={|-2<<3},={|<-1},求∪,∩,,13.(8分)判定下列集合、之间的关系:(1)={|<2},={|<4}(2)={|是6的倍数},={|是偶数,且是3的倍数}.14.(12分)写出下列命题的否定,并判断否定的真假:(1)3不是质数;(2)实数,使+1=0;(3)对实数,都有-2+1<0;(4)3<2或1+1=3.15.某班学生期中考试数学得优秀的有19人,物理得优秀的有15人,其中数学,物理两科中至少有一科优秀的有24人,求两科都优秀的学生人数.(9分)答案、提示和解答:1.(1);(2);(3);(4) ;(5)=. 2.{0,1,4}. 3.{|=2+1,}. 4.(1)充要条件;(2)充分条件;(3)必要条件;(4)必要条件.5.{1,2,4,5};{4};{0,1,3,5};{0,1,2,3,5}. 6.C.7.D.8.A. 9.D. 10.A.11.子集有,{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}.真了集有,{2},{3},{4},{2,3},{2,4},{3,4}.12.∪={|<3};∩={|-2<<-1};={|≤2或≥3};={|≥-1}.13.(1)∵<2<4,∴. (2)∵是6的倍数是偶数,且是3的倍数,∴=.14.(1)3是质数,(真);(2)对实数,使+1≠0(假);(3)实数,都有-2+1>0(真);(4)3≥2或1+1≠3(真).15.设={|是数学得优秀的学生},设={|是物理得优秀的学生},则Card()=19,Card()=15,Card(∪)=24,∵Card(∩)=Card()+Card()-Card(∪)=19+15-24=10.∴数学、物理两科得优秀的学生有10人.测试三选择题:(每题5分,共50分)1.设集合={-1,0,1},={0},则( ).(A)为空集(B)(C)(D)2.下列各式中,正确的个数是( ).(1)0={0};(2)0 {0};(3)0{0};(4)0=;(5){0}=;(6){0};(7){0};(8)0(A)1 (B)2 (C)3 (D)43.由,0,1,2构成的集合的真子集总共有( )个.(A)8个(B)7个(C)6个(D)5个4.设集合={|=2+1,Z},={|=4±1,},那么与的关系是( )(A)=(B)(C)(D)5.设全集={1,2,3,4,5},={2,3,4},={1,2,5},={2,4}. 则集合{1,3,5}应是( ).(A)(∩)∪(B)(∪)∩(C)∩(D)(∪)∩6.如果={|0≤<2},={|-1<<1},则∩=( ).(A){|0≤<1}(B){|-1≤<2}(C){|0≤≤1}(D)7.设命题:{},:3=5,则在下列命题中:(1),(2),(3),(4),(5), (6) ,其中真命题的个数是( ).(A)2 (B)3 (C)4 (D)58.已知,为实数,那么=0是+=0的( ).(A)充要条件(B)充分但非必要条件(C)必要但非充分条件(D)既非充分又非必要条件9.设表示男、女生同班的高一(1)班全体学生构成的集合.={高一(1)班的男学生},={高一(1)班参加运动会的学生},则集合{不参加运动会的高一(1)班女学生}可表示为( ).(A)∩(B)∩(C)∪(D)(∪)10.“是等腰直角三角形”的否定是( ).(A)是直角三角形但不是等腰三角形(B)是等腰三角形但不是直角三角形(C)不是等腰三角形,且不是直角三角形(D)△ABC不是等腰三角形或不是直角三角形填空题.(每空5分,共35分).11.集合={1,3,5,7}用性质描述法表示为___________.12.设={(,)|<0,∈,∈},则为第________象限的点集. 13.用适当的符号填空:(1){2}______{|=4};(2)0_______{|+2=0};(3){|(-2)(+3)={|-2=0}_______{|+3=0};(4){|(+1)(-4)≠0}={|+1≠0}_______{|-4≠0};(5)=25_______=-5或=5三、解答题:(14题8分,15题7分)14.已知、、C是全集的子集(如图),用阴影表示下列集合:(1)(∩)∪;(2)(∪)∩.(第14题)15.已知全集含有10个元素,它的子集含有5个元素,子集含有4个元素,∩含有2个元素,求集合∪含有元素的个数.答案、提示和解答:1.D. 2.C. 3.B. 4.A. 5.D. 6.A. 7.B. 8.C. 9.D. 10.D.11.{|=2+1,,<4}. 12.二或四.13.(1)(也可以填);(2);(3)∪;(4)∩;(5).14.(1)(2)(第14题)15.∪中含有元素的个数是5+4-2=7(个),∩中含有元素的个数是4-2=2(个),∪含有元素的个数是:10-2=8(个).(第15题)。

数理逻辑考试题及答案

数理逻辑考试题及答案

数理逻辑考试题及答案一、单项选择题(每题2分,共20分)1. 以下哪个选项不是命题逻辑中的联结词?A. 与B. 或C. 非D. 存在答案:D2. 在布尔代数中,以下哪个表达式是正确的?A. ¬(A∧B) = ¬A∨¬ BB. A∧¬ A = AC. A∨¬ A = 1D. A∧(A∨B) = A答案:C3. 以下哪个命题是真命题?A. 如果今天是星期一,那么明天是星期二。

B. 所有的鸟都会飞。

C. 所有的人都是哲学家。

D. 2+2=5答案:A4. 在命题逻辑中,以下哪个命题的否定是正确的?A. 如果A,则B。

B. A且B。

C. A或B。

D. A当且仅当B。

答案:A5. 以下哪个选项是谓词逻辑中的量词?A. 与B. 或C. 存在D. 非答案:C6. 在谓词逻辑中,以下哪个表达式表示“存在一个x,使得x是学生”?A. ∀x (x 是学生)B. ∃x (x 是学生)C. ¬∃x (x 是学生)D. ¬∀x (x 是学生)答案:B7. 以下哪个选项是模态逻辑中的模态词?A. 与B. 或C. 可能D. 非答案:C8. 在模态逻辑中,以下哪个命题表示“必然P”?A. PB. ¬PC. ◊PD. □P答案:D9. 以下哪个命题是逻辑等价的?A. A∧BB. A∨BC. ¬A∧¬ BD. ¬(A∧¬B)答案:C10. 在逻辑推理中,以下哪个选项是演绎推理?A. 归纳推理B. 演绎推理C. 溯因推理D. 类比推理答案:B二、多项选择题(每题3分,共15分)1. 以下哪些选项是命题逻辑中的有效推理形式?A. 从A∧B,可以推出A。

B. 从A∨B,可以推出A。

C. 从A,可以推出A∨B。

D. 从A∧B,可以推出B。

答案:A, C, D2. 在布尔代数中,以下哪些表达式是等价的?A. A∧(B∨¬A)B. A∨(B∧¬A)C. A∧¬ BD. A∨¬ B答案:A, C3. 以下哪些命题是真命题?A. 如果A则B,且A为真,那么B也为真。

数理逻辑部分测试题

数理逻辑部分测试题

数理逻辑部分测验题一、选择题(每题2分)1.下面语句是真命题的为()。

(A)我正在说谎(B)如果1+1=2,则雪是黑色的(C)如果1+1=3,则雪是黑色的(D)吃饭了吗?2.下列合式公式中,()不是重言式。

(A)Q→(P∨Q) (B)(P∧Q)→P(C)(P∧Q)∧(P∨Q)(D)(P∨Q) (P→Q) 3.利用谓词的约束变元改名规则和自由变元代入规则,可将如下公式:(x)(P(x)→Q(x,y))∧R(x,y)改写成()(A)(x)(P(y)→Q(x,y))∧R(z,s)(B)(z)(P(z)→Q(z,s))∧R(x,s)(C)(x)(P(s)→Q(x,s))∧R(x,y)(D)(x)(P(s)→Q(z,s))∧R(z,s)4.下列公式中正确的等价式是()(A)(x)A(x)(x)A(x)(B)(x)A(x)(x)A(x)(C)(x)(y)A(x,y)(y)(x)A(x,y)(D)(x)(A(x)∧B(x))(x)A(x)∨(x)B(x)5.公式(x)P(x)→(y)Q(x, y)的前束范式为______。

(A)x y(P(x)→Q(z, y))(B)x y(P(x)∨Q(z, y))(C)x y(P(x)∨Q(z, y))(D)x y(P(x)∧Q(z, y))6.在一阶逻辑中给出下面四个推理。

(1)前提:x(F(x)→G(x)),y F(y)结论:y G(y)(2)前提:x(F(x)∧G(x))结论:y F(y)(3)前提:x F(x),x G(x)结论:y(F(y)∧G(y))(4)前提:x(F(x)→H(x)),H(y)结论:x(F(x))在以上4个推理中,______是正确的。

(A)(1),(2),(3);(B)(1),(2)(3),(4);(C)(2),(3);(D)(1),(2);(E)(1)(4)。

二、填空题(每空2分)1.给定前提(P∧Q)→R,R∨S,S,则有效结论为。

2.任意两个不同小项的合取为,全体小项的析取式必为式。

幼儿园小班数理逻辑考试试题

幼儿园小班数理逻辑考试试题

幼儿园小班数理逻辑考试试题一、数学1. 请选出下列物品中数量最多的一个:A. 毛笔B. 铅笔C. 红颜色的绳子D. 星星2. 妈妈给小明买了5个苹果和3个橙子,一共买了多少个水果?A. 7个B. 8个C. 5个D. 3个3. 下列哪个图形是一个正方形?A. 三角形B. 四边形C. 圆形D. 方形4. 小明有3个苹果,小光有2个苹果,他们一共有多少个苹果?A. 2个B. 3个C. 5个D. 6个5. 请选出下列哪个数字是最大的?A. 5B. 9C. 3D. 7二、逻辑推理1. 小红比小李年纪大,小李比小明年纪大,那么小红比小明年纪大吗?A. 是的B. 不是2. 下列物品中,哪个不属于自然界?A. 水B. 树木C. 电视机D. 石头3. 请根据以下数字继续数列:1,4,7,10,13,...A. 15B. 16C. 18D. 194. 今天是星期一,后天是星期几?A. 星期一B. 星期三C. 星期四D. 星期日5. 小明喜欢吃苹果,小李喜欢吃香蕉,小红喜欢吃什么水果?A. 苹果B. 香蕉C. 草莓D. 橙子三、综合题1. 请从下列图案中选出与原图最相似的一个:A. 图案1B. 图案2C. 图案3D. 图案42. 婆婆给小明5块钱,妈妈给了他3块钱,爸爸给了他2块钱,小明一共有多少钱?A. 8块钱B. 10块钱C. 5块钱D. 2块钱3. 如果今天是星期五,那么十天后是星期几?A. 星期一B. 星期二C. 星期四D. 星期六4. 请选出下列水果中含有酸味的一个:A. 苹果B. 香蕉C. 葡萄D. 西瓜5. 下列哪个关系是不正确的?A. 苹果-水果B. 小说-书籍C. 猫-动物D. 鱼-汽车。

最新数理逻辑考试题及答案

最新数理逻辑考试题及答案

“离散数学”数理逻辑部分考核试题答案━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━数理逻辑考试题及答案一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。

共2分)(0)小刘既不怕吃苦,又爱钻研。

解:⌝p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研。

(1)只有不怕敌人,才能战胜敌人。

解:q→⌝p,其中,P:怕敌人;q:战胜敌人。

(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。

解:⌝r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了。

(3)小王与小张是亲戚。

解:p,其中,P:小王与小张是亲戚。

2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题。

共1分)(0)A:(⌝(p↔q)→((p∧⌝q) ∨(⌝p∧q)))∨ r(1)B:(p∧⌝(q→p)) ∧(r∧q)(2)C:(p↔⌝r) →(q↔r)(3)E:p→(p∨q∨r)(4)F:⌝(q→r) ∧r解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。

3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。

共2分)(0)设y=2|x|,x为实数。

推理如下:如y在x=0处可导,则y在x=0处连续。

发现y在x=0处连续,所以,y在x=0处可导。

解:设y=2|x|,x为实数。

令P:y在x=0处可导,q:y在x=0处连续。

由此,p为假,q为真。

本题推理符号化为:(p→q) ∧q→p。

由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。

(1)若2和3都是素数,则6是奇数。

2是素数,3也是素数。

所以,5或6是奇数。

解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。

由此,p=1,q=1,r=1,s=0。

本题推理符号化为:((p ∧ q) →s) ∧p ∧q) →(r ∨ s)。

数理逻辑考试题目及答案

数理逻辑考试题目及答案

数理逻辑考试题目及答案一、单项选择题(每题3分,共30分)1. 在命题逻辑中,下列哪个命题是永真命题?A. (P → Q) ∧ (Q → R) → (P → R)B. (P → Q) ∧ (¬Q → ¬R) → (P → R)C. (P → Q) ∧ (¬Q → R) → (P → ¬R)D. (P → Q) ∧ (¬Q → ¬P) → (P → ¬Q)答案:A2. 谓词逻辑中的量词“∀”表示什么?A. 存在B. 任意C. 所有D. 唯一答案:C3. 以下哪个命题是命题逻辑中的矛盾命题?A. P ∧ ¬PB. P ∨ ¬PC. P → QD. P ↔ ¬P答案:A4. 在谓词逻辑中,下列哪个量词是存在量词?A. ∀xB. ∃xC. ∀yD. ∃y答案:B5. 以下哪个命题是命题逻辑中的等价命题?A. P → QB. ¬P → ¬QC. P ↔ QD. P ∨ Q答案:C6. 以下哪个命题是命题逻辑中的蕴含命题?A. P ∧ QB. P ∨ QC. P → QD. P ↔ Q答案:C7. 在谓词逻辑中,以下哪个符号表示存在量词?A. ∀B. ∃C. ¬D. →答案:B8. 以下哪个命题是命题逻辑中的析取命题?A. P ∧ QB. P ∨ QC. P → QD. P ↔ Q答案:B9. 在命题逻辑中,以下哪个命题是永假命题?A. P ∧ ¬PB. P ∨ ¬PC. P → QD. P ↔ ¬P答案:A10. 在谓词逻辑中,以下哪个命题是全称量化?A. ∃x P(x)B. ∀x P(x)C. ¬∀x P(x)D. ¬∃x P(x)答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,命题“如果P,则Q”的符号表示为______。

数理逻辑模拟试题

数理逻辑模拟试题

数理逻辑模拟试题1. 题目一A、B、C、D、E五个人中,有一人必然是偷窃者,另外两人要么都是说真话,要么都是说假话。

已知:- A说:“我不是偷窃者。

”- B说:“C是偷窃者。

”- C说:“偷窃者肯定是D。

”- D说:“C在冤枉我。

”- E说:“我不知道谁是偷窃者。

”问:谁是偷窃者?解答:首先根据题目中的信息,我们可以知道只有一个人是偷窃者,因此只能有一个人说真话。

假设A是偷窃者,那么A在说谎,所以C、E也在说谎。

但题目已告知只有两人说真话,与题目矛盾,排除此假设。

假设B是偷窃者,那么C必说真话,而D在说谎,与题目矛盾,排除此假设。

假设C是偷窃者,那么B在说谎,所以D、E也在说谎,与题目矛盾,排除此假设。

假设D是偷窃者,那么C在说谎,所以B、E也在说谎,与题目矛盾,排除此假设。

最后只剩下E可能是偷窃者。

如果E是偷窃者,那么A、B、C、D都在说真话,与题目条件相符。

因此,答案是:E是偷窃者。

2. 题目二已知道以下五个数的排列顺序:2、4、6、8、10。

根据以下条件,判断每个数的位置:- 4比8大。

- 2比6大。

- 8比10大。

- 6不在第一个位置。

解答:根据题目信息,我们可以得出以下推论:- 由第一条信息可知,4必然在8的前面。

- 由第二条信息可知,2必然在6的前面。

- 由第三条信息可知,8必然在10的前面。

- 由第四条信息可知,6不在第一个位置,因此2必然在第一个位置。

综上所述,根据给定的条件,这五个数的排列顺序应为:2、4、6、8、10。

3. 题目三假设有3个箱子,分别标有"A"、"B"、"C"。

已知以下五个陈述中有两个是真的,而另外三个是假的:- A箱子标签放在B箱子上。

- B箱子标签放在C箱子上。

- C箱子标签放在A箱子上。

- A箱子的物品被放在B箱子上。

- A箱子的物品不在C箱子上。

问:物品放在哪个箱子上?标签放在哪个箱子上?解答:根据题目信息,我们可以得出以下推论:- 如果A箱子标签放在B箱子上,那么第一条陈述就是真的。

数理逻辑测评

数理逻辑测评

数理逻辑测评一、填空题(共61分)1、 若∆满足1311111=∆-+,那么,∆=__________.2、 如图,在梯形ABCD 中,BC=2AD ,M 为AB 的中点,N 为MC 的三等分点。

那么,三角形ABC 的面积是三角形ADC 的面积的__________倍。

若梯形的面积为144平方厘米,阴影部分的面积为__________平方厘米。

`3、 在公路上,每隔100km 有一个仓库,共有5个仓库。

1号仓库有10 t 货物,2号仓库有20 t 货物,5号仓库有40 t 货物,其余两个仓库是空的。

现在想把所有的货物集中存放到一个仓库里,若每1 t 货物运输1km 要5元运费,运费最少要花__________元。

若将货物平均分配给每个仓库,运费最少要花__________元。

4、 欧几里得在他的名著《几何原本》中曾说明过这样一种方法来检验两条线段的可共度性。

比如我们给出两条线段,一条长18cm ,一条长5cm ,每次使用较短的线段去量较长的线段,再用较长的线段余下的部分量较短的的线段(即用5cm 的线段去量18cm 的线段,从18cm 的线段中截取3个5cm 之后,用余下的3cm 去量5cm ),如此操作,直到量尽为止。

第一次 第二次 第三次 ` 第四次 如果给你两根线段分别长279cm 和13cm ,那么反复进行__________次操作才能验证其可共度性。

5、右图是一个“魔幻六边形”,有19个六边形组成,填入1~19这 19个数字,当魔幻六边形完成的时候,每一条直线上六边形内的数之和都相等,不管每条直线上有三个、四个或五个六边形。

例如,B+12+10、B+2+5+6+9、C+8+6+11,他们的和都相等。

则D 处应填入__________,B 处应填入___________。

6、 下面这些系统都是平衡的,请问一个●应该为__________;最后一个系统右边的盒子中应该为__________才能让两边保持平衡。

数理逻辑考试题目及答案

数理逻辑考试题目及答案

数理逻辑考试题目及答案一、单项选择题(每题2分,共20分)1. 命题逻辑中的“与”运算符用符号表示为:A. ∨B. ∧C. →D. ¬答案:B2. 如果命题P为真,命题Q为假,则命题P∨Q的真值是:A. 真B. 假C. 未知D. 既非真也非假答案:A3. 以下哪个是命题逻辑中的有效论证?A. P → Q, ¬Q → ¬P, 因此P → ¬QB. P → Q, ¬P → Q, 因此QC. P → Q, Q → R, 因此P → RD. P ∧ Q, ¬P, 因此¬Q答案:C4. 命题逻辑中的“非”运算符用符号表示为:A. ∨B. ∧C. →D. ¬答案:D5. 如果命题P为假,命题Q为真,则命题P∧Q的真值是:A. 真B. 假C. 未知D. 既非真也非假答案:B6. 以下哪个是谓词逻辑中的量词?A. ∀B. ∃C. ∧D. ¬答案:A7. 在谓词逻辑中,全称量词“∀”表示:A. 存在B. 对所有C. 对某些D. 非答案:B8. 在谓词逻辑中,存在量词“∃”表示:A. 存在B. 对所有C. 对某些D. 非答案:A9. 以下哪个是谓词逻辑中的等价关系?A. 传递性B. 对称性C. 自反性D. 所有选项都是答案:D10. 以下哪个是谓词逻辑中的偏序关系?A. 传递性B. 对称性C. 自反性D. 所有选项都是答案:A二、多项选择题(每题3分,共15分)11. 以下哪些是命题逻辑中的联结词?A. ∨B. ∧C. →D. ¬答案:ABCD12. 以下哪些是谓词逻辑中的量词?A. ∀B. ∃C. →D. ¬答案:AB13. 以下哪些是谓词逻辑中的等价关系的性质?A. 自反性B. 对称性C. 传递性D. 非对称性答案:ABC14. 以下哪些是谓词逻辑中的偏序关系的性质?A. 自反性B. 反对称性C. 传递性D. 对称性答案:ABC15. 以下哪些是谓词逻辑中的逻辑推理规则?A. 普遍实例化B. 存在概括C. 模态逻辑D. 条件证明答案:ABD三、填空题(每题2分,共20分)16. 命题逻辑中的“或”运算符用符号________表示。

数理逻辑期末试题及答案

数理逻辑期末试题及答案

数理逻辑期末试题及答案1. 选择题1.1. 下列哪个符号表示逻辑“与”关系?a) ∨b) ⊕c) ¬d) ∧答案: d) ∧1.2. 如果命题p为真,命题q为假,那么命题“p→q”为:a) 真b) 假c) 不确定d) 无法确定答案: a) 真1.3. 下列哪个逻辑符号表示“或”关系?a) ∨b) ∧c) ¬d) ⊕答案: a) ∨1.4. 命题“¬(p∨q)”的否定形式是:a) p∧qb) ¬p∧¬qc) p∨qd) ¬p∨¬q答案: c) p∨q1.5. 命题“p∨q→r”与下列哪个命题等价?a) (p→r)∧(q→r)b) (p∧q)→rc) p∨(q→r)d) p∧(q∨r)答案: a) (p→r)∧(q→r)2. 填空题2.1. 命题“¬(¬p∧q)”的双重否定形式是________。

答案: p∨¬q2.2. 命题“p∧(¬r∨q)”的否定形式是________。

答案: ¬p∨(r∧¬q)2.3. 命题“p∧¬q∧r”的析取范式是________。

答案: (p∨q∨r)∧(p∨q∨¬r)∧(p∨¬q∨r)2.4. 命题“p→(q→r)”的否定形式是________。

答案: p∧q∧¬r2.5. 下列命题中,为可满足的命题是________。

a) ¬(p∧q)b) p∨(¬q∧r)c) ¬(p∧¬p)d) (p→q)∨(q→p)答案: b) p∨(¬q∧r)3. 简答题3.1. 什么是数理逻辑?答案: 数理逻辑是研究形式逻辑和符号逻辑的数学分支学科。

它通过使用符号和规则来研究命题和推理的规律性质,并利用数学方法来分析和解决逻辑问题。

3.2. 解释命题逻辑中的蕴含关系。

答案: 在命题逻辑中,蕴含关系表示一个命题是否能从另一个或一组命题中推导出来。

编程数理逻辑测试题及答案

编程数理逻辑测试题及答案

编程数理逻辑测试题及答案一、单项选择题(每题2分,共10分)1. 下列哪个选项是逻辑与运算符?A. &&B. ||C. !D. ==答案:A2. 在C语言中,下列哪个关键字用于定义一个函数?A. intB. voidC. functionD. return答案:B3. 以下哪个选项是正确的逻辑表达式?A. (A && B) || CB. (A || B) && CC. A && (B || C)D. A || (B && C)答案:D4. 以下哪个选项是递归函数的正确定义?A. int f(int n) { return f(n-1); }B. int f(int n) { if (n > 0) return f(n-1); }C. int f(int n) { if (n == 0) return 1; else return f(n-1); }D. int f(int n) { return n; }答案:C5. 在逻辑运算中,下列哪个选项表示非运算?A. ANDB. ORC. NOTD. XOR答案:C二、多项选择题(每题3分,共15分)1. 下列哪些选项是逻辑运算符?A. &&B. ||C. ==D. !答案:ABD2. 在编程中,下列哪些关键字用于控制流程?A. ifB. forC. whileD. switch答案:ABCD3. 下列哪些选项是递归函数的特点?A. 函数调用自己B. 有结束条件C. 有递归条件D. 不能包含循环答案:ABC4. 在逻辑表达式中,下列哪些选项是正确的优先级顺序?A. NOT > AND > ORB. OR > AND > NOTC. AND > OR > NOTD. NOT > OR > AND答案:A5. 下列哪些选项是布尔逻辑的基本原理?A. 排中律B. 矛盾律C. 同一律D. 反证法答案:ABC三、填空题(每题2分,共10分)1. 在逻辑运算中,如果A为真,B为假,那么表达式A && B的结果是______。

数理逻辑考试题及答案.pdf

数理逻辑考试题及答案.pdf

“离散数学”数理逻辑部分考核试题答案━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。

共2分)(0)小刘既不怕吃苦,又爱钻研。

解:p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研。

(1)只有不怕敌人,才能战胜敌人。

解:q→p,其中,P:怕敌人;q:战胜敌人。

(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。

解:r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了。

(3)小王与小张是亲戚。

解:p,其中,P:小王与小张是亲戚。

2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题。

共1分)(0)A:((p q)((p q) (p q))) r(1)B:(p(q p)) (r q)(2)C:(p r) (q r)(3)E:p(p q r)(4)F:(q r) r解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。

3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。

共2分)(0)设y=2|x|,x为实数。

推理如下:如y在x=0处可导,则y在x=0处连续。

发现y在x=0处连续,所以,y在x=0处可导。

解:设y=2|x|,x为实数。

令P:y在x=0处可导,q:y在x=0处连续。

由此,p为假,q为真。

本题推理符号化为:(p q) q p。

由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。

(1)若2和3都是素数,则6是奇数。

2是素数,3也是素数。

所以,5或6是奇数。

解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。

由此,p=1,q=1,r=1,s=0。

本题推理符号化为: ((p q) →s) p q) →(r s)。

计算推理公式真值为真,由此,本题推理正确。

二、命题逻辑等值演算(5分)1、用等值演算法求下列公式的主析取范式或主合取范式(总共3题,完成的题号为学号尾数取3的余,完成1题。

数理逻辑考试题及答案

数理逻辑考试题及答案

“离散数学”数理逻辑部分考核试题答案━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。

共2分)(0)小刘既不怕吃苦,又爱钻研。

解:⌝p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研。

(1)只有不怕敌人,才能战胜敌人。

解:q→⌝p,其中,P:怕敌人;q:战胜敌人。

(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。

解:⌝r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了。

(3)小王与小张就是亲戚。

解:p,其中,P:小王与小张就是亲戚。

2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题。

共1分)(0)A:(⌝(p↔q)→((p∧⌝q) ∨(⌝p∧q)))∨ r(1)B:(p∧⌝(q→p)) ∧(r∧q)(2)C:(p↔⌝r) →(q↔r)(3)E:p→(p∨q∨r)(4)F:⌝(q→r) ∧r解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。

3、判断推理就是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。

共2分)(0)设y=2|x|,x为实数。

推理如下:如y在x=0处可导,则y在x=0处连续。

发现y在x=0处连续,所以,y 在x=0处可导。

解:设y=2|x|,x为实数。

令P:y在x=0处可导,q:y在x=0处连续。

由此,p为假,q为真。

本题推理符号化为:(p→q) ∧q→p。

由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。

(1)若2与3都就是素数,则6就是奇数。

2就是素数,3也就是素数。

所以,5或6就是奇数。

解:令p:2就是素数,q:3就是素数,r:5就是奇数,s:6就是奇数。

由此,p=1,q=1,r=1,s=0。

本题推理符号化为: ((p ∧ q) →s) ∧p ∧q) →(r ∨ s)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玛 氏 食 品 ( 中国 ) 有 限 公 司
姓名:武英杰
性别:男
1-25 题均为选择题,只有一个正确答案。

答案写在( ) 内
1-6 题根据下列数字规律,选择( )内应填数字:
( B ) 1、 2,9,16,23,30,( )
( C ) 2、 5,11,20,32,( )
A .43
B .45
C .47
D .49
( C )3、 1,2,3,5,( ),13
A 9
B 11
C 8 D7
( A )4、 5,7,( ),19,31,50
A 12
B 13
C 10 D11
( C )5、 8,4,2,2,( )
A 、2
B 、3
C 、4
D 、5
( C)6、 14,20,29,41,( )
( A ) 7、. 15.025.053÷⨯的值是: A .1 B .1.5 C . D .
( C ) 8、 1994年第二季度全国共卖出汽车297600辆,与上年同期相比增长了 24%。

上年同期卖出多少辆汽车
A.714224 B.226176 C.240000 D.369024
( D ) 9、甲、乙两地相距42公里,A、B两人分别同时从甲乙两地步行出发, A的步行速度为3公里/小时,B的步行速度为4公里/小时,问A、B步行几小时后相遇
A. 3
B. 4
C. 5
D. 6
( A)10、一根绳子长40米,将它对折剪断;再对剪断;第三次对折剪断,此时每根绳子长多少米
A、5
B、10
C、15
D、20
( B ) 11、如果一米远栽一棵树,则285米远可栽多少棵树
A、285
B、286
C、287
D、284
(B ) 12、在一本300页的书中,数字“1”在书中出现了多少次
A、140
B、160
C、180
D、120
( D ) 13、自然数A、B、 C、 D的和为90,已知A加上2,B减去2,C乘以 2,D除以2之后所得结果相同,则B等于()
A、26
B、24
C、28
D、22
( B ) 14、某人工作一年的报酬是18000元和一台全自动洗衣机,他干了7个月,得到9500和一台全自动洗衣机,问这台洗衣机值多少元
元元元元
( B ) 15、橱窗:商品;相当于
A 电影:明星
B 书架:书籍
C 宇宙:星球
D 餐馆:厨师
( A ) 16、相片:扫描仪:电子数据;相当于
A 水果:榨汁机:果汁
B 女人:化妆:美丽
C 星星:望远镜:距离
D 理念:行动:纲领
( D ) 17、请从四个选项中选出一个你认为可以取代问号的答案
( A ) 18.、请从四个选项中选出一个你认为可以取代问号的答案
( C ) 19、事件排序
请选择正确的事件排序:
(1)蚊子飞进(2)天气闷热(3)无法入眠(4)打开门窗(5)点起蚊香
A 2-3-5-4-1 B4--2 C5 D2-3-4-5-1
( D) 20、有一位雄心勃勃的年轻人想发明一种能够溶解一切物质的溶液。

下面哪项劝告最能使这位年轻人改变初衷呢
A.许多人都已经对此做过尝试,没有一个是成功的。

B.理论研究证明这样一种溶液是不存在的。

C.研究此溶液需要复杂的工艺和设备,你的条件不具备。

D.这种溶液研制出来以后,你打算用什么容器来盛放它呢
根据下图回答21-25题。

21、该市2005年6月的总保费收入比去年同期约增长了(A )。

A. 14.1%
B. %
C. %
D. %
22、该市2005年6月人身险保费收入占总保费收入的比重与2003年同期相
比( B )。

A. 约增加了3%
B. 约减少了3%
C. 约增加了6%
D. 约减少了6%
23、与上一年同期相比增幅最大的是(A )。

A. 2004年6月财产险保费收入
B. 2004年6月人身险保费收入
C. 2005年6月财产险保费收入
D. 2005年6月人身险保费收入
24、2003年6月,该市哪一种保险的保费收入占总保费收入的比重相对2002
年6月有最大增长( C )
A. 财产险
B. 人身险
C. 健康险和意外伤害险
D. 无法判断
25、根据四年来该市保费收入的变化,可以推出(B)。

[1]该市的人均收入有较大增长
[2]人们的保险和理财意识不断增强
[3]人们对于人身险的投入明显高于对于其他险种的投入
A. [1]
B. [3]
C. [1]与[2]
D. [2]与[3]。

相关文档
最新文档