七年级数学有理数的乘法4-北师大版
北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)

乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)
-
5 6
+
3 8
-24;
(2)
-7
-
4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3
之
值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);
北师大版《有理数的乘法》优课一等奖课件

3 9
解:原式
(
8 3
4 9
)
32 27
同号得正, 绝对值相乘
➢活动一
活动规则:班级分成8个小组,每个小 组成员写出自己喜欢的有理数,老师将会任 选两名小组的成员来展示,要求其他同学回 答他们的乘积.
➢探究二
先计算,再观察算式和结果特征,得出结论.
(1)( 8) ( 3) 38
解:原式 (8 3) 38
请列出算式,完成填空. (1)5 分钟后,液体冰激凌的温度是__(_2_)__5___℃. (2)8 分钟 前,液体冰激凌的温度是_(__2_)_(___8)___℃.
➢探究新知
甲水库的水位每天升高3厘米,乙水库的水位每天下 降3厘米,4天后甲、乙水库水位的总变化量各是多少?
➢探究新知
如果用正号表示水位上升,用负号表示水 位下降,那么4天后甲水库的水位变化量为:
(2)(0.125) (8) 解:原式 (0.1258)
1
1
从以上两题的求解中你发现了什么?
乘积为1的两个有理数互为倒数.
➢实践出真知
例2:计算
(1)(6)
7(5)源自4(2) 3 10 2
5 9
解:原式
6
7
5 4
解:原式
3 5
10 9
2
(42) ( 5) 4
42 5 4
北师大版七年级上第二章有理数及其运算
2.7 有理数的乘法
➢情景引入
在冷冻室中,用冷却的方法可将液体冰激凌的温度每1 分钟下降 2 ℃.如果现在液体冰激凌的温度是0 ℃.
规定用正数表示温度上升,负数表示温度下降;以现在对应时间 为“基准”0分钟, 往后记为正, 之前记为负, 如:1分钟前记为-1分钟.
北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。
2024年秋新北师大版数学七年级上册课件 2.3.1 有理数的乘法(第2课时)

注意:用字母表示乘数时,“×”号可以写成“·”或省略, 如a×b可以写成a·b或ab.
探究新知
2.乘法结合律: 三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.
(ab)c = a(bc)
根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数的位置,也可先把 其中的几个数相乘.
配律对于两个以上的数相加的情形仍然成立.
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
特别提醒: 1.正确确定积的符号. 2.不要漏乘.
课堂检测 计算:
拓广探索题
课堂检测 解: 原式=
拓广探索题
课堂小结
乘法交换律 ab=ba
有 理
乘法结合律 (ab)c=a(bc)
数
的 乘
乘法对加法的分配律 a(b+c)=ab+ac
法
运
根据乘法的运算律,三个或三个以上的数相乘时,
算 律
可以任意交换因数的位置,也可以将几个因数结 合在一起先相乘,所得积不变,乘法对加法的分
5
-26
课堂检测
5. 计算: 解: 原式
基础巩固题
课堂检测
能力提升题
下面这道题的解法有错吗?错在哪里?
解: 原式=
?
?
?
__ __ __
=-8-18 +4-15
=-41+4 =-37.
课堂检测 正确解法:
能力提升题
_____ _____ _____ _____
北师大版七年级数学上册有理数的乘方课件

指数
an
运算的结果 叫做幂
底数
读做a 的n次方 或a的n次幂。
2
填空:
(1)(-2)10的底数是___,指数是 ____, 读作_________
(2)(-3) 12表示______个_______相乘,读作
_________, (3)( 1 ) 8的指数是________,底数______ 读作__3 _____, (4)3.6 5 的指数是_________,底数是 ________,读作_______, (5)x m 表示____个_____相乘,指数是 ______,底数是_______,读作_________.
第二章 有理数及其运算
学习目标:
1、在现实背景中,理解有理数乘方的意义。
2、能进行有理数的乘方运算。
3、通过实例感受当底数大于1时,乘方运算的结 果增长的很快。
复习提问:
1、有理数乘法法则 2、有理数除法法则
口算:
(1)(1)(1)(1) (1)4
(2)(2)(2) (2)3 (3)(3)(3) (3)3
你知道吗?
某种细胞每过 30分钟便由1个 分裂成2个。现 有1个细胞,经 过5小时能分裂 成几个?
第1次分裂成2个, 第2次分裂成2×2个, 第3次分裂成2×2×2个, ……… 5小时要分裂十次,所以 第10次分裂成 2×2×2………×2×2(10个2)个.
2×2×2………×2×2(共10个2) 有简单的表示方法吗?
正数的任何次方都是正数, 负数的偶数次的幂是正数, 负数的奇数次的幂是负数.
0的任何次幂等于多少? 1的任何次幂等于多少?
联系拓广: 设n为正整数,计算:
(1)2n
(1)2n1
本节课同学们学到了哪些知识?
有理数的乘方 北师大版数学七年级上册

知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)
七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版

拓展提升
解:∵a与b互为相反数, ∴a+b=0, ∵c与d互为倒数, ∴cd=1, ∵e为绝对值最小的数, ∴e=0,
体验收获
今天我们学习了哪些知识?
1.有理数的乘法法则 2.倒数 3.有理数乘法运算
布置作业
教材54页习题第1,3题。
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
4个 -3相加
活动探究
(-3)×4= -12 (-3)×3= -9 (-3)×2= -6
(-3)×1= -3
一个因数减小 1时,积怎样变
化?
(-3)×(-1)= 3
(-3)×0= 0
(-3)×(-2)= 6
一个因数减少1时,积增大3.
(-3)×(-3)= 9
你能写出右边各式的 结果吗?
(-3)×(-4)= 12
Q
-12 -9 -6 -3 0 3 6 9 12
3 ×(-4)= -12
在Q点左侧12cm处
讲授新知 3×4=12 (-3)×(-4)=12
正数乘正数积为_正_数 负数乘负数积为_正_数
同号 得正
3×(-4)= -12 (-3)×4= -12
负数乘正数积为_负_数 正数乘负数积为_负_数
异号 得负
= +(5×7) 同号得正,绝对值相乘 =35
观察(3)(4)小题的结果,你发现了什么?
讲授新知 如果两个有理数的乘积为1,那么称其中一个数是 另一个的倒数,也称这两个有理数互为倒数。
有理数混合运算的四种考法—2023-2024学年七年级数学上册(北师大版)(解析版)

有理数混合运算的四种考法类型一、含乘方与绝对值的混合运算【答案】3000−【分析】先计算乘方,再进行加减运算.【详解】解:()()33222313 1.26103−⎛⎫⎛⎫−⨯+−−⨯− ⎪ ⎪⎝⎭⎝⎭36271=93625100027⎛⎫⎛⎫−⨯+−−−⨯ ⎪ ⎪⎝⎭⎝⎭324274=2510003−−+ 34961=3000−【点睛】本题考查含乘方的有理数的混合运算,解题的关键是掌握运算法则并正确计算.【答案】【分析】按照先计算乘方,再计算乘除法,最后计算加减法的运算顺序求解即可.【详解】解:原式8156952⎛⎫⎛⎫=−⨯−−−÷− ⎪ ⎪⎝⎭⎝⎭ ()8692=−−⨯−8618=−+20=.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.【答案】【分析】根据有理数的乘方运算可进行求解.【详解】解:原式185189=−+−⨯852=−+−=5−.【点睛】本题主要考查含乘方的有理数混合运算,熟练掌握有理数的乘方运算是解题的关键.【答案】【分析】先算乘方和绝对值,再算乘除,最后算加减,按这个运算顺序计算即可. 【详解】解:24211224125%323⎛⎫⎛⎫−÷+−⨯+ ⎪ ⎪⎝⎭⎝⎭6491516()9234=÷+−⨯+ 936451624=⨯−+953442=+−7322=−2=.【点睛】本题考查了含乘方的有理数的混合运算,掌握有理数的混合运算顺序和运算法则是解题的关键.【分析】根据有理数的混合运算法则进行计算即可. 【详解】解:()3221322334⎛⎫⎡⎤−+⨯+−−÷− ⎪⎣⎦⎝⎭ ()296343=−+⨯−+⨯9412=−−+1=−.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.【答案】94−【分析】先根据平方运算、绝对值运算、()1n−计算,再由有理数加减运算法则求解即可得到答案.【详解】解:()202322531594⎛⎫−⨯−+−−+− ⎪⎝⎭2591594=−⨯−−−52154=−−−−52154⎛⎫=−+++ ⎪⎝⎭194=−. 【点睛】本题考查有理数加减混合运算,涉及平方运算、绝对值运算、()1n−计算,熟练掌握相关运算法则是解决问题的关键. 类型二、简便运算问题【答案】(1)2495−;(2)25【分析】(1)将244925改写为15025⎛⎫− ⎪⎝⎭,再用乘法分配律进行计算即可; (2)将0.125改写为18,再根据乘法分配律的逆用,进行计算即可. 【详解】(1)解:原式()150525⎛⎫=−⨯− ⎪⎝⎭()()1505525=⨯−−⨯−12505=−+42495=−;(2)解:原式()1111752550888=⨯+−⨯+⨯ ()117525508=⨯−+ 12008=⨯25=.【点睛】本题主要考查了有理数的简便运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则,加法运算律和乘法运算律在有理数范围依然适用.【分析】根据有理数的混合运算法则,通过有理数的简便计算即可求出答案. 【详解】解:原式()13724()(24)(24)248=−⨯−+−⨯−−⨯121821=−+ 15=故答案为:15.【点睛】本题考查了用有理数的乘法分配律的简便运算解出答案.是否能熟练掌握分配律的简便计算是解这题的技巧.【答案】(1)2495;(2)3【分析】(1)根据题意24244954952525⎛⎫⨯=⨯ ⎪⎝⎭+,再根据乘法分配律2424495245255⎛⎫⨯= ⎪⎝⎭++即可解答;(2)先将1118999824142894289⎛⎫⎛⎫⎛⎫⎛⎫−−⨯−=−−⨯− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再利用乘法分配律即可解答. 【详解】(1)解:2449525⨯2449525⎛⎫=⨯ ⎪⎝⎭+ 24495525=⨯⨯+242455=+42495=;(2)解:11182414289⎛⎫⎛⎫−−⨯− ⎪ ⎪⎝⎭⎝⎭ 99984289⎛⎫⎛⎫=−−⨯− ⎪ ⎪⎝⎭⎝⎭241=−++3=.【点睛】本题考查了有理数的混合运算法则,有理数乘法的分配律,熟记有理数乘法的分配律是解题的关键.【分析】先将除法转换成乘法,然后根据利用乘法分配律计算即可.【详解】解:3571491236⎛⎫⎛⎫−−+÷− ⎪ ⎪⎝⎭⎝⎭ ()357364912⎛⎫=−−+⨯− ⎪⎝⎭272021=+−26=.【点睛】本题考查有理数的混合运算,熟练掌握运算法则及运算律是解题关键.【答案】(1) (2)28− (3)133112−(4)29− 【详解】(1)()()()()783.851313 6.150.790.791515−⨯−+−⨯−+⨯+⨯()()()7813 3.85 6.150.791515⎛⎫⎡⎤=−⨯−+−+⨯+ ⎪⎣⎦⎝⎭()()13100.791=−⨯−+⨯1300.79=+ 130.79=(2)1121111361965765353577⎛⎫⎛⎫⎛⎫−⨯+−⨯+−÷+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 112111111361967635357575⎛⎫⎛⎫⎛⎫=−⨯+−⨯+−⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111361967633775⎡⎤⎛⎫⎛⎫⎛⎫=−+−+−+⨯⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()1201205⎡⎤=−+−⨯⎣⎦()11405=−⨯28=−(3)()71913672⨯−()1923672⎛⎫=−⨯− ⎪⎝⎭()()192363672=⨯−−⨯−133122=−+133112=−(4)1314261413⎛⎫⨯− ⎪⎝⎭1314261413⎛⎫⎛⎫=+⨯− ⎪ ⎪⎝⎭⎝⎭ 14131426131413⎛⎫⎛⎫=⨯−+⨯− ⎪ ⎪⎝⎭⎝⎭281=−−29=−【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘除,后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.类型三、实际应用【分析】(1)将0.9 加上10月1,2,3的变化量可求解;(2)分别计算每天的游客数量即可求解;(3)将每天的变化量的绝对值相加可求解总游客数.【详解】解:(1)0.9+3.1+1.78-0.58=5.2(万人),故10月3日的人数为5.2万人;故答案为5.2;(2)10月1日游客人数为:0.9+3.1=4(万人);10月2日游客人数为:4+1.78=5.78(万人);10月3日游客人数为:5.78-0.58=5.2(万人);10月4日游客人数为:5.2-0.8=4.4(万人);10月5日游客人数为:4.4-1=3.4(万人);10月6日游客人数为:3.4-1.6=1.8(万人);10月7日游客人数为:1.8-1.15=0.65(万人);故七天假期里,游客人数最多的是10月2日,达到5.78万人;(3)4+5.78+5.2+4.4+3.4+1.8+0.65=25.23(万人),答:大同云冈石窟风景区在这七天内一共接待了25.23万游客.【点睛】本题主要考查有理数的加减法混合运算,读懂题意是解题的关键.【答案】(1);;(2)元;(3)每日计件工资更多,理由见解析.【分析】(1)用表中周三数据加上计划平均每天生产量,即得周三玩具生产量;表中每天增减产量相加的和,再加上周规定生产量即得周实际生产量.(2)把表中每天增减产量正的之和乘以3,负的之和乘以2,把它们相加的和再加上周实际生产量乘以5,即得小明妈妈这一周的工资总额.(3)先计算出实行每周计件工资制情况下小明妈妈的周工资与(2)中计算的实行每日计件工资制下小明妈妈的周工资相比较可得——每日计件工资更多.−=【详解】(1)30426∴小明妈妈星期三生产玩具26个,++−+−+++−+++(10)(12)(4)(8)(1)(6)0=−−+−+=101248167∴+=(个),2107217故本周实际生产玩具217个,故答案为:26,217.⨯+++⨯+++⨯−=(元)(2)2175(1086)3(1241)(2)1123答:小明妈妈这一周的工资总额是1123元⨯+⨯=元,(3)2175731106每周计件一周得1106元,>,所以每日计件工资更多.因为11231106【点睛】本题考查有理数加减混合运算的实际应用.其关键是审清题意,弄准确其中正负数及0的含义,才能列出正确算式.坐出租车.【分析】(1)由题意可知: 3<4.1<10,所以车费=3千米以内的收费+超过3千米的部分×2;(2)由于14.9>13,所以应付车费由三部分组成,即3千米以内的收费十超过起步里程的部分10千米×2 +超过起步里程13千米的里程数×3;(3) 车费=基础车费+超过起步里程10千米的车费+超过13千米的车费,再比较应付车费和他所带的钱数.【详解】解:(1) 不足1千米以1千米计算,4.1≈5,又3千米以内(含3千米) 收费11元,超过3千米的部分每千米收费2元,故车费为:11+ (5-3) ×2=15(元),∴小明乘坐出租车行驶4.1千米应付车费15元;(2)不足1千米以1千米计算,14.9≈15,又3千米以内(含3千米)收费11元,超过3千米的部分每千米收费2元,超过起步里程10千米以上的部分加收50%,即每千米3元,故车费为:11+10×2+ (15-13) ×3=37 (元),∴小明乘坐出租车行驶14.9千米应付车费37元;(3)∵不足1千米以1千米计算,13.1千米≈14千米,∴小明应付的车费是: 11+10×2+3 (14-13) ×3= 34元,∵小明带了31元钱,应付34元,34>31,∴小明带的钱不够,∵11+10×2=31,∴小明可以乘坐13千米的车,13.1-13=0.1(千米),答:小明带的钱不够乘坐13.1千米,他至少先走0.1千米再乘坐出租车.【点睛】本题考查有理数的混合运算,在计算时一定要弄清题意,特别是“不足1千米以1千米计算”这句话.类型三四、24点【答案】(1)-6、10、-60;(2)3、10、3;(3)例如:选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10-4)-(-6)×3或4-10×(-6)÷3等等.【详解】试题分析:(1)观察这五个数,要找乘积最小的就要找符号相反且数值最大的数,所以选﹣6和10;(2)2张卡片上数字相除的商最大就要找符号相同,且分母越小越好,分子越大越好,所以就要选10和3,且3为分母;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10- 4)-(-6)×3或4-10×(-6)÷3等等.试题解析:(1)﹣6×10=-60;我抽取的2张卡片是)-6、10,乘积的最大值为-60;(2)10÷3=103;我抽取的2张卡片是3、10,商的最大值为103;(3)方法不唯一,如:选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10- 4)-(-6)×3或4-10×(-6)÷3等等.考点:1.有理数的混合运算;2.图表型.【答案】(1)②,1−;(2)④⑤,14;(3)①④⑤,144−;(4)或(163)(8)−−÷⨯−等.【分析】(1)根据题意和题目中的卡片,可以解答本题;(2)根据题意和题目中的卡片,可以解答本题;(3)根据题意和题目中的卡片,可以解答本题;(4)根据题意可以写出相应的算式,本题答案不唯一,主要符合题意即可.【详解】(1)因为-1在全部有理数大小排列里居中,所以选②卡片,故答案为:②,-1;(2)由已知可得,当选取卡片6和−8时,差值最大,差的最大值是6−(−8)=14;故答案为:④⑤,最大值是14(3)由已知可得,当选取卡片3、6和−8时,乘积最小,积的最小值是:(−8)×6×3=−144;故答案为:①④⑤,最小值是144−(4)∵[−1−(6÷3)]×(−8)=(−1−2)×(−8)=(−3)×(−8)=24,∴算式[−1−(6÷3)]×(−8)的计算结果为24(答案不唯一).【点睛】本题考查有理数的混合运算,解答本题的关键是明确题意,写出相应的算式,注意第(4)问答案不唯一. 【变式训练2】小强有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).【答案】(1)抽取4−与6−,积为24(2)抽取6−与3,商为2−(3)抽取6−与4,进行乘方运算得到最大为1296(4)()()644324−⨯⨯−+=(答案不唯一)【分析】(1)要使2张卡片的乘积最大,则取同号的两张卡片,且其绝对值最大的两张,据此可求解;(2)要使2张卡片的商最小,则取异号的两张卡片,且分子的绝对值最大,分母的绝对值最小,据此可求解(3)进行乘方的运算可使相应的值最大,可选取6−与4,据此可求解;(4)利用有理数的相应的运算进行求解,符合题意即可.【详解】(1)抽取4−与6−,则其乘积为:()4624−⨯−=;(2)抽取6−与3,则其商为:632−÷=−;(3)抽取6−与4,则有:()461296−=; (4)()()644324−⨯⨯−+=.【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握. 课后训练【答案】 【分析】根据有理数的四则混合运算的法则先计算括号里面的,再计算除法即可.【详解】解:原式83424242424⎛⎫=÷−− ⎪⎝⎭12424=÷576=. 【点睛】本题考查了有理数的四则混合运算,注意不要将乘法分配律运用到除法运算中,除法没有分配律,正确运用有理数的运算法则是解答本题的关键.【答案】(1)18(2)88(3)249【分析】(1)先计算乘法再计算除法即可;(2)提公因数即可;(3)改变计算顺序,结合乘法结合律即可. 【详解】(1)解:原式591895=⨯÷118=÷118=(2)解:原式41888855=⨯+⨯418855⎛⎫=⨯+ ⎪⎝⎭88=(3)解:原式2527393927=⎪⨯⨯⎛⎫ ⎝⎭+ 25273927393927=⨯⨯+⨯⨯25273927393927⎛⎫⎛⎫=⨯⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭272539=⨯+⨯54195=+249=【点睛】本题考查有理数的混合运算.观察式子形式,合理使用运算法则是解题的关键.【答案】(1)-3;(2)1510−;(3)2−;(4)-1;(5)2;(6)3832− 【分析】(1)根据加法结合律直接求解即可;(2)根据有理数的加法交换律及结合律进行运算即可;(3)根据加法交换律及结合律进行有理数的加减混合运算即可;(4)根据加法交换律及结合律进行有理数的加减混合运算即可;(5)根据乘法交换律及结合律进行运算即可;(6)先对带分数进行拆解,然后根据有理数的乘法分配律进行求解即可.【详解】解:(1)原式123=−−=−(2)原式1113733115742015152220201010⎛⎫⎛⎫⎛⎫=−++−+=+−=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3)原式131********22⎛⎫=−+−−=−−=− ⎪⎝⎭ (4)原式571122316622⎛⎫=++−−=−=− ⎪⎝⎭(5)原式()11106122103⎛⎫=−⨯−⨯⨯=⨯= ⎪⎝⎭(6)原式()()11110041282040016383822⎛⎫=−⨯−−−−=−++=− ⎪⎝⎭. 【点睛】本题主要考查有理数的混合运算,熟练掌握利用运算律进行有理数的简便运算是解题的关键.【答案】 【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可.【详解】解:原式()116227896⎡⎤=−−⨯⨯−−−−−⎣⎦1251=−−−27=−.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.【分析】先计算绝对值,乘方运算和小括号里面的,再进行乘除运算,最后再加减即可.【详解】解:212|9|(3)(12)23⎫⎛−−÷−+−⨯− ⎪⎝⎭199126()()=−÷+−⨯−12=−+1=.【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数混合运算法则且准确的计算是解题的关键. 6.出租车司机李师傅从上午8: 00~9:15在厦大至会展中心的环岛路上营运,共连续运载十批乘客.若规定向东为正,向西为负,李师傅营运十批乘客里程如下:(单位:千米)8,6,3,7,8,4,7,4,3,4+−+−++−−++(1)将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的位置怎样?距离多少千米?(2)上午8: 00~9:15李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则李师傅在上午8: 00~9:15一共收入多少元?【答案】(1)距离第一批乘客出发地的东方,距离是6千米;(2)43.2千米/小时;(3)128元【分析】(1)将所有数据相加得出结果后,即可作出判断;(2)将所有数据的绝对值相加,可得出路程,然后求出时间,根据速度=路程÷时间即可得出答案;(3)分别计算起步价,及超过3公里的收入,然后相加即可.【详解】解:(1)由题意得:向东为“+”,向西为“-”,则将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的距离为:(+8)+(-6)+(+3)+(-7)+(+8)+(+4)+(-7)+(-4)+(+3)+(+4)=6(千米), 所以,将最后一批乘客送到目的地时,李师傅在距离第一批乘客出发地的东方,距离是6千米;(2)上午8:00~9:15李师傅开车的距离是:|+8|+|-6|+|+3|+|-7|+|+8|+|+4|+|-7|+|-4|+|+3|+|+4|=54(千米),上午8:00~9:15李师傅开车的时间是:1小时15分=1.25小时;所以,上午8:00~9:15李师傅开车的平均速度是:54÷1.25=43.2(千米/小时);(3)一共有10位乘客,则起步费为:8×10=80(元).超过3千米的收费总额为:[(8-3)+(6-3)+(3-3)+(7-3)+(8-3)+(4-3)+(7-3)+(4-3)+(3-3)+(4-3)]×2=48(元).则李师傅在上午8:00~9:15一共收入:80+48=128(元).【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 7.红红有5张写着以下数字的卡片,请你按要求抽出卡片,解决下列问题:(1)从中取出2张卡片,使这2张卡片上的数字相乘的积最大,最大值是________.(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,最小值是________.(3)从中取出0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方、取相反数或取绝对值等混合运算,使结果为24,(注:每个数字只能对用一次,如()342122⨯−−⎡⎦=⎤⎣).请另写出一种符合要求的运算式子.【答案】(1)6(2)2−(3)()()3212−−⨯+(答案不唯一)【分析】(1)根据题意列出算式,找出积最大值即可;(2)根据题意列出算式,找出商最小值即可;(3)利用“24点”游戏规则列出算式即可.【详解】(1)解:根据题意得20123−<<+<+<+,积的最大值为()()326+⨯+=,故答案为:6;(2)解:商的最小值为()()212−÷+=−,故答案为2−;(3)解:()()342122−−⨯+=∵;()232124⎡⎤⎣−−−=⎦等,∴算式可以为:()()3212−−⨯+(答案不唯一).【点睛】此题考查有理数的混合运算,有理数大小比较,解题关键在于掌握各性质和运算法则.。
2.3.2 有理数乘法的运算律(课件)2024-2025-北师大版(2024)数学七年级上册

新知导入
复习导入
回顾小学学过的乘法运算律,思考:引入负数后,三个运算律是否成 立呢?
问题导入 问题1:计算4×8×12.5×2.5。 问题2:说说你是怎样做的,与同伴交流。
归纳导入
利用有理数乘法运算对乘法交换律、乘法结合律和乘法对加法的分配 律进行探究,归纳发现的结论。
自主探究
1.请同学们阅读教材51-52页,思考下列问题。 观察下列各题。 (1)(-7)×8与8×(-7); (2)[(-4)×(-6)]×5与(-4)×[(-6)×5]; (3)(-4)×(-3)+-32与(-4)×(-3)+(-4)×-32。 通过计算可得到它们的计算结果一样,说明了什么?
2.下面是31+14-16×24 的两种解法。 解法一:13+14-61×24=142+132-122×24=152×24=10。 解法二:13+14-61×24=31×24+14×24-61×24=8+6-4=10。 比较两种解法,说说它们的区别。
第一种解法是按照先计算括号里面的,再计算括号外的运算顺 序进行的;第二种解法运用了乘法对加法的分配律,比较简单
( 3 ) ( - 5 . 25 ) × ( - 4 . 73 ) - 4 . 73× ( - 19 . 75 ) - 25× (-5.27)=____2_5_0____。
课堂小结
同学们,今天我们主要学习了哪些内容? 多个有理数相乘,有理数乘法运算律 学习了今天的内容,我们对有理数运算的学习又前进了一大步, 有理数的乘法运算也将接近尾声,同学们有怎样的感受呢?一 起交流一下吧!
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识讲解
知识点1:多个有理数相乘(重难点) 1.几个不是0的数相乘,负因数的个数是奇数时,积是负数;负
(2024秋新版本)北师大版七年级数学上册 《 有理数的乘方》PPT课件)

−
1 2
×
−
1 2
×
−
1 2
=18
(3)
−
1 4
2
=
−
1 4
×
−
1 4
=116
连接中考
1. (-1)2等于( B )
A.-1
B.1
C.-2
D.2
2. 32可表示为( C )
A.3×2
B.2×2×2
C.3×3 D.3+3
课堂检测
基础巩固题
1.关于-74的说法正确的是( C )
A.底数是-7
B.表示4个-7相乘
探究新知
想一想 (-2)4 , -24,它们一样吗?说说它们的意义与读法.
(-2)4 =(-2)×(-2)×(-2)×(-2) =16,表示4个(-2)相乘, 读作“负2的4次方” . -24 =-2×2×2×2=-16 ,表示4个2相乘的相反数, 读作“负的2的4次方”或 “2的4次方的相反数”. 思考:它们的底数分别是什么?相同么?
素养目标
3.运用乘方的意义解决相关问题;体会解决问题策略的多 样性,发展实践能力与创新意识. 2.能够正确进行有理数的乘方运算.
1.理解有理数的乘方,幂,底数,指数概念.
探究新知 细胞分裂:
知识点 有理数的乘方
一次 2
二次 2×2
三次 2×2×2
探究新知
想一想 1个细胞30分钟后分裂成2个,经过5小时,这种细胞 由1个能分裂成多少个?
探究新知
计算:(1)
−
3 4
2
(2)-
3 4
2
(3)-342
解:
(1)
−
3 4
2
北师大版七年级数学上册《有理数的乘法》课件

7 10
=7 3
3
2 3
5 4
=
2 3
5 4
= 5 6
4
24 13
16 7
0
4 3
=0
5
5 4
1.2
1 9
=
5 4
6 5
1 9
=
3 2
1 9
=1 6
6
3 7
1 2
8 15
=
3 14
8 15
4 35
课堂小结
通过这节课的学习活动,你有什么收获?
24
(2) 7
4 3
5 14
解:(1)
5 6
3 8
24
在应用乘法对加 法的分配律时,括号
=
5 6
24
3 8
24
外的因数与括号内各
项相乘,各项应包含
=20 9
=11
前面的符号.
解:(2) 7
4 3
5 14
=
7
5 14
4 3
=
5 2
4 3
= 10 3
随堂练习
1.计算:
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
第2课时 有理数乘法的运算律
北师大版·七年级上册
知识回顾
1.有理数乘法法则是什么? 2.大家学过乘法的哪些运算律?
有理数乘法法则
两数相乘,同号得正,异号得负,并把 绝对值相乘.任何数与 0 相乘,积仍为 0.
乘法交换律 两个数相乘,交换因数的位置,积不变. 乘法结合律 三个数相乘,先把前两个数相乘,再和另 外一个数相乘,或先把后两个数相乘,再 和另外一个数相乘,积不变.
2024-2025学年北师大版七年级数学上册 有理数的乘方 练习题(课件) 有理数的乘方

(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“(-3)的
利用乘方的意义说明理由.
【解】( ab ) n = anbn ,理由如下:
( ab ) n =
··⋯·
个相乘
=
··⋯·
·
··⋯·
个相乘 个相乘
n 1n
2
3
4
5
6
7
8
9
10
11
12
13
14
(4)利用上述结论,求(-4)2 024×0.252 025的值.
【解】(-4)2 024×0.252 025
27=128,所以 n =7.故捏合7次后有128根细面条.
捏合了10次后有210=1 024(根)细面条.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
13. (1)计算下面两组算式:
①(3×5)2与32×52;
② (−) × 与(-2)2×32.
【解】①(3×5)2=152=225,
32×52=9×25=225.
=(-4)2 024×0.252 024×0.25
=(-4×0.25)2 024×0.25
=(-1)2 024×0.25
=0.25.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14. [新视角·新定义题·2024·天津和平区期末]规定:求若干
个相同的有理数(均不等于0)的除法运算叫作除方,如
《第二章4有理数的乘方》作业设计方案-初中数学北师大版24七年级上册

《有理数的乘方》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《有理数的乘方》的学习,使学生掌握乘方的概念、性质及运算法则,能够正确计算乘方运算,并能够解决与乘方相关的实际问题。
同时,通过作业练习,培养学生的逻辑思维能力和数学应用能力。
二、作业内容1. 基础练习:包括乘方的定义、正整数指数幂的运算法则等基础知识的练习。
要求学生熟练掌握乘方的基本概念和运算法则,能够正确进行乘方运算。
2. 拓展应用:设计一系列与日常生活相关的乘方问题,如计算利息、化合物生长等。
通过实际问题,让学生理解乘方在实际生活中的应用,提高解决实际问题的能力。
3. 巩固提高:通过一些综合性、难度较高的题目,检验学生对乘方知识的掌握情况。
包括负指数幂、科学记数法等高级知识的练习,提高学生的逻辑思维能力和数学应用能力。
三、作业要求1. 独立完成:要求学生独立完成作业,不得抄袭他人答案。
2. 认真审题:要求学生仔细阅读题目,理解题意,确保答题的准确性。
3. 规范书写:要求学生按照数学作业的规范格式书写,字迹工整,步骤清晰。
4. 及时订正:学生需对自己的错误进行订正,并思考错误原因,以防类似错误再次发生。
四、作业评价1. 评价标准:根据学生的答题情况,从知识掌握、解题思路、计算准确性和书写规范等方面进行评价。
2. 评分方法:采用百分制评分,根据学生完成作业的实际情况给出相应的分数。
对于表现出色的学生,可给予额外加分。
3. 反馈方式:教师对学生的作业进行批改后,将作业发还给学生,并对其中的错误进行指正。
同时,教师需对全体学生的作业情况进行总结,对普遍存在的问题进行讲解,以帮助学生更好地掌握知识。
五、作业反馈1. 个体反馈:针对每个学生的作业情况,教师需进行个别指导,帮助学生找出错误原因,并给出改进建议。
2. 集体讲解:教师需针对普遍存在的问题进行集体讲解,帮助学生全面掌握知识。
3. 拓展延伸:针对学生的不同需求,教师可布置一些拓展延伸的作业,以提高学生的数学应用能力和创新思维。
七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版

C.恰有一个数为零 D.均为零
答案 B 0乘任何数均为零.多个有理数相乘,当积为零时,因数中至少
有一个数为零.
5.-1 3 的倒数与 1 的相反数的积为
.
5
20
答案 1
32
解析
-1
3 5
=-
8 5
,它的倒数为-
5 8
,
1 20
的相反数为-
1 20
,
5 8
×
1 20
=
5 8
×
1 20
=
1 ,故答案为 1 .
(1)-10;(2) 5 ;(3)-0.25;(4)3 1 .
7
2
解析 求倒数时,对于小数和带分数,应先将小数化成分数,将带分数化
成假分数,然后将分子、分母交换位置即可.
(1)-10的倒数是- 1 .
10
(2) 5 的倒数是 7 .
7
5
(3)-0.25=- 1,所以-0.25的倒数是-4.
4
(4)3 1 = 7 ,所以3 1 的倒数是 2 .
32
32
6.(2016江西小松中学联考)某商店以32元的价格购进30个茶杯,针对不 同的顾客,30个茶杯的售价不完全相同.若以47元为标准,将超过的钱数 记为正,不足的钱数记为负,记录结果如下表:
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.
数学北师大版(2024)七年级上册课件 2.3.1有理数的乘法法则

课堂练习
6. 用正负数表示气温的变化量,上升为正,下降为负. 登山队攀登一座山峰,每登高 1 km,气温的变化量为 -6 ℃. 攀登 3 km 后,气温有什么变化?
解:(-6)×3 = -18. 答:攀登 3 km 后,气温下降了 18 ℃.
课堂小结
1.有理数的乘法法则是什么? 两数相乘,同号得正,异号得负,并把 绝对值相乘 特殊情况:任何数同 0 相乘,都得 0
相反数、倒数及绝对值的区别运算
3.填空:
原 数
-2.5 __-___3___ __-___5___
1 2
3 14
____7____
相
反 ___2_._5___
3
____5____ __-__12____ __-__74____ -7
பைடு நூலகம்
数
倒 数
___-_25____ __-__13____
-15
4
1
____2____ ____7____ ____7____
1 3 互为倒数,
-3 8
与
-8 互 3
为倒数。
跟踪训练
1的倒数为
1
1 的倒数为 3
3
2 的倒数为 3
3
2
-1的倒数为 -1
- 1 的倒数为 -3
3
2
- 的倒数为
3
-3
2
0的倒数为 零没有倒数
1
思考:a的倒数是 对吗?
a
(a≠0时,a的倒数是1 ) a
归纳总结
方法总结
(1)0没有倒数; (2)倒数等于本身的数有两个:±1; (3)互为倒数的两个数符号相同; (4)分数的倒数是分子与分母颠倒位置.
第课 有理数的乘法北师大版七年级数学上册

三级拓展延伸练
15.学习了有理数的运算后,薛老师给同学们出了这样
一道题目:
计算
,看谁算得又对又快,两名同学给
出的解法如下.
小强:原式=
小莉:原式=
(1)对于以上两种解法,你认为谁的解法更好?理由 是什么?对你有何启发?
解:(1)我认为小莉的方法更好.理由是小莉能巧 妙地利用分析的思想,把带分数拆成一个整数与一 个真分数的和,再应用分配律,大大地简化了计算 过程.
•
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
•
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
•
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
•
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
•
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
感谢观看,欢迎指导!
384 ;
(3)2×(-4)×(-6)×(-8)=
-384 ;
(4)(-2)×(-4)×(-6)×(-8)=
北师大版七年级上册有理数的乘法

北师大版七年级上册有理数的乘法(一)教学设计一、学习目标:1、通过自主学习理解乘法的实际意义;学会有理数乘法运算的方法与技巧。
2、通过观察、思考、归纳、猜想、验证等过程,探索有理数的乘法法则。
3、培养学生的语言表达能力,以及与他人沟通,增强学习数学的自信心。
二、教学重难点:重点:应用有理数的乘法法则正确的进行有理数乘法计算;难点:有理数的乘法法则中符号变化的理解及积的符号的确定;三、教学过程设计:一)创设问题情境,引入新课1、同学们!还记得上我们学校上星期成功兴办的体育节吗(出示幻灯图片)在开幕式上,每个班级都接受了检阅,展示了一中的风彩!如果每班平均有30人接受检阅,全校共有40个班级,那么共有多少学生接受了检阅呢(教师根据学生回答显示算式)如果我将这个算式中一个因数改变符号,让学生猜一猜结果。
(教师在将这两个算式板书在黑板上)刚才同学说的得数对不对呢,其理由又是什么呢?这就是我们今天所要一起探索学习的:有理数的乘法(教师板书)二)提出问题出示自学指导:1、阅读教材P60 ,分析提出的问题,弄清题意,明确已知是什么,所求是什么,讨论思考如何解答?2、小组探索交流:你是如何得出两个有理数相乘的法则的?并用你自己的语言归纳法则3 、组内小组成员互相出题目,验证你的结论。
4、自学例题,总结两个有理数相乘的步骤、方法与技巧。
理解倒数的概念,并与相反数与绝对值知识作以区别。
三)解决问题1、通过自学,汇报学习效果&z=&tn=baiduimagedetail&word=%D3%D0%C0%ED%CA%FD%B3%CB%B7%A8%CB%AE%BF%E2%C9%CF%C 9%FD%CF%C2%BD%B5%CD%BC%C6%AC&in=4663&cl=2&lm=-1&pn=9&rn=1&di=365&ln=1988&fr=&fm =hao123&fmq=_R&ic=&s=&se=&sme=0&tab=&width=&height=&face=&is=&istype=#pn0&-1&di &objURLhttp%3A%2F%&fromURLhttp%3A%2F%&W264&H168(1)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法.解答:3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)注意:在以上活动中可得到“甲水库的水位总变化量是上升12厘米,乙水库的水位总变化量是下降12厘米.”对于这个算法和结论学生是没有疑义的,但对活动(2)中得到“乙水库水位每天下降3厘米,记作-3厘米,4天后水位变化总量为(-3)+(-3)+(-3)+(-3)=(-3)×4=—12厘米,”的意义是“水位上升-12厘米”会产生疑义,教师应不失时机地复习负数的有关知识,解释“水位上升-12厘米”与“水位下降12厘米”是等价的。
北师大版七年级(上)数学第二章有理数及其运算教案:有理数的乘除法和乘方讲义(含答案)

有理数的乘除法和乘方讲义1.掌握有理数乘除法运算法则和计算题;2.掌握有理数乘方运算法则和计算题.1.乘法运算法则:(1)两数相乘,同号为_____,异号为_____,并把绝对值相乘。
(2)任何数字同0相乘,都得0。
(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。
当负因数有______个数时,积为负;当负因数有______个数时,积为正。
(4)几个数相乘,有一个因数为0时,积为0.2.除法运算法则:(1)除以一个数等于乘以这个数的倒数。
(注意:____没有倒数)(2)两数相除,同号为正,异号为负,并把绝对值相除。
(3)0除以任何一个不等于0的数,都等于0。
(4)0在任何条件下都不能做______。
3.乘方 求n 个相同因数乘积的运算叫做乘方。
参考答案:1.(1)正,负(3)奇数,偶数2.(1)0 (4)除数1.有理数乘法【例1】113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.【解析】把带分数化成假分数,再根据乘法法则,同号两数相乘结果为正即可求出结果。
【答案】原式=(-27)×(-37) 【例2】38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭【解析】根据有理数乘法法则和运算顺序即可算出结果。
【答案】原式=24-2=22练习1.384⎛⎫-⨯ ⎪⎝⎭ 【答案】-6练习2.12(6)3⎛⎫-⨯- ⎪⎝⎭【答案】14练习3.38(4)(2)4-⨯-⨯- 【答案】2练习4. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭. 【答案】-482.有理数的除法(除法没有分配律)【例3】 (1)601)315141(÷+-;(2))315141(601+-÷. 【解析】第(2)题属于易错题,因为除法没有分配律,只有乘法才有分配律,而一些学生往往因不看清题目而错误地运用运算规律。
【答案】解:(1)解法一:2360602360)602060126015(601)315141(=⨯=⨯+-=÷+-解法二:601)315141(÷+-2360316051604160)315141(=⨯+⨯-⨯=⨯+-= (显然,解法二中运用了乘法分配律后计算方法很简单。