《整式的加减》基础练习题
《整式的加减》基础训练
《整式的加减》练习题1、在3222112,3,1,,,,4,,43xy x x y m n x ab x x --+---+,π2b 中,单项式有: 多项式有: 。
2. 若-3x m-1y 4与2n 2y x 31+是同类项,则m= n= 3、一种商品每件a 元,按成本增加20%定出的价格是 ;后来因库存积压,又以原价的八五折出售,则现价是 元;每件还能盈利 元。
4、已知-7x 2y m 是7次单项式则m= 。
5、已知-5x m y 3与4x 3y n 能合并(和是单项式),则m+n = 。
6、7-2xy-3x 2y 3+5x 3y 2z-9x 4y 3z 2是 次 项式,其中最高次项是 ,最高次项的系数是 ,常数项是 ,是按字母 作 幂排列。
7、一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.8.写出322x y -的一个同类项_______________________.9、已知A=3x+1,B=6x-3,则3A-B= 。
10.已知:3a =,b=2,且a b b a -=-,则a=____________。
11、计算(a 3-2a 2+1)-2(3a 2-2a+21) x-2(1-2x+x 2)+3(-2+3x-x 2)7-3x-4x 2+4x-8x 2-15 2(2a 2-9b)-3(-4a 2+b)b a b a 22212+; b a b a 222+- b a b a b a 2222132-+; 322223b ab b a ab b a a +-+-+3x 2-1-2x-5+3x-x 2 -0.8a 2b-6ab-1.2a 2b+5ab+a 2b222b ab a 43ab 21a 32-++- 6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y12.若(x 2+a x -2y +7)―(b x 2―2x +9 y -1)的值与字母x 的取值无关,求a 、b 的值。
整式的加减》专项练习100题(已排版好,可直接打印,有答案)
整式的加减》专项练习100题(已排版好,可直接打印,有答案)1.3(a+5b) - 2(b-a)2.3x^2 - [7x - (4x - 3) - 2x^2]3.2(2a^2 + 9b) + 3(-5a^2 - 4b)4.(x^3 - 2y^3 - 3x^2y) - (3x^3 - 3y^3 - 7x^2y)5.(2xy - y) - (-y + yx)6.5(a^2b - 3ab^2) - 2(a^2b - 7ab)7.(-2ab + 3a) - 2(2a - b) + 2ab8.(7m^2n - 5mn) - (4m^2n - 5mn)9.(5a^2 + 2a - 1) - 4(3 - 8a + 2a^2)10.-3x^2y + 3xy^2 + 2x^2y - 2xy^211.2(a - 1) - (2a - 3) + 312.-2(ab - 3a^2) - [2b^2 - (5ab + a^2) + 2ab]13.(x^2 - xy + y) - 3(x^2 + xy - 2y)14.3x^2 - [7x - (4x - 3) - 2x^2]15.a^2b - [2(a^2b - 2a^2c) - (2bc + a^2c)]16.-2y^3 + (3xy^2 - x^2y) - 2(xy^2 - y^3)17.2(2x - 3y) - (3x + 2y + 1)18.-(3a^2 - 4ab) + [a^2 - 2(2a + 2ab)]19.5m - 2n - 9p20.3(-3a^2 - 2a) - [a^2 - 2(5a - 4a^2 + 1) - 3a]21.3a^2 - 9a + 1022.-3a^2b - (2ab^2 - a^2b) - (2a^2b + 4ab^2)23.(5a - 3a^2 + 1) - (4a^3 - 3a^2)24.2a^2b + 2ab^2 - [2(a^2b - 1) + 2ab^2]25.(2a^2 - 1 + 2a) - 3(a - 1 + a^2)26.2xy - 5a^2 - 6ab + 2b^227.(3x - 2y + 3)28.5a + 2b29.(3a^2 - 3ab + 2b^2) + (a^2 + 2ab - 2b^2)30.2a^2 - 3(a - 1 + a^2)31.2a^2b - 2ab + 265、3x2y-2xy2+5x2y-3xy2;66、(3a2b-ab2)+(-2a2b+3ab2);67、(5x2y-7xy2)-(-2xy2+3x2y);68、4a2b-2ab2+(-3a2b+ab2);69、(x2y+2xy2-3y3)+(-2x2y+3xy2+y3);70、(4a2b-2ab2+3ab)-(-3a2b+ab2+2ab);71、(3x2y-5xy2+4y3)+(-2x2y+3xy2-y3);72、(5a2b2-2ab2+3ab)-(2a2b2+ab2-4ab).34、化简:2(x^2-xy)-3(2x^2-3xy)38、化简:-(3a+2b)+(4a-3b+1)-(2a-b-2[x^2-(2x^2-xy+y^2)]-3)35、化简:-ab+a^2b+ab-(-a^2b)39、化简:4x-(-6x)+(-9x)36、化简:(8xy-x^2+y^2)+(-y^2+x^2-8xy)40、化简:3-2xy+2yx^2+6xy-4x^2y41、化简:1-3(2ab+a)[1-2(2a-3ab)]45、化简:(-x^2+5+4x^3)+(-x^3+5x-4)42、化简:3x-[5x+(3x-2)]43、化简:(3a^2b-ab^2)-(ab^2+3a^2b)44、化简:2x-(-3y+[3x-2(3x-y)])46、化简:(5a^2-2a+3)-(1-2a+a^2)+3(-1+3a-a^2)47、化简:5(3a^2b-ab^2)-4(-ab^2+3a^2b)48、化简:4a^2+2(3ab-2a^2)-(7ab-1)49、化简:xy-(-xy)-2xy^2-(-3y^2x)53、化简:3x^2y-[2x^2y-3(2xy-x^2y)-xy]50、化简:5a-[a-(5a-2a)-2(a-3a)]51、化简:5m-7n-8p+5n-9m+8p52、化简:(5x^2y-7xy^2)-(xy^2-3x^2y)54、化简:3x^2-[5x-4(1/2x-1)]+5x^2/255、化简:2a^3b-a^2b+a^2b-ab^2/256、化简:(a^2+4ab-4b^2)-3(a^2+b^2)-7(b^2-ab)57、化简:a^2+2a^3-2a^3-3a^361、化简:(x^3+3x^2y-5xy^2+9y^3)+(-2y^3+3a^2+2xy^2+x^2y-2x^3)-(4x^2y-x^3-3xy^2+7y^3)58、化简:5ab-(-4a^2b^2)+8ab^2-(-3ab)-(-a^2b)+4a^2b^259、化简:7y-3z-8y+5z60、化简:-3(2x^2-xy)+4(x^2+xy-6)62、化简:-3x^2y+2x^2y+3xy^2-2xy^263、化简:3(a^2-2ab)-2(-3ab+b^2)64、化简:5abc-{2a^2b-[3abc-(4a^2b-ab^2)]}65、化简:3x^2y-2xy^2+5x^2y-3xy^266、化简:(3a^2b-ab^2)+(-2a^2b+3ab^2)67、化简:(5x^2y-7xy^2)-(-2xy^2+3x^2y)68、化简:4a^2b-2ab^2+(-3a^2b+ab^2)69、化简:(x^2y+2xy^2-3y^3)+(-2x^2y+3xy^2+y^3)70、化简:(4a^2b-2ab^2+3ab)-(-3a^2b+ab^2+2ab)71、化简:(3x^2y-5xy^2+4y^3)+(-2x^2y+3xy^2-y^3)72、化简:(5a^2b^2-2ab^2+3ab)-(2a^2b^2+ab^2-4ab)2时,求多项式2x3-3x2+5x-1的值。
整式的加减练习题及答案
整式的加减练习题及答案在代数学中,整式是由系数与变量的乘积和常数项相加减构成的代数表达式。
整式的加减是我们学习代数的基础,通过练习加减整式,我们可以提高我们的代数运算能力。
在本文中,我们将提供一些整式的加减练习题及答案,以帮助读者巩固这一重要的数学概念。
1. 加减同类项的整式练习题请计算以下整式的和或差,并将结果化简:题目1:2x^2 + 5x - 3 + 3x^2 - 2x + 7题目2:4y^3 - 2y^2 + 6y - 3 - y^3 + 4y^2 - 5y + 2题目3:-3a^2b + 5ab^2 + 7a^2b^2 - a^2b^2 - 2ab^2 - a^2b2. 加减含有分数系数的整式练习题请计算以下整式的和或差,并将结果化简:题目1:(2/3)x - (1/4)y + (5/6)x + (1/8)y题目2:(3/5)a^2 - (2/3)b^2 - (4/5)a^2 + (5/6)b^23. 加减含有多个变量的整式练习题请计算以下整式的和或差,并将结果化简:题目1:2x^2y - xy^2 + x^2y + 3xy^2题目2:(x/2)y^2 - 3xy^2 + (2/5)x^2y - (1/3)xy^24. 加减多项式的整式练习题请计算以下整式的和或差,并将结果化简:题目1:(3x^2 - 2xy + 4y^2) + (2xy - 5y^2 + x^2)题目2:(7a^3b - 4ab^3 - 3a^2b^2) - (5a^3b - 2ab^3 + 2a^2b^2)以上是一些整式的加减练习题,下面是对应的答案:1. 加减同类项的整式练习题答案:答案1:5x^2 + 3x^2 + 5x - 2x - 3 + 7 = 8x^2 + 3x + 4答案2:4y^3 - y^3 - 2y^2 + 4y^2 + 6y - 5y - 3 + 2 = 3y^3 + 2y^2 + y - 1答案3:-3a^2b - 2ab^2 + 7a^2b^2 - a^2b^2 - 2ab^2 - a^2b = 7a^2b^2 - a^2b^2 - 3a^2b - 2ab^2 - 2ab^2 - a^2b = 6a^2b^2 - 5a^2b - 4ab^22. 加减含有分数系数的整式练习题答案:答案1:(2/3)x + (5/6)x - (1/4)y + (1/8)y = (4/6)x + (5/6)x - (1/8)y - (1/4)y = (9/6)x - (5/8)y = (3/2)x - (5/8)y答案2:(3/5)a^2 - (4/5)a^2 - (2/3)b^2 + (5/6)b^2 = (3/5)a^2 - (4/5)a^2 + (5/6)b^2 - (2/3)b^2 = - (1/5)a^2 + (1/6)b^23. 加减含有多个变量的整式练习题答案:答案1:2x^2y + x^2y - xy^2 + 3xy^2 = 3x^2y + 2xy^2 - xy^2 = 3x^2y + xy^2答案2:(x/2)y^2 + (2/5)x^2y - 3xy^2 - (1/3)xy^2 = (1/2)xy^2 +(2/5)x^2y - (10/15)xy^2 - (5/15)xy^2 = (1/2)xy^2 + (2/5)x^2y - (15/15)xy^2 = (2/5)x^2y - (19/30)xy^24. 加减多项式的整式练习题答案:答案1:(3x^2 + x^2) + (-2xy + 2xy) + (4y^2 - 5y^2) = 4x^2 + 0 + -y^2 = 4x^2 - y^2答案2:(7a^3b - 5a^3b) + (-4ab^3 + 2ab^3) + (-3a^2b^2 - 2a^2b^2) = 2a^3b + -2ab^3 - 5a^2b^2 = 2a^3b - 2ab^3 - 5a^2b^2通过练习以上的加减整式题目,相信您对整式的加减运算有了更好的理解。
整式的加减练习100题(有答案)
整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
整式的加减练习100题有答案
整式的加减练习100题有答案整式的加减是初中数学中的重要基础知识,通过大量的练习可以帮助我们更好地掌握这部分内容。
以下是 100 道整式加减的练习题及答案,希望能对您有所帮助。
一、选择题1、下列式子中,是单项式的是()A \(x + y\)B \(3x^{2}y\)C \(\dfrac{1}{x} \)D \(x^{2} + 1\)答案:B解析:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
选项 A 是多项式,选项 C 是分式,选项 D 是多项式,只有选项 B 是单项式。
2、下列计算正确的是()A \(3a + 2b = 5ab\)B \(5y^{2} 3y^{2} = 2\)C \(7a + a = 7a^{2}\)D \(3x^{2}y 2yx^{2} = x^{2}y\)答案:D解析:选项 A 中,3a 与 2b 不是同类项,不能合并;选项 B 中,\(5y^{2} 3y^{2} = 2y^{2}\);选项 C 中,\(7a + a = 8a\);选项 D 计算正确。
3、化简\((a b)\)的结果是()A \( a + b\)B \( a b\)C \(a b\)D \(a + b\)答案:C解析:\((a b) = a b\)4、一个多项式加上\(3x^{2}y 3xy^{2}\)得\(x^{3} 3x^{2}y\),则这个多项式是()A \(x^{3} + 3xy^{2}\)B \(x^{3} 3xy^{2}\)C \(x^{3} 6x^{2}y + 3xy^{2}\) D \( x^{3} + 6x^{2}y 3xy^{2}\)答案:C解析:这个多项式为:\((x^{3} 3x^{2}y) (3x^{2}y 3xy^{2})= x^{3} 3x^{2}y 3x^{2}y + 3xy^{2} = x^{3} 6x^{2}y + 3xy^{2}\)5、化简\(5(2x 3) + 4(3 2x)\)的结果为()A \(2x 3\)B \(2x + 9\)C \(8x 3\)D \(18x 3\)答案:A解析:\\begin{align}&5(2x 3) + 4(3 2x)\\=&10x 15 + 12 8x\\=&(10x 8x) +(12 15)\\=&2x 3\end{align}\6、若\(A = x^{2} 2xy + y^{2}\),\(B = x^{2} + 2xy + y^{2}\),则\(A B =\)()A \(4xy\)B \( 4xy\)C \(0\)D \(2y^{2}\)答案:B解析:\(A B =(x^{2} 2xy + y^{2})(x^{2} + 2xy +y^{2})= x^{2} 2xy + y^{2} x^{2} 2xy y^{2} = 4xy\)7、下列去括号正确的是()A \(a +(b c) = a + b + c\)B \(a (b c) = a b c\)C \(a ( b + c) = a + b c\)D \(a ( b c) = a + b c\)答案:C解析:选项 A,\(a +(b c) = a + b c\);选项 B,\(a (bc) = a b + c\);选项 C 正确;选项 D,\(a ( b c) = a + b + c\)8、化简\((a b) (a + b)\)的结果是()A \( 2b\)B \(2b\)C \( 2a\)D \(2a\)答案:C解析:\\begin{align}&(a b) (a + b)\\=&a b a b\\=&(a a) +( b b)\\=& 2b\end{align}\9、若单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,则\(m + n =\)()A \(5\)B \(6\)C \(8\)D \(9\)答案:B解析:因为单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,所以\(m = 2\),\(n = 3\),则\(m + n = 2 + 3 =5\)10、下列式子中,正确的是()A \(3x + 5y = 8xy\)B \(3y^{2} y^{2} = 3\)C \(15ab 15ba = 0\) D \(29x^{3} 28x^{3} = x\)答案:C解析:选项 A 中,\(3x\)与\(5y\)不是同类项,不能合并;选项 B 中,\(3y^{2} y^{2} = 2y^{2}\);选项 C 正确;选项 D 中,\(29x^{3} 28x^{3} = x^{3}\)二、填空题11、单项式\(\dfrac{2\pi ab^{2}}{5}\)的系数是_____,次数是_____。
整式的加减法练习题
整式的加减法练习题一、选择题(每题2分,共10分)1. 下列哪个选项不是整式?A. 3x^2 + 5B. 4x - 3yC. 2x/3D. x^3 - 72. 若a + b = 5,a - b = 3,求2a的值。
A. 4B. 6C. 8D. 103. 计算下列表达式的值:(2x - 3) + (3x + 4)。
A. 5x + 1B. 5x + 7C. 5x - 1D. 5x + 54. 已知x = 2,y = 3,求下列表达式的值:x^2 - y。
A. -1B. 1C. 5D. 75. 计算下列表达式的值:(4x^2 - 3x + 2) - (2x^2 + 5x - 1)。
A. 2x^2 - 8x + 3B. 2x^2 - 2x + 3C. 2x^2 + 2x + 3D. 2x^2 + 8x + 3二、填空题(每题3分,共15分)6. 若3x + 2y = 7,且2x - y = 3,求x + y的值。
x + y = __________7. 计算下列表达式的值:(5x - 3) - (3x + 1)。
(5x - 3) - (3x + 1) = __________8. 若a = 1,b = 2,求下列表达式的值:3a^2 - 2b + 1。
3a^2 - 2b + 1 = __________9. 计算下列表达式的值:(4x^2 + 3x - 2) + (2x^2 - 5x + 4)。
(4x^2 + 3x - 2) + (2x^2 - 5x + 4) = __________10. 若m = -1,n = 3,求下列表达式的值:m^2 - 2mn + n^2。
m^2 - 2mn + n^2 = __________三、解答题(每题5分,共20分)11. 已知多项式P(x) = 2x^3 - 5x^2 + 3x - 1,Q(x) = 3x^3 + 4x^2 - 7x + 2,求P(x) - Q(x)。
整式的加减练习100题有答案
整式的加减练习100题有答案整式的加减是初中数学中非常重要的基础知识,通过大量的练习可以帮助我们更好地掌握这部分内容。
下面为大家准备了 100 道整式的加减练习题,并附上详细的答案解析。
一、选择题(共 20 题)1、下列式子中,属于单项式的是()A 3x + 2yB 3xyC 3x + 2D 2 / 3答案:B解析:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
A 选项 3x + 2y 是多项式;C 选项 3x + 2 是多项式;D 选项 2 / 3 是常数,不是单项式。
2、下列式子中,次数为 3 的单项式是()A -2x³B 3x²C 2x³yD 5xy²答案:A解析:单项式的次数是指单项式中所有字母的指数和。
A 选项-2x³的次数是 3;B 选项 3x²的次数是 2;C 选项 2x³y 的次数是 4;D 选项 5xy²的次数是 3,但它不是单独一个字母的次数为 3。
3、化简(a b)的结果是()A a + bB a bC a + bD a b答案:B解析:负负得正,所以(a b) = a b。
4、下列计算正确的是()A 3a + 2b = 5abB 5y² 3y²= 2C 7a + a = 8aD 3x²y 2yx²= x²y答案:C解析:A 选项 3a 和 2b 不是同类项,不能合并;B 选项 5y² 3y²=2y²;C 选项 7a + a = 8a ,正确;D 选项 3x²y 2yx²= x²y ,正确。
5、多项式 2x³ 3x²+ 5x 1 是()次()项式。
A 三,四B 三,三C 二,四D 二,三答案:A解析:多项式中次数最高项的次数叫做多项式的次数,这个多项式中最高次项是 2x³,次数为 3;多项式中单项式的个数叫做多项式的项数,这个多项式有 2x³、-3x²、5x、-1 四项。
整式的加减练习100题(有答案)
整式的加减专项练习100题令狐采学1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-21+3x)-4(x -x2+21);29、3x2-[7x -(4x -3)-2x2].30、5a+(4b-3a )-(-3a+b ); 31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a )-3(a-1+a2);34、2(x2-xy )-3(2x2-3xy )-2[x2-(2x2-xy+y2)].35、 -32ab +43a2b +ab +(-43a2b)-1 36、(8xy -x2+y2)+(-y2+x2-8xy);37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b)+(4a -3b +1)-(2a -b -3)39、4x3-(-6x3)+(-9x3)40、3-2xy +2yx2+6xy -4x2y 41、 1-3(2ab +a)十[1-2(2a-3ab)].42、 3x -[5x +(3x -2)]; 43、(3a2b -ab2)-(ab2+3a2b) 44、()[]{}y x x y x --+--3233245、(-x2+5+4x3)+(-x3+5x -4)46、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2).47、5(3a2b-ab2)-4(-ab2+3a2b ).48、4a2+2(3ab-2a2)-(7ab-1).49、 21xy+(-41xy )-2xy2-(-3y2x )50、5a2-[a2-(5a2-2a )-2(a2-3a )] 51、5m-7n-8p+5n-9m+8p52、(5x2y-7xy2)-(xy2-3x2y ) 53、 3x2y-[2x2y-3(2xy-x2y )-xy]55、2a3b-21a3b-a2b+21a2b-ab2;56、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab ).57、a2+2a3+(-2a3)+(-3a3)+3a2 58、5ab+(-4a2b2)+8ab2-(-3ab )+(-a2b )+4a2b2;59、(7y-3z )-(8y-5z );60、-3(2x2-xy )+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2-2ab )-2(-3ab+b2); 64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m )-2(m2-3m )].66、-[2m-3(m-n+1)-2]-1. 67、31a-(21a-4b-6c)+3(-2c+2b)68、 -5an-an-(-7an )+(-3an )69、x2y-3xy2+2yx2-y2x70、41a2b-0.4ab2-21a2b+52ab2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x2)-[y2-(5xy-4x2)+2xy];73、化简、求值21x2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x2+31y2),其中x =-2, y =-34 74、化简、求值21x -2(x -31y2)+(-23x +31y2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 77、化简、求值2(a2b +2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a =-3,b =278、化简,求值:(2x3-xyz )-2(x3-y3+xyz )+(xyz-2y3),其中x=1,y=2,z=- 79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy ,求另一个加式. 81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y -2x2y 与-2xy2+4x2y 的和.83、 求3x2+x -5与4-x +7x2的差.84、计算5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x2-xy+y ,求多项式M87、当x=-y=-3时,求代数式3(x2-2xy )-[3x2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x ,求M-2N . 92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x2+xy +y2,B =-3xy -x2,求2A -3B .94、已知2 a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)= -2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2-3x-36、(2xy-y)-(-y+yx)= xy7、5(a22b-3ab2)-2(a2b-7ab)= -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab= -2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)= -3a2+34a-1311、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 2 14、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y 15、3x2-[7x-(4x-3)-2x 2]=5x 2-3x-316、a2b-[2(a2b-2a2c )-(2bc+a2c)]=-a2b+2bc+6a2c17、-2y3+(3xy2-x2y )-2(xy2-y3)= xy2-x2y18、2(2x-3y )-(3x+2y+1)=2x-8y-119、-(3a2-4ab )+[a2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x2y-7xy2)-(xy2-3x2y )=4xy2-4x2y 22、3(-3a2-2a )-[a2-2(5a-4a2+1)-3a]=-18a2+7a+2 23、3a2-9a+5-(-7a2+10a-5)=10a2-19a+1024、-3a2b-(2ab2-a2b )-(2a2b+4ab2)= -4a2b-64ab225、(5a-3a2+1)-(4a3-3a2)=5a-4a2+126、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a 2+ab-2b 227、(8xy -x2+y2)+(-y2+x2-8xy)=028、(2x2-21+3x)-4(x -x2+21) = 6x 2-x-25 29、3x2-[7x -(4x -3)-2x2]= 5x2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a2-1+2a )-3(a-1+a2)= -a2-a+234、2(x2-xy )-3(2x2-3xy )-2[x2-(2x2-xy+y2)]=-2x2+5xy-2y235、-32ab +43a2b +ab +(-43a2b)-1 = 31ab-1 36、(8xy -x2+y2)+(-y2+x2-8xy)=037、2x -(3x -2y +3)-(5y -2)=-x-3y-1 38、-(3a +2b)+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x3-(-6x3)+(-9x3)=x340、3-2xy +2yx2+6xy -4x2y = -2 x2y+441、 1-3(2ab +a)十[1-2(2a -3ab)]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a2b -ab2)-(ab2+3a2b)= -2ab244、()[]{}y x x y x --+--32332 = 5x+y 45、(-x2+5+4x3)+(-x3+5x -4)= 3x 3-x2+5x+146、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2)=a2+9a-1 47、5(3a2b-ab2)-4(-ab2+3a2b ).=3a2b-ab248、4a2+2(3ab-2a2)-(7ab-1)=1-ab 49、21xy+(-41xy )-2xy2-(-3y2x )=41xy+xy 250、5a2-[a2-(5a2-2a )-2(a2-3a )]=11a2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n 52、(5x2y-7xy2)-(xy2-3x2y )=8x2y-6xy2 53、 3x2y-[2x2y-3(2xy-x2y )-xy]=-2x2y+7xy 56、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab )=-2a2+11ab-14b2 57、a2+2a3+(-2a3)+(-3a3)+3a2=-3a3+4a258、5ab+(-4a2b2)+8ab2-(-3ab )+(-a2b )+4a2b2=8ab+8ab2-a2b 59、(7y-3z )-(8y-5z )=-y+2z 60、-3(2x2-xy )+4(x2+xy-6)=-2x2+7xy-2461、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)=062、-3x2y+2x2y+3xy2-2xy2=-x2y+xy2 63、3(a2-2ab )-2(-3ab+b2)=3a 2-2b 264、5abc-{2a2b-[3abc-(4a2b-ab2]}=8abc-6a2b+ab265、5m2-[m2+(5m2-2m )-2(m2-3m )]=m2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)=-61a+10b 68、 -5an-an-(-7an )+(-3an )= -2an 69、x2y-3xy2+2yx2-y2x=3x2y-4xy271、41a2b-0.4ab2-21a2b+52ab2= -41a2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}=10a+9b-2c-6 72、-3(xy-2x2)-[y2-(5xy-4x2)+2xy]= 2x 2-y 273、化简、求值21x2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x2+31y2),其中x =-2, y =-34原式=2x2+21y2-2 =69874、化简、求值21x -2(x -31y2)+(-23x +31y2),其中x =-2,y =-32. 原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x2-x+6=68376、化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=5 77、化简、求值2(a2b +2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b =2原式=-2ab3+3ab2=1278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.原式=-2x2+x-6=-16 80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.(2x2+xy+3y2)——(x2-xy)= x2+2xy+3y281、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.(2a2-4ab+b2 )—(-3a2+2ab-5b2)=5a2-6ab+6b282、求5x2y-2x2y与-2xy2+4x2y的和.(5x2y-2x2y)+(-2xy2+4x2y)=3xy2+2x2y83、求3x2+x-5与4-x+7x2的差.(3x2+x-5)—(4-x+7x2)=—4x2+2x-984、计算5y+3x+5z2与12y+7x-3z2的和(5y+3x+5z2)+(12y+7x-3z2)=17y+10x+2z285、计算8xy2+3x2y-2与-2x2y+5xy2-3的差(8xy2+3x2y-2)—(-2x2y+5xy2-3)=5x2y+3xy2+186、多项式-x2+3xy-21y与多项式M的差是-21x2-xy+y,求多项式MM=-21x2+4xy—23y87、当x=-21,y=-3时,求代数式3(x2-2xy)-[3x2-2y+2(xy+y)]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab2-a2b)]-2ab2},其中a=-2,b=3,c=-41原式=83abc-a2b-2ab2=3689、已知A=a2-2ab+b2,B=a2+2ab+b2(1)求A+B;(2)求41(B-A);A+B=2a2+2b241(B-A)=a b90、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5A+B=11x2+4x+391、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.M-2N=5x2-4x+392、已知222244,5A x xy yB x xy y=-+=+-,求3A-B3A-B=11x2-13xy+8y293、已知A=x2+xy+y2,B =-3xy-x2,求2A-3B.2A-3B= 5x2+11xy+2y2 94、已知2-a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=34 95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c 满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-32 96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:令狐采学令狐采学 2(x2y+xyz )-3(x2y-xyz )-4x2y .原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn )-7mn-5]的值原式=2m2+6mn+5=15 99、设A=2x2-3xy+y2+2x+2y ,B=4x2-6xy+2y2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a2-4a +1,B =2(a2-2a)+3,当a 取任意有理数时,请比较A 与B 的大小.A=2a2-4a +1B =2a2-4a +3 所以A<B。
整式的加减练习100题(有答案)
整式的加减练习100题(有答案)整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+8xy);28、(2x2-21+3x)-4(x-x2+29、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y;38、-(3a +2b )+(4a -3b +2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )]. 42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3-4)46、(5a 2-2a+3)-(1-2a+a 2)-1+3a-a 2).47、5(3a 2b-ab 2)-4b 2+3a 2b ).48、4a 2+2(3ab-2a 2)-b-1).49、 21xy+(-41xy )-2xy 2-y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]54、 3x 2-[5x-4( 21x 2-1)]+5x 255、2a3b- 21a 3b-a 2b+ 21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3) 58、5ab+(-4a 2b 2)+8ab 2-ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n-a n-(-7a n)+(-3a n)69、x 2y-3xy 2+2yx 2-y 2x70、41a 2b-0.4ab 2- 21a 2b+ 52ab2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算5y+3x+5z2与12y+7x-3z2的和85、计算8xy2+3x2y-2与-2x2y+5xy2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M 87、当x=-21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.92、已知222244,5A x xy yB x xy y=-+=+-,求3A-B93、已知A=x2+xy+y2,B =-3xy-x2,求2A-3B.94、已知2-a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)=-2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2-3x-36、(2xy-y)-(-y+yx)= xy7、5(a22b-3ab2)-2(a2b-7ab)= -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab=-2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=413、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x2-[7x-(4x-3)-2x2]=5x2-3x-316、a2b-[2(a2b-2a2c)-(2bc+a2c)]= -a2b+2bc+6a2c17、-2y3+(3xy2-x2y)-2(xy2-y3)= xy2-x2y18、2(2x-3y)-(3x+2y+1)=2x-8y-119、-(3a2-4ab)+[a2-2(2a+2ab)]=-2a2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x2y-7xy2)-(xy2-3x2y)=4xy2-4x2y22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a]=-18a2 +7a+223、3a2-9a+5-(-7a2+10a-5)=10a2-19a+1024、-3a2b-(2ab2-a2b)-(2a2b+4ab2)= -4a2b-64ab225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 227、(8xy -x 2+y 2)+(-y 2+8xy )=028、(2x 2-21+3x )-4(x -x2= 6x 2-x-2529、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )+3b31、(3a 2-3ab+2b 2)++2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 37、2x -(3x -2y +3)-(5y-2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a 42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y 45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)b 49、 21xy+(-41xy )-2xy 2-y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-23a )]=11a 2-8a51、n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )-6xy 253、 3x 2y-[2x 2y-3(2xy-x 2y )=-2x 2y+7xy 54、3x 2-[5x-4(21x 2-1)]+5x 2 =10x 2-5x-455、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2 = 23a 3b-21a 2b-ab 256、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 257、a 2+2a 3+(-2a 3)+(-3a 3)+3a2= -3a 3+4a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2=-x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n-a n-(-7a n)+(-3a n)= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、41a2b-0.4ab 2- 21a2b+ 52ab2 =-41a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-274、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-131原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=6 79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式MM=-21x 2+4xy —23y 87、当x=-21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A); A+B=2a 2+2b 241(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5A+B=11x2+4x+391、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.M-2N=5x2-4x+3 92、已知222244,5A x xy yB x xy y=-+=+-,求3A -B3A-B=11x2-13xy+8y293、已知A=x2+xy+y2,B =-3xy-x2,求2A-3B.2A-3B= 5x2+11xy +2y294、已知2-a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c 满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-32 96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=aa=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
整式的加减练习题及答案
整式的加减练习题及答案整式的加减练习题及答案在数学学习中,整式的加减是一个重要的基础知识点。
通过练习整式的加减,可以提高学生的运算能力和逻辑思维能力。
下面我将给大家提供一些整式的加减练习题及答案,希望能帮助大家更好地掌握这一知识点。
1. 将下列整式相加或相减,并化简结果:(1) 3x + 2y - 5z + 4x - y + 2z(2) 5a^2 - 3ab + 2b^2 - 2a^2 + ab - 4b^2解答:(1) 3x + 2y - 5z + 4x - y + 2z = (3x + 4x) + (2y - y) + (-5z + 2z) = 7x + y - 3z(2) 5a^2 - 3ab + 2b^2 - 2a^2 + ab - 4b^2 = (5a^2 - 2a^2) + (-3ab + ab) + (2b^2 - 4b^2) = 3a^2 - 2ab - 2b^22. 将下列整式相加或相减,并化简结果:(1) 2x^3 - 5x^2 + 3x - 4 - x^3 + 2x^2 - 5x + 6(2) 4y^4 - 2y^3 + 3y^2 - 5y + 1 + y^4 - 3y^3 + 2y^2 - 4y - 2解答:(1) 2x^3 - 5x^2 + 3x - 4 - x^3 + 2x^2 - 5x + 6 = (2x^3 - x^3) + (-5x^2 + 2x^2) + (3x - 5x) + (-4 + 6) = x^3 - 3x^2 - 2x + 2(2) 4y^4 - 2y^3 + 3y^2 - 5y + 1 + y^4 - 3y^3 + 2y^2 - 4y - 2 = (4y^4 + y^4) + (-2y^3 - 3y^3) + (3y^2 + 2y^2) + (-5y - 4y) + (1 - 2) = 5y^4 - 5y^3 + 5y^2 - 9y - 13. 将下列整式相加或相减,并化简结果:(1) 3(x - 2) - 2(x + 1) + 4(3 - 2x)(2) 2(3x^2 - 4x + 1) - 3(2x^2 + x - 1)解答:(1) 3(x - 2) - 2(x + 1) + 4(3 - 2x) = 3x - 6 - 2x - 2 + 12 - 8x = -7x + 4(2) 2(3x^2 - 4x + 1) - 3(2x^2 + x - 1) = 6x^2 - 8x + 2 - 6x^2 - 3x + 3 = -11x -1通过以上的练习题,我们可以看到整式的加减运算主要是将同类项相加或相减,并化简结果。
整式的加减练习题打印
整式的加减练习题打印一、基础题1. 计算:3x + 5x2. 计算:4a 2a3. 计算:7b + 9b 2b4. 计算:5m 3m + 2m5. 计算:6n 4n n二、进阶题1. 简化表达式:2x + 3x 4x + 5x2. 简化表达式:5a 3a + 2a a3. 简化表达式:4b + 6b 2b 3b4. 简化表达式:7m 5m + 2m m5. 简化表达式:9n 6n + 3n 2n三、综合题1. 计算:(3x + 4y) (2x y)2. 计算:(5a 3b) + (2a + 4b)3. 计算:(7m + 2n) (4m 3n)4. 计算:(6p 5q) + (3p + 2q)5. 计算:(8r + 7s) (5r 4s)四、应用题1. 小明有苹果和香蕉若干,苹果有3个,香蕉有5个,小明又买了2个苹果和3个香蕉,现在小明有多少个苹果和香蕉?2. 小红有铅笔和橡皮若干,铅笔有4支,橡皮有6块,小红用掉了2支铅笔和3块橡皮,现在小红还剩多少支铅笔和橡皮?3. 老师有数学书和语文书若干,数学书有5本,语文书有7本,老师又买了3本数学书和4本语文书,现在老师有多少本数学书和语文书?4. 妈妈有红色袜子和蓝色袜子若干,红色袜子有6双,蓝色袜子有8双,妈妈又买了2双红色袜子和3双蓝色袜子,现在妈妈有多少双红色袜子和蓝色袜子?5. 爸爸有黑色裤子和白色裤子若干,黑色裤子有3条,白色裤子有5条,爸爸又买了1条黑色裤子和2条白色裤子,现在爸爸有多少条黑色裤子和白色裤子?五、多项式加减题1. 计算:2x^2 + 3x^2 x^22. 计算:4a^3 2a^3 + a^33. 计算:5b^2 + 7b^2 2b^24. 计算:6m^4 3m^4 + m^45. 计算:7n^3 4n^3 n^3六、含常数项的整式加减题1. 计算:3x + 4 2x + 12. 计算:5a 3 + 2a 23. 计算:7b + 6 b 44. 计算:8m 5 + 3m 15. 计算:9n + 2 4n 3七、混合整式加减题1. 计算:(2x^2 + 3x) (x^2 2x)2. 计算:(4a^3 a) + (3a^3 + 2a)3. 计算:(5b^2 + 4) (2b^2 3)4. 计算:(6m^4 5m) + (m^4 + 2m)5. 计算:(7n^3 + 8) (4n^3 n)八、实际应用题1. 小华每天跑步锻炼,第一天跑了3圈,第二天比第一天多跑了2圈,第三天又比第二天多跑了1圈。
【教师卷】初中七年级数学上册第二章《整式的加减》基础练习(含答案解析)
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题.4.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.5.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算. 6.下列各代数式中,不是单项式的是()A.2m-B.23xy-C.0 D.2tD解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】A选项,2m-是单项式,不合题意;B选项,23xy-是单项式,不合题意;C选项,0是单项式,不合题意;D选项,2t不是单项式,符合题意.故选D.【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.8.下面去括号正确的是()A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】 根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.9.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.10.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.12.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B 解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 1.与22m m +-的和是22m m -的多项式为__________.【分析】直接利用整式的加减运算法则计算得出答案【详解】设多项式A 与多项式的和等于∴A=-()故答案为:【点睛】本题主要考查了整式的加减正确去括号和合并同类项是解题关键 解析:32m -+【分析】直接利用整式的加减运算法则计算得出答案.【详解】设多项式A 与多项式22m m +-的和等于22m m -,∴A=22m m --(22m m +-)2222m m m m =---+32m =-+.故答案为:32m -+.【点睛】本题主要考查了整式的加减,正确去括号和合并同类项是解题关键.2.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a .考点:列代数式.5.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.若212m m a b -是一个六次单项式,则m 的值是______.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义解析:2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6,再解即可.【详解】由题意,得26m m +=,解得2m =.故答案为:2【点睛】此题主要考查了单项式的次数,关键是掌握单项式的相关定义.8.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.或【分析】由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x 的值而得出结论【详解】解:由题意得当输入的数x 是偶数时则y=x 当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式 解析:43n m + 【分析】根据题意列出代数式解答即可.【详解】 解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式. 11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.2.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.3.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意. 4.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式的加减》基础练习题
一、选择题
1、用代数式表示a 与-5的差的2倍是( )
A 、a-(-5)×2
B 、a+(-5)×2
C 、2(a-5)
D 、2(a+5)
2、用字母表示有理数的减法法则是( )
A 、a-b=a+b
B 、a-b=a+(-b)
C 、a-b=-a+b
D 、a-b=a-(-b)
3、某班共有学生x 人,其中女生人数占35%,那么男生人数是( )
A 、35%x
B 、(1-35%)x
C 、
35%x D 、135%x - 4、若代数式473b a x + 与代数式 y b a 24- 是同类项,则 y x 的值是( )
A 、9
B 、9-
C 、4
D 、4-
5、把-x-x 合并同类项得( )
A 、0
B 、-2
C 、-2x
D 、-2x 2
6、一个两位数,十位上的数字是x ,个位上的数字是y ,如果把十位上的数与个位上的数对调,所得的两位数是( )
A 、yx
B 、y+x
C 、10y+x
D 、10x+y
7、如果代数式4252y y -+的值为7,那么代数式212y y -+的值等于( )
A 、2
B 、3
C 、-2
D 、4
8、下面的式子,正确的是()
A、3a2+5a2=8a4
B、5a2b-6ab2=-ab2
C、6xy-9yx=-3xy
D、2x+3y=5xy
9、一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是()
A、3x2y-4xy2;
B、x2y-4xy2;
C、x2y+2xy2;
D、-x2y-2xy2
10、若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是()(A)A>B (B)A=B (C)A<B (D)无法确定
二、填空题
11、单项式
23
3
5
a bc
-的系数是______,次数是______;
12、2
1 4
3
x x
-+-是次项式,它的项分别
是,
其中常数项是;
13、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用
电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过
..
部分
..
每度电价按b元收费。
某户居民在一个月内用电160度,他这个月应缴纳电费是
元;(用含a、b的代数式表示)
14、三个连续偶数中,2n 是最小的一个,这三个数的和为______ _;
15、如图1是小明用火柴搭的1条、2条、3条“金鱼” ,则搭n 条“金鱼”需要火柴 根.
16、根据如图所示的程序计算,
若输入x 的值为1,则输出y 的值为
;
三、解答题:
17、化简(1) 7-3x-4x 2+4x-8x 2-15 (2) 2(2a
2-9b)-3(-4a 2+b)
(3) 8x 2-[-3x-(2x 2-7x-5)+3]+4x 1条 2条
3条 图1
18、先化简,后求值;
(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y
(2)若()0322=++-b a ,求3a 2b -[2ab 2-2(ab -1.5a 2b )+ab]+3ab 2的值;
19、有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中 x=0.25,y=-1;甲同学把“x=0.25”,错抄成“x=-0.25”,但他的计算结果也是正确的,你说这是为什么?
20、“十一”黄金周期间,某风景区在7天中来旅游的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数。
)
游的人数。
(2)请判断七天内来旅游的人数最多是哪一天?最少是哪一天?它们相差多少万人?
(3)统计来旅游的人数,最多的一天是3万人,问9月30日来旅游的人数有多少人?。