罗尔定理的证明

合集下载

拉格朗日中值定理与罗尔定理的证明

拉格朗日中值定理与罗尔定理的证明

拉格朗日中值定理与罗尔定理的理解
首先说明拉格朗日中值定理与罗尔定理的关系:罗尔定理可理解为特殊形式的拉格朗日中值定理,即f (a )=f (b ),而拉格朗日中值定理中二者并不一定相等。

因此,证明拉格朗日中值定理后,罗尔定理也得以证明。

下面我将先对拉格朗日中值定理进行证明。

)(x f 满足:
设函数o a b a f a f a b n n +-++=-⇒-1)())((n 1......)(')()()(!即
)('))((n 1......))((''21)('111)(ξf o a b a f a b a f a f n n =+-++-+-!!!①
到此,我们知道了f’(ξ)用泰勒展开式表示时的大小,即证明了f’(ξ)在泰勒展开式中值的存在。

那么ξ是否在(a ,b )区间内?我们知道泰勒公式的意义是利用已知点的函数值不断逼近所求点的函数值,所以只需知道在由a 点向b 点逼近的过程中是否遇到了ξ点,即ξ
点与b 点间是否存在余项。

用泰勒公式求解:
o x x x f x x x f x f x f n n +-++-+=-100)(000))((1)-(n 1......))((''11)('01)('!!!②将x=b ,x 0=a 代入上式,得:
o a b a f a b a f a f b f n n +-++-+=
-1)())((1)-(n 1......))((''11)('01)('!!!③
)1()3(-得:。

考研常考题型-罗尔中值定理的证明

考研常考题型-罗尔中值定理的证明

常考题型 罗尔定理的证明解题提示:欲证结论为f (n )(ξ)=k ,或F (ξ,f (ξ),f '(ξ))=0,使用罗尔定理证明,有三个考察角度:(1)是无需构造辅助函数,只需寻找某个函数存在两个相同的端点;(2)是结论证明f ᵡ(ξ)=0,此时关键是去寻找f (x )有三个相同的端点;(3)是去构造辅助函数.(读者可参考‘高等数学一本通“的相应讲解)典型习题1.设函数f (x )在[0,3]上连续,在(0,3)内可导,且f (0)+f (1)+f (2)=3,f (3)=1,试证必存在ξɪ(0,3),使f '(ξ)=0.ʌ证明ɔ 函数f (x )在[0,3]上连续,则f (x )在[0,2]上连续,那么其在[0,2]上必有最大值M 和最小值m ,于是m ɤf (0)ɤM ,m ɤf (1)ɤM ,m ɤf (2)ɤM .故m ɤf (0)+f (1)+f (2)3ɤM .由介值定理知,至少存一点ηɪ[0,2],使f (η)=f (0)+f (1)+f (2)3=1.于是f (η)=1=f (3),满足罗尔定理,故存在ξɪ(η,3)⊂(0,3),使f '(ξ)=0.2.设f (x )在区间[a ,b ]上具有二阶导数,且f (a )=f (b )=0,又f '(a )f'(b )>0,证明存在ξɪ(a ,b )和ηɪ(a ,b )使f (ξ)=0及f ᵡ(η)=0.ʌ证明ɔ 1)假设f '(a )>0,f '(b )>0(对于f '(a )<0,f'(b )<0的情况,类似可证),根据导数定义和极限保号性,有f '+(a )=l i m x ңa +0f (x )x -a >0,有a 1ɪ(a ,a +δ1)使f (a 1)a 1-a >0,即f (a 1)>0;f '-(b )=l i m x ңb -0f (x )x -b >0,有b 1ɪ(b -δ2,b )使f (b 1)b 1-b >0,即f (b 1)<0,其中δ1和δ2是充分小的正数.根据连续函数的介值定理知,存在ξɪ(a 1,b 1)⊂(a ,b )使f (ξ)=0.2)由f (a )=f (ξ)=f (b )=0,根据罗尔定理知,存在η1ɪ(a ,ξ)和η2ɪ(ξ,b ),使f '(η1)=f '(η2)=0,再由罗尔定理知,存在ηɪ(η1,η2)⊂(a ,b ),使f ᵡ(η)=0.3.设函数f (x )在[0,3]上连续,在(0,3)内存在二阶导数,且2f (0)=ʏ20f (x )d x =f (2)+f (3),证明:(Ⅰ)存在ηɪ(0,2),使f (η)=f (0);(Ⅱ)存在ξɪ(0,3),使f ᵡ(ξ)=0.ʌ证明ɔ (Ⅰ)设F (x )=ʏx 0f (t )d t (0ɤx ɤ2),则ʏ20f (t )d x =F (2)-F (0).根据拉格朗日中值定理,存在ηɪ(0,2),使F (2)-F (0)=2F '(η)=2f (η),即ʏ20f (x )d x =2f (η).由题设ʏ2f (x )d x =2f (0),从而f (η)=f (0).(Ⅱ)易知f(2)+f (3)2介于f (x )在[2,3]上的最小值与最大值之间,根据连续函数的介质定理,存在ζɪ[2,3],使f (ζ)=f (2)+f (3)2.由题设知f (2)+f (3)2=f (0),故f (ξ)=f (0).由(Ⅰ)的结果可知f (0)=f (η)=f (ξ),且0<η<ζɤ3,根据罗尔定理,存在ξ1ɪ(0,η),ξ2ɪ(η,ζ),使f '(ξ1)=0,f '(ξ2)=0,从而存在ξɪ(ξ1,ξ2)⊂(0,3),使f ᵡ(ξ)=0.4.设函数f (x ),g (x )在[a ,b ]上连续,在(a ,b )内上有二阶导数且存在相等的最大值,f (a )=g (a ),f (b )=g (b ),证明:(Ⅰ)存在ηɪ(a ,b ),使得f (η)=g (η);(Ⅱ)存在ξɪ(a ,b ),使得f ᵡ(ξ)=g ᵡ(ξ).ʌ证明ɔ 寻求等值点法:F ᵡ(ξ)=f ᵡ(ξ)-g ᵡ(ξ)=0,因ξ是F ᵡ(x )的零点,由罗尔定理知,只需寻求F (x )在[a ,b ]上有三个等值点,问题便得证.又F (a )=F (b )=0,故只须在(a ,b )内寻求出F (x )的一个零点即可.(Ⅰ)设f (x )在x 1处取得最大值M ,g (x )在x 2处取得最大值M ,由题给条件知x 1ɪ(a ,b ),x 2ɪ(a ,b ),不妨设x 1<x 2,则F (x )=f (x )-g (x )在[x 1,x 2]上连续,且F (x 1)=M -g (x 1)>0,F (x 2)=f (x 2)-M <0,因为F (x 1)F (x 2)<0,由连续函数零点定理知,在(x 1,x 2)内存在一点η,使F (η)=0.F (x )在[a ,η],[η,b ]上满足罗尔定理条件,则有F '(η1)=0,a <η1<η,F '(η2)=0,x 0<η2<b .又F '(x )在[η1,η2]上满足罗尔定理条件,则有F ᵡ(ξ)=0,η1<ξ<η2,则f ᵡ(ξ)=g ᵡ(ξ),ξɪ(η1,η2)⊂(a ,b ).(Ⅱ)设f (x ),g (x )在x 0ɪ(a ,b )处同时取得最大值M ,这时F (x )=f (x )-g (x )在[a ,b ]上有三个零点a ,x 0,b ,证法同(Ⅰ).5.设f (x )在[a ,b ]上连续,在(a ,b )内可导,f (a )=b ,f (b )=a ,a 与b 同号,证明:∃ξɪ(a ,b ),使f '(ξ)=-f (ξ)ξ.ʌ证明ɔ 只要证ξf '(ξ)+f (ξ)=0,令F (x )=x f (x ),则F (a )=a f (a )=a b ,F (b )=b f (b )=a b .由罗尔定理知,∃ξɪ(a ,b )使F '(ξ)=0,即ξf '(ξ)+f (ξ)=0.6.设f (x )在[0,1]上连续,在(0,1)内可导,且满足f (1)=3ʏ13e 1-x 2f (x )d x .证明:至少存在一点ξɪ(0,1),使得f '(ξ)=2ξf (ξ).ʌ证明ɔ 令F (x )=f (x )e-x 2,由积分中值定理,得3ʏ130e 1-x 2f (x )d x =313-0æèçöø÷e 1-η2f (η),0ɤηɤ13.故f (1)=e 1-η2f (η),可得e -1f (1)=e -η2f (η),即F (1)=F (η).由罗尔定理知,∃ξɪ(η,1)⊆(0,1),使f '(ξ)=2ξf (ξ).7.设f (x )在[0,1]上连续,在(0,1)内可导,且f (0)=f (1)=0,f 12æèçöø÷=1,证明:(Ⅰ)存在ηɪ12,1æèçöø÷,使得f (η)=η;(Ⅱ)对任意实数λ存在ξɪ(0,η),使f '(ξ)-λ[f (ξ)-ξ]=1.ʌ证明ɔ (Ⅰ)令F (x )=f (x )-x ,F 12æèçöø÷-12=12>0,F (1)=f (1)-1=-1<0,由零点定理知∃ηɪ12,1æèçöø÷,使F (η)=0.即f (η)=η.(Ⅱ)令φ(x )=f (x )-x ()e -λx ,φ(0)=0,φ(η)=0,由罗尔定理知∃ξɪ(0,η),使φ'(ξ)=0,从而有[f '(ξ)-1]-λ[f (ξ)-ξ]=0,故得证.8.设函数f (x )和g (x )在[a ,b ]上存在二阶导数,并且g ᵡ(x )ʂ0,f (a )=f (b )=g (a )=g (b )=0,试证:(Ⅰ)在开区间(a ,b )内g (x )ʂ0;(Ⅱ)在开区间(a ,b )内至少存在一点ξ,使f (ξ)g (ξ)=f ᵡ(ξ)g ᵡ(ξ).ʌ解ɔ (Ⅰ)反证法假设存在点c ɪ(a ,b ),使得g (c )=0,对g (x )在[a ,c ]和[c ,b ]上分别应用罗尔定理知,存在ξ1ɪ(a ,c )和ξ2ɪ(c ,b ),使g '(ξ1)=g '(ξ2)=0,再由罗尔定理知,存在ξ3ɪ(ξ1,ξ2),使得g ᵡ(ξ3)=0.这与条件g ᵡ(x )ʂ0矛盾,故在开区间(a ,b )内g (x )ʂ0.(Ⅱ)令φ(x )=f (x )g '(x )-f '(x )g (x ),则φ(a )=φ(b )=0.由罗尔定理知,存在ξɪ(a ,b ),使φ'(x )=0,即f (ξ)g ᵡ(ξ)-f ᵡ(ξ)g (ξ)=0.因g (ξ)ʂ0,g ᵡ(ξ)ʂ0,故得f (ξ)g (ξ)=f ᵡ(ξ)g ᵡ(ξ),ξɪ(a ,b ).9.设f (x )在[0,1]上二阶可导,且l i m x ң0f (x )x=1,l i m x ң1f (x )x -1=2,求:(Ⅰ)∃ξɪ(0,1)使f (ξ)=0;(Ⅱ)∃ηɪ(0,1)使f ᵡ(η)=f (η).ʌ证明ɔ (Ⅰ)由l i m x ң0f (x )x =1知,f (0)=0,且存在δ>0.当x ɪ(0,δ)时,f (x )x >0,从而有f (x )>0,取a ɪ(0,δ),则f (a )>0.同理由l i m x ң1f (x )x -1=2知,f (1)=0,且∃b ɪ(1-δ,1),f (b )<0.由于f (x )在[a ,b ]上连续,且f (a )>0,f (b )<0.由零点定理知∃ξɪ(a ,b ),使f (ξ)=0.(Ⅱ)令F (x )=e -x f (x ),由于F (0)=F (ξ)=F (1)=0.由罗尔定理知,∃η1ɪ(0,ξ),∃η2ɪ(ξ,1),使F '(η1)=0,且F '(η2)=0.即f '(η1)-f (η1)=0,f '(η2)-f (η2)=0.令φ(x )=e x[f '(x )-f (x )],则φ(η1)=φ(η2)=0.由罗尔定理知,∃ηɪ(η1,η2),使φ'(η)=0.从而有[f ᵡ(η)-f '(η)]+[f '(η)-f (η)]=0,即f ᵡ(η)-f (η)=0.10.设f (x )在[a ,b ]上连续,在(a ,b )内可导,其中a >0且f (a )=0.证明:在(a ,b )内存在ξ,使f (ξ)=b -ξaf '(ξ).ʌ分析ɔ f (ξ)=b -ξa f '(ξ)令ξ=x f (x )=b -x af '(x )⇒f '(x )f (x)=a b -x 积分 l n f (x )=-a l n (b -x )+l n C ⇒(b -x )af (x )=C .ʌ证明ɔ 作辅助函数F (x )=(b -x )af (x ),由题设F (x )在[a ,b ]上连续,在(a ,b )内可导,又F (a )=(b -a )af (a )=0(因为f (a )=0),F (b )=(b -b )af (b )=0.可见F (x )在[a ,b ]上满足罗尔定理,于是∃ξɪ(a ,b ),使F '(ξ)=0,即-a (b -ξ)a -1f (ξ)+(b -ξ)a f '(ξ)=0.故f (ξ)=b -ξaf '(ξ).11.设f (x )在[0,1]上连续,在(0,1)内可导,且f (0)=0,当x ɪ(0,1)时,f (x )ʂ0,证明:对一切自然数n ,在(0,1)内∃ξ,使n f '(ξ)f (ξ)=f '(1-ξ)f (1-ξ).ʌ分析ɔ n f '(ξ)f (ξ)=f '(1-ξ)f (1-ξ)令ξ=x n f '(x )f (x )=f '(1-x )f (1-x )⇒n l n f (x )=-l n f (1-x )+l n c ⇒f n (x )f (1-x )=C .ʌ证ɔ 作辅助函数F (x )=f n(x )f (1-x ),因F (0)=F (1)=0,故F (x )在[0,1]上满足罗尔定理,于是∃ξɪ(0,1)使F '(ξ)=0,即原命题得证.12.设f (x )在[0,1]上连续,f (0)=0,ʏ10f (x )d x =0,证明:(Ⅰ)∃ξɪ(0,1),使得ʏξ0f (x )d x =-ξf (ξ);(Ⅱ)∃ηɪ(0,1),使得ʏηf (x )d x =ηf (η).ʌ证明ɔ (Ⅰ)要证ʏξ0f (x )d x +ξf (ξ)=0,应构造F (x )=x ʏxf (t )d t F (x )在[0,1]上连续,在(0,1)内可导,且F (0)=F (1)=0.由罗尔定理可得,∃ξɪ(0,1),使F '(ξ)=0,从而ʏξ0f (x )d x =-ξf (ξ).(Ⅱ)令F (x )=ʏxf (t )d t x ,x ɪ(0,1],0,x =0,ìîíïïïï则F (x )在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0,由罗尔定理,∃ηɪ(0,1)使F'(η)=0,从而ʏη0f(x)d x=ηf(η).13.设f(x)在[0,π]上连续,且ʏπ0f(x)d x=0,ʏπ0f(x)c o s x d x=0.证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=0,f(ξ2)=0.ʌ证明ɔ令F(x)=ʏx0f(t)d t,0ɤxɤπ,则有F(0)=0,F(π)=0,0=ʏπ0f(t)c o s x d x=ʏπ0c o s x d F(x)=[F(x)c o s x]π0+ʏπ0F(x)s i n x d x=ʏπ0F(x)s i n x d x.对φ(x)=ʏx0F(t)s i n t d t在[0,π]上应用拉格朗日中值定理得0=ʏπ0F(x)s i n x d x=φ(π)-φ(0)=πF(ξ)s i nξ,0<ξ<π.因为s i nξʂ0,所以F(ξ)=0,再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ1ɪ(0,ξ),ξ2ɪ(ξ,π),使F'(ξ1)=F'(ξ2)=0,即f(ξ1)=f(ξ2)=0.常考题型 拉格朗日中值定理解题指示:1.判类:题给出的条件是函数在闭区间上连续,在开区间内可导,欲证的结论是:函数的增量与区间内某一点处的导数值的等式关系或函数值与数值间的不等式关系,自然想到利用拉格朗日中值定理证明.2.证题的两种方法:(1)设辅助函数法.它又有下面三种方法:①分析法;②待定系数法:将欲证结论中含有ξ的部分设为待定常数M,再将等式中一个端点,例如b换成变量x,使其成为函数,等式两端做差构造出辅助函数φ(x),这样首先保证φ(b)=0,而由等式关系φ(a)=0自然成立.称这样构造辅助函数的方法为 待定系数法 ;③不定积分法.(2)确定区间法.3.定理的二种形式(1)f(b)-f(a)=f'(ξ)(b-a).(2)f(b)-f(a)=f'(a+θ(b-a))(b-a),0<θ<1.4.定理的应用(参考‘高等数学一本通“)典型习题1.设f(x)在[a,b]上连续,在(a,b)内可导,证明在(a,b)内至少存在一点ξ,使得b f(b)-a f(a)=[f(ξ)+ξf'(ξ)](b-a).(ξ)+ξf'(ξ)=[x f(x)]'x=ξʌ分析ɔ将所证的结论变形为b f(b)-a f(a)b-a=f结论可以解读为某一个函数在x=ξ处的导数等于一个数,这正是拉格朗日中值定理的内容.ʌ证ɔ令F(x)=x f(x),xɪ[a,b],F(x)在[a,b]上连续,(a,b)可导,故∃ξɪ(a,b),使得b f(b)-a f(a)b-a=F'(ξ)=f(ξ)+ξf'(ξ),即b f(b)-a f(a)=[f(ξ)+ξf'(ξ)](b-a).2.已知fᵡ(x)<0,f(0)=0,证对任意的正数x1,x2,恒有f(x1+x2)<f(x1)+f(x2).ʌ分析ɔ因为f(0)=0,所以将欲证的结论变形为f(x1+x2)-f(x2)<f(x1)-f(0),比较两个函数增量的大小,且区间长相等,应该利用有限增量定理 拉格朗日中值定理,辅助函数已知为f(x),余下的问题是在什么区间上应用拉格朗日中值定理,故称确定区间法.ʌ证明ɔ不妨设0<x1<x2,于是函数f(x)分别在区间[0,x1]及[x2,x1+x2]上应用拉格朗日中值定理,有f(x1)-f(0)=f'(ξ1)x1,0<ξ1<x1①f(x1+x2)-f(x2)=f'(ξ2)x1,x2<ξ2<x1+x2②因为fᵡ(x)<0,所以f'(x)严格单调减少,又ξ2>ξ1,所以f'(ξ1)>f'(ξ2),则x1f'(ξ1) >x1f'(ξ2),由式①㊁②,得f(x1+x2)<f(x1)+f(x2).3.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证对任意给定的正数a,b在(0,1)内一定存在互不相同的ξ,η,使a f'(ξ)+b f'(η)=a+b.ʌ解ɔ由于f(0)=0<a a+b<1=f(1),由介值定理知∃cɪ(0,1),使f(c)=a a+b,在区间[0,c]和[0,1]上分别对f(x)用拉格朗日中值定理,得f(c)-f(0)c-0=f'(ξ),ξɪ(0,c),f(1)-f(c)1-c=f'(η),ηɪ(c,1).从而有1 f'(ξ)=cf(c)=c(a+b)a,1 f'(η)=1-c1-f(c)=(1-c)(a+b)b.故af'(ξ)+bf'(η)=a+b.4.设f(x)在[0,1]上连续,(0,1)内可导,f(0)=0,f(1)=12,证明在(0,1)内存在不同的ξ,η,使f'(ξ)+f'(η)=ξ+η.ʌ分析ɔ欲证f'(ξ)-ξ=-(f'(η)-η),应从f'(x)-x的原函数入手.ʌ证明ɔ令F(x)=f(x)-12x2,则F(0)=0,F(1)=0,F12æèçöø÷=f12æèçöø÷-18.又因为F12æèçöø÷-F(0)12-0=F'(ξ)=f'(ξ)-ξ,ξɪ0,12æèçöø÷.F (1)-F 12æèçöø÷1-12=F '(η)=f '(η)-η,ηɪ12,1æèçöø÷.而F 12æèçöø÷-F (0)=F 12æèçöø÷,F (1)-F 12æèçöø÷=-F 12æèçöø÷,于是f '(ξ)-ξ=-(f '(η)-η),从而f '(ξ)+f '(η)=ξ+η.5.设f (x )在[a ,b ]上连续,在(a ,b )内可导(a >0),且f (a )=f (b )=1,试证存在ξ,ηɪ(a ,b )使得ηξæèçöø÷n -1=f (ξ)+ξn f '(ξ).ʌ证ɔ 将含ξ和含η的项分写在等式两端,得n ξn -1f (ξ)+ξn f '(ξ)=n ηn -1.等式右端是(x n)'x =η,左端是[x nf (x )]'x =ξ.令F (x )=x n,在[a ,b ]上,由拉格朗日中值定理,有b n -a n b -a=n ηn -1,ηɪ(a ,b ),①令g (x )=x nf (x ),在[a ,b ]上,由拉格朗日中值定理,有b n f (b )-a n f (a )b -a=n ξn -1f (ξ)+ξn f '(ξ),ξɪ(a ,b )②由于f (a )=f (b )=1,由式①㊁式②即得欲证的等式.6.设f (x )在[a ,b ]上连续,在(a ,b )内二阶可导,又f (a )=f (b )=0,且存在c ɪ(a ,b )使f (c )>0,证明在(a ,b )内至少存在一点ξ,使得f ᵡ(ξ)<0.ʌ证ɔ 对f (x )分别在[a ,c ]和[c ,b ]上应用拉格朗日中值定理,有f '(ξ1)=f (c )-f (a )c -a,a <ξ1<c ,f '(ξ2)=f (b )-f (c )b -c,c <ξ2<b .因f (c )>f (a ),c >a ;f (b )<f (c ),b >c .所以由上式分别有f '(ξ1)>0,f '(ξ2)<0.因在(a ,b )内,f (x )二阶可导,f '(x )在[ξ1,ξ2]应用拉格朗日中值定理,则f ᵡ(ξ)=f '(ξ2)-f '(ξ1)ξ2-ξ1,ξ1<ξ<ξ2.由f '(ξ2)<0,f '(ξ1)>0,ξ2>ξ1,知f ᵡ(ξ)<0.7.当x ȡ0时,证明x +1-x =12x +θ(x ) 14ɤθ(x )ɤ12æèçöø÷且l i m x ң0+θ(x )=14,l i m x ң+ɕθ(x )=12.ʌ证明ɔ 取函数f (x )=x ,在[x ,x +1]上由拉格朗日中值定理,得f (x +1)-f (x )=f '(x +θ(x ))(x +1-x )=f '(x +θ(x )).即x +1-x =12x +θ(x ).为确定θ(x )的取值范围和求θ(x )的极限,由上式解出θ(x ),得θ(x )=41(1+2x (x +1)-2x ).①当x ȡ0时,x (x +1)>x ,由式①知,θ(x )ȡ14,又因x (x +1)ɤx +(x +1)2ɤx +12.代入式①,即得θ(x )ɤ12,于是有14ɤθ(x )ɤ12.由式①,得l i m x ң0+θ(x )=14,l i m x ң+ɕθ(x )=14+12li m x ң+ɕx x (x +1)+x=12.常考题型 欲证结论为(a ,b )内∃ξ,η满足某种关系式解题提示:把ξ,η分开两次,一次使用柯西定理,一次使用拉格朗日中值定理;或是两次柯西定理.然而再将所得结果作某种运算.典型习题1.设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f '(x )ʂ0,试证存在ξ㊁ηɪ(a ,b ),使得f '(ξ)f '(η)=e b -e ab -a ㊃e -η.ʌ解ɔ 因f (x )在[a ,b ]上满足拉格朗日中值定理的条件,故存在ξɪ(a ,b ),使得f '(ξ)(b -a )=f (b )-f (a )①令g (x )=e x ,则g (x )和f (x )在[a ,b ]上满足柯西定理的条件,故存在ηɪ(a ,b ),使得f (b )-f (a )e b -e a =f '(η)eη.②由题设f '(x )ʂ0知,f '(η)ʂ0,将式①代入式②,有f '(ξ)f '(η)=e b -e ab -a㊃e -η.2.设函数f (x ),g (x )在[a ,b ]上连续,且g (b )=g (a )=1,在(a ,b )内f (x ),g (x )可导,且g (x )+g '(x )ʂ0,f '(x )ʂ0.证明∃ξ,ηɪ(a ,b ),使f '(ξ)f '(η)=e ξ[g (ξ)+g '(ξ)]e η.ʌ分析ɔ 原结论⇔f '(ξ)e ξ[g (ξ)+g '(ξ)]=f '(η)e η,将η和ξ均看作变量,则上式为f '(ξ)[e ξg (ξ)]'=f '(η)(e η)',辅助函数可令φ(x )=e x g (x ),ψ(x )=e x.ʌ证明ɔ 令φ(x )=e xg (x ),则由题设可知f (x ),φ(x )在[a ,b ]上满足柯西中值定理,于是∃ξɪ(a ,b ),使得f (b )-f (a )e bg (b )-e a g (a )=f '(ξ)e ξ[g (ξ)+g '(ξ)]因为g (a )=g (b )=1 f (b )-f (a )e b -e a=f '(ξ)e ξ[g (ξ)+g '(ξ)],①又令ψ(x )=e x,则f (x ),ψ(x )在[a ,b ]上满足柯西中值定理,于是∃ηɪ(a ,b ),使得f (b )-f (a )e b -e a =f '(η)e η,②由式①,②可得f '(η)e η=f '(ξ)e ξ[g (ξ)+g '(ξ)]⇒f '(ξ)f '(η)=e ξ[g (ξ)+g '(ξ)]e η.3.设函数f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内可导,且f '(x )>0.若极限l i m x ңa+f (2x -a )x -a 存在,证明:(Ⅰ)在(a ,b )内f (x )>0;(Ⅱ)在(a ,b )内存在点ξ,使b 2-a 2ʏf (x )d x =2ξf (ξ);(Ⅲ)在(a ,b )内存在与(Ⅱ)中ξ相异的点η,使f '(η)(b 2-a 2)=2ξξ-a ʏbaf (x )d x .ʌ证明ɔ (Ⅰ)因为l i m x ңa+f(2x -a )x -a 存在,故l i m x ңa +f (2x -a )=f (a )=0.又f '(x )>0,于是f (x )在(a ,b )内单调增加,故f (x )>f (a )=0,x ɪ(a ,b ).(Ⅱ)设F (x )=x 2,g (x )=ʏx 0f (t )d t (a ɤx ɤb ),则g '(x )=f (x )>0.故F (x ),g (x )满足柯西中值定理的条件,于是在(a ,b )内存在ξ,使F (b )-F (a )g (b )-g (a )=b 2-a 2ʏb a f (t )d t -ʏa af (t )d t =(x 2)'ʏx a f (t )d t ()'x =ξ,即b 2-a 2ʏb af (x )d t =2ξf (ξ). (Ⅲ)因f (ξ)=f (ξ)-0=f (ξ)-f (a ),在[a ,ξ]上应用拉格朗日中值定理知,在(a ,ξ)内存在一点η,使f (ξ)=f '(η)(ξ-a ),从而由(2)的结论得b 2-a2ʏbaf (x )d t =2ξf (ξ),即有f '(η)(b 2-a 2)=2ξξ-a ʏbaf (x )d x .4.设f (x )在[a ,b ]上连续,在(a ,b )内可导,0<a <b ,证明∃x 1,x 2,x 3ɪ(a ,b )使f '(x 1)2x 1=(b 2+a 2)f '(x 2)4x 32=l n b a b 2-a 2x 3f '(x 3).ʌ证明ɔ 因f (b )-f (a )b 2-a 2=f '(x 1)2x 1,x 1ɪ(a ,b ),f (b )-f (a )b 4-a 4=f '(x 2)4x 32,x 2ɪ(a ,b ),f (b )-f (a )l n b -l n a=f '(x 3)1x 3,x 3ɪ(a ,b ),故f '(x 1)2x 1=(b 2+a 2)f '(x 2)4x 32=l n a bb 2-a 2x 3f '(x 3).5.设f (x )在[a ,b ]上连续,在(a ,b )内可导,b >a >0,证明∃ξ,ηɪ(a ,b ),使得f (b )-f (a )b 2-a 2=a b f '(η)2ξ3.ʌ证明ɔ 先用拉格朗日中值定理后用柯西中值定理.根据拉格朗日中值定理,存在ηɪ(a ,b ),使得f '(η)=f (b )-f (a )b -a,令F (x )=x 2,g (x )=1x,根据柯西中值定理,存在ξɪ(a ,b ),使得2ξ-1ξ2=b 2-a 21b -1a ;两式联立,整理即得结论.常考题型 泰勒中值定理解题提示:1.若题给出的条件涉及二阶或二阶以上的导数.欲证的结论是多个函数值间或函数值与各阶导数间的等式或不等式关系,自然想到泰勒公式证明.2.使用该定理解题步骤为:①展开几阶泰勒公式,题中给出n +1阶可导,展开n 阶泰勒公式.②在何处展开.这是这类题的难点.③展开后,x 取值代入,再进行初等数学变形,证明不等式时将已知条件代入需要进行放缩不等式.典型习题1.设f (x )在[0,1]上具有二阶导数且满足|f (x )|ɤa ,|fᵡ(x )|ɤb ,其中a ,b 为非负常数.设c 是(0,1)内任意一点.证明|f '(c )|ɤ2a +b 2.ʌ分析ɔ 题中给出二阶可导条件,所证的结论为一阶导数值与函数|f (x )|ɤa 和二阶导数值|f ᵡ(x )|ɤb 间的不等式关系,应用泰勒公式,而题目隐含三点内容是:1)因为给出二阶可导条件,所以展开一阶泰勒公式;2)因为在结论中含有f '(c),是展开式一次项的系数,所在应在x =c 处展开;3)因为题给的条件|f (x )|ɤa ,结论中含有2a ,所以展开后,x 取0,1值.ʌ证明ɔ f (x )=f (c )+f '(c )(x -c )+f ᵡ(ξ)2!(x -c )2,ξ在x 与c 之间f (0)=f (c )+f '(c )(-c )+f ᵡ(ξ1)2!(-c )2,ξ1在0与c 之间.①f (1)=f (c )+f '(c )(1-c )+f ᵡ(ξ2)2!(1-c )2,ξ2在1与c 之间.②式②-式①,得f '(c )=f (1)-f (0)+12![f ᵡ(ξ1)c 2-f ᵡ(ξ2)(1-c )2]|f '(c )|ɤ|f (1)|+|f (0)|+21[|f ᵡ(ξ1)|c 2+|f ᵡ(ξ2)|(1-c )2]ɤ2a +b 2[c 2+(1-c)2]ɤ2a +b 2(c ɪ(0,1),c 2+(1-c )2ɤ1).2.设函数f (x )在闭区间[-1,1]上具有三阶连续导数,且f (-1)=0,f (1)=1,f'(0)=0.证明在开区间(-1,1)内至少存在一点ξ,使f ‴(ξ)=3.ʌ证ɔ 由f (x )有三阶导数,可考虑用泰勒公式.又f '(0)=0,应在x =0处展开f (x )=f (0)+f ᵡ(0)2!x 2+f ‴(η)3!x 3 (η在0与x 之间).当x =ʃ1时,有1=f (1)=f (0)+f ᵡ(0)2!+f ‴(η1)3! (0<η1<1),0=f (-1)=f (0)+f ᵡ(0)2!-f ‴(η)3!(-1<η2<0).两式相减,得f ‴(η1)+f ‴(η2)=6.由于f ‴(x )在[η1,η2]上连续,则f ‴(x )在[η1,η2]上有最大值M ,最小值m ,则m ɤ12f ‴(η1)+f ‴(η2)[]ɤM .由介值定理知,至少存在一点ξɪ[η1,η2]⊂(-1,1),使得f ‴(ξ)=12f ‴(η1)+f ‴(η2)[],即f ‴(ξ)=3.3.设f (x )在[0,1]上有二阶连续导数,且f (0)=f (1)=0,m i n 0ɤx ɤ1f (x )=-1.证明 m a x 0ɤx ɤ1fᵡ(x )ȡ8.ʌ证ɔ 设f (c )=m i n 0ɤx ɤ1f (x )=-1,则0<c <1,且f '(c )=0,由泰勒公式知f (x )=f (c )+f '(c )(x -c )+f ᵡ(ξ)2!(x -c )2.在上式中分别令x =0,x =1,得f ᵡ(ξ1)=2c 2,ξ1ɪ(0,c );f ᵡ(ξ2)=2(1-c)2,ξ2ɪ(c ,1).若c ɤ12,则f ᵡ(ξ1)=2c 2ȡ212æèçöø÷2=8.若c >12,则f ᵡ(ξ2)=2(1-c )2ȡ212æèçöø÷2=8.故m a x 0ɤx ɤ1fᵡ(x )ȡ8.4.设f (x )在[a ,b ]上连续.在(a ,b )内二阶可导,则∃ηɪ(a ,b ),使得f (a )-2f a +b 2æèçöø÷+f (b )=(a -b )24f ᵡ(η).ʌ证明ɔ f (x )=f a +b 2æèçöø÷+f 'a +b 2æèçöø÷x -a +b 2æèçöø÷+12fᵡ(ξ)x -a +b 2æèçöø÷2,ξ在x 与a +b 2之间f (a )=f a +b 2æèçöø÷+f 'a +b 2æèçöø÷a -b 2æèçöø÷+12f ᵡ(c 1)b -a 2æèçöø÷2,f (b )=fa +b 2æèçöø÷+f 'a +b 2æèçöø÷-a -b 2æèçöø÷+12f ᵡ(c 2)b -a 2æèçöø÷2,f (a )+f (b )-2f a +b 2æèçöø÷=(b -a )24f ᵡ(c 1)+f ᵡ(c 2)2=(b -a )24f ᵡ(η).5.设f (x )在[a ,b ]上二阶可导,f '(a )=f '(b )=0.求证;∃ξɪ(a ,b ),使f ᵡ(ξ)ȡ4|f (b )-f (a )|(b -a )2.ʌ证ɔ 由泰勒公式知f (x )=f (a )+f'(a )(x -a )+f ᵡ(ξ1)2!(x -a )2,①f (x )=f (b )+f '(b )(x -b )+f ᵡ(ξ2)2!(x -b )2,②在式①和式②中令x =a +b 2,得f (a +b )2æèçöø÷=f (a )+f ᵡ(ξ1)8(b -a )2,③f (a +b )2æèçöø÷=f (b )+f ᵡ(ξ2)8(b -a )2,④式④减式③得f (b )-f (a )=(b -a )28f ᵡ(ξ1)-f ᵡ(ξ2)().从而有f (b )-f (a )ɤ(b -a )28f ᵡ(ξ1)+f ᵡ(ξ2)()ɤ(b -a )24m a x f ᵡ(ξ1),f ᵡ(ξ2)()ɤ(b -a )24f ᵡ(ξ).故f ᵡ(ξ)ȡ4|f (b )-f (a )|(b -a )2.6.设f (x )在[a ,b ]上连续,且f ᵡ(x )>0,证明:对任意的x 1,x 2ɪ[a ,b ]及0<λ<1都有f [λx 1+(1-λ)x 2]ɤλf (x 1)+(1-λ)f (x 2).ʌ证ɔ 令x 0=λx 1+(1-λ)x 2,则x 0ɪ[a ,b ],由泰勒公式得f (x )=f (x 0)+f '(x 0)(x -x 0)+f ᵡ(ξ)2(x -x 0)2,其中ξ介于x 0与x 之间.因为f ᵡ(x )>0,所以f (x )ȡf (x 0)+f '(x 0)(x -x 0),于是λf (x 1)ȡλf (x 0)+λf'(x 0)(x 1-x 0),(1-λ)f (x 2)ȡ(1-λ)f (x 0)+(1-λ)f'(x 0)(x 2-x 0).两式相加得f [λx 1+(1-λ)x 2]ɤλf (x 1)+(1-λ)f (x 2).7.设函数f (x )在[-a ,a ]上具有二阶连续导数,f (0)=0.(Ⅰ)写出f (x )的带拉格朗日余项的一阶麦克劳林公式;(Ⅱ)证明在[-a ,a ]上至少存在一点η,使a 3f ᵡ(η)=3ʏa-a f (x )d x.ʌ证ɔ (Ⅰ)f (x )=f (0)+f '(0)x +21f ᵡ(ξ)x 2=f '(0)x +21f ᵡ(ξ)x 2,其中ξ在0与x 之间.(Ⅱ)ʏa-a f(x)d x=ʏa-a f'(0)x+12fᵡ(ξ)x2[]d x=12ʏa-a fᵡ(ξ)x2d x又f(x)在[-a,a]上有二阶连续导数,所以fᵡ(x)在[-a,a]上连续,fᵡ(x)在[-a,a]上有最大值M与最小值m.m3a3ɤm2ʏa-a x2d xɤ12ʏa-a fᵡ(ξ)x2d xɤM2ʏa-a x2d x=M3a3⇒mɤ3a3ʏa-a f(x)d xɤM.根据介值定理,∃ηɪ[-a,a],使得fᵡ(η)=3a3ʏa-a f(x)d x即为所证.。

罗尔定理[1]

罗尔定理[1]

y
(1) f ( x) C[1,1];
(2) f ( x) D(1,1);
(3) f (1) f (1).
1 0
不 ,使f ( ) 0.
例3 f ( x) x, x [0,1]; y (1) f ( x) C[0,1];
(2) f ( x) D(0,1);
(3) f (0) f (1).
f ( x)在该点的导数等于零,即
f '() 0
几何解释:
y
C
y f (x)
o a 1
在曲线弧AB上至少有一 点C, 在该点处的切线是 水平的.
2 b x
引例:
f ( x) x 2 2x 3 ( x 3)( x 1). 在[1,3]上连续, 在(1,3)上可导, 且 f (1) f (3) 0, f ( x) 2( x 1),
x [0, 3) 2
x3 2
对以上三个函数Rolle定理结论均成立
三、罗尔定理的初步应用
例1
验证罗尔定理对
y

f
(x)

ln
sin
x


[
,
5
]

66
的正确性.
解 函数f(x)的定义域: 2k x 2k , (k 0,1,)
f(x)在 [ π , 5π] 上连续.
66
又 y cot x 在 ( , 5)内处处存在 66
并且 f () f (5) ln 2
6
6
函数 y ln sin x 在 [ , 5] 上满足罗尔定理 66
的条件.
由 y cot x 0,
在 ( , 5)内显然有解 x .

罗尔定理定义

罗尔定理定义

罗尔定理是微分学中的一条重要定理,它被命名为法国数学家米歇尔·罗尔而得名。

该定理的现代形式如下:如果函数f(x)在闭区间上[a,b]连续,在开区间(a,b)上可导,那么在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a)。

这个定理的现代证明是基于中值定理(也被称为介值定理或零点定理)。

在这个定理的现代形式中,我们注意到的关键条件是在闭区间上[a,b]的连续性和在开区间(a,b)的可导性。

这两个条件保证了函数在区间内的变化是连续的,并在每一点都有切线。

第三个条件f(a)=f(b)则表明函数在两个端点的值是相等的,这意味着函数在整个区间上的变化是平滑的,没有跳跃。

这些条件一起保证了在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a)。

这个定理的应用非常广泛,例如在微分方程、函数的不等式和积分等领域。

罗尔定理推论证明过程

罗尔定理推论证明过程

罗尔定理的推论及其证明过程如下:
罗尔定理推论:
若映射f: Rn → Rm满足以下条件:
(1) f在定义域Rn内可导;
(2) jacobian矩阵Jf(x)在定义域Rn内任意点满秩;
则f为定向同胚映射。

证明:
1. 因为f在定义域Rn内可导,根据隐函数定理,对任意x0∈Rn,都存在其邻域U(x0),使得f在U(x0)上可逆。

2. 又因为Jf(x)在Rn内任意点均满秩,则对任意x∈Rn,Jf(x)的秩均为min{m,n}。

3. 当m=n时,Jf(x)为满秩方阵,其行列式不为0,所以f在Rn内任意点可逆,是定向同胚映射。

4. 当m≠n时,不妨设m>n,则Jf(x)的秩为n。

这意味着Jf(x)的列向量在Rn内线性无关。

5. 由2、4可知,f在Rn内任意点处的微分df都是满秩的,因
此f是一个局部定向同胚映射。

6. 结合1,f在整个定义域Rn内是定向同胚的。

综上所述,罗尔定理推论得证。

这展示了可微映射的jacobian 矩阵满秩是一个确定定向同胚映射的充要条件。

罗尔定理内容及证明

罗尔定理内容及证明

罗尔定理内容及证明罗尔定理是一个重要的几何定理,被誉为“线的新定理”。

它说:在任意一个平面内,把一条线分成任意三段,若三段分别连接三角形的角,则这三角形的周长之和必等于全线段的周长。

罗尔定理可以简言之:线段总和等于三角形周长之和。

这个定理可以用来证明一些关于三角形周长之和相等的定理,例如三角形内角平分线定理、勾股定理、勾股三角形定理等。

罗尔定理的证明,可以用向量的乘积来进行:分割的三段线段分别记作 AB、BC CA,三角形的角由定理给出向量,将它们分别表示为a、b、c,分别表示 A、B、C 三点的位置。

证明:由罗尔定理的要求,AB(b-a)=BC(c-b)=CA(a-c),即,CAa + BCb + ABc = (AB+BC+CA)(a+b+c)将a、b、c分别代入可得:ABBC+ABCA+BCCA=ABBC+ABCA+BCCA+ABBC+BCCA+CAAB 即:2ABBC+2ABCA+2BCCA=ABBC+ABCA+BCCA+ABBC+BCCA+CAAB 由此可以得到:ABBC+ABCA+BCCA=2ABBC+2ABCA+2BCCA由此可以得出:ABBC+ABCA+BCCA=ABBC+ABCA+BCCA+ABBC+BCCA+CAAB 即有:ABBC+ABCA+BCCA=(AB+BC+CA)(a+b+c)即证明了罗尔定理:线段总和等于三角形周长之和。

经过证明,我们可以认为罗尔定理很有效,可以用来证明一些关于三角形周长之和相等的定理。

它极大地丰富了几何学的理论,而且被广泛运用到数学和物理的研究中,以及其他的科学领域。

罗尔定理不仅可以用来证明三角形周长之和相等的定理,还可以应用到其它几何定理中,比如空间中相似图形的各种引理。

它也可以用来证明一些数论问题,例如素数对判断,以及几何超空间的相关问题。

综上所述,罗尔定理是一个十分有价值的几何学定理,它的应用非常广泛,在数学和物理研究以及其他科学领域都发挥了重要作用。

罗尔定理的条件和结论

罗尔定理的条件和结论

罗尔定理的条件和结论罗尔定理是三角形的数学定理,它可以说明三条内角的和等于180度。

它是17月由埃里克罗尔发现的,它被认为是很难被发现的,并且在三角形中被广泛使用。

罗尔定理有许多应用,如几何、工程学、统计学、计算机图形和电子计算机等,它也被用来证明更多的数学定理。

罗尔定理的基本条件是:任何三条内角和等于180度,并且三条内角都必须小于180度。

罗尔定理的第一部分是任何三角形的三条内角和(也就是角平分线)等于180度,而第二部分是任何三角形的三条内角均小于180度,这表明任何三角形的边长都必须小于等于它的周长。

这个定理在三角形学中发挥了重要作用,它为几何形状设定了基本条件,它还可以用来解决各种复杂的几何问题。

它最重要的优势或功效是可以用一种简单而有效的方法来解决很多复杂的几何问题。

此外,它还可以识别几何图形的结构,如三角形的形状,内角的大小等。

因此,罗尔定理是能够解决复杂几何问题的有效方法。

它不仅能够对三角形的构成进行描述,而且还能够解决多边形的构成。

罗尔定理在电子计算机、统计学、工程学和数学几何中也被广泛应用,它还可以被用来证明一些数学定理,如四边形的和等于360度、六边形的和等于720度等。

由于罗尔定理的广泛应用,它仍然被认为是很重要的定理,它的研究或应用也使得许多几何图案的实际应用更加容易。

罗尔定理可以说是理论几何学中最重要的定理,它可以用于解决许多复杂问题,并且也可以用来证明许多数学定理。

综上所述,罗尔定理是一个重要的定理,它可以用来解决许多复杂几何问题,它也可以用来证明许多数学定理,如四边形、六边形的和等于360度和720度等。

罗尔定理的条件是任何三条内角和等于180度,并且三条内角都必须小于180度,这个定理的研究和应用可以使许多几何图案的实际应用更加容易。

罗尔定理内容及证明

罗尔定理内容及证明

罗尔定理内容及证明罗尔定理(LawofCosines)是一种用来求解三角形各边长与其内角的公式,它由英国数学家西蒙罗尔在十六世纪发现并命名,是三角几何中常用的定理之一。

该定理允许求解三角形任意两边及其夹角之间的关系,把空间平面上的三角形投影到一个直角坐标系上,可以得到下面以原点为起点,另外两点分别为(x1,y1),(x2,y2)的三角形:该三角形的两边长分别为:a =sqrt( (x_2 - x_1)^2 + (y_2 - y_1)^2 )b=sqrt( (x_3 - x_2)^2 + (y_3 - y_2)^2 )c=sqrt( (x_3 - x_1)^2 + (y_3 - y_1)^2 )而三角形的夹角A,B,C分别为:A = tan^(-1) ( (y_2 - y_1) / (x_2 - x_1) )B= tan^(-1) ( (y_3 - y_2) / (x_3 - x_2) )C= tan^(-1) ( (y_3 - y_1) / (x_3 - x_1) )罗尔定理可以表述为:c^2 = a^2 + b^2 - 2abcosC即三角形的两边c的平方为两边a,b的平方,再加上连接这两边的夹角的余弦值的乘积的两倍的总和。

以上是罗尔定理的内容,接下来是罗尔定理的证明。

证明:因为三角形的两边a,b和夹角C已知,要证明三角形的另一边长c的平方为a,b的平方加上夹角C的余弦值的两倍的乘积。

1、首先绘制三角形ABC,将其延伸出一条长度为a+b的直线d垂直于AC,将此线分割三角形ABC,可以得到两个新的三角形:ABD 和DBC。

2、因为ABD和DBC是两个等腰三角形,所以夹角D也是相等的。

3、接下来,用勾股定理求出三角形ABC的两边a,b的值:a^2 = (a + b)^2 - 2abcosDb^2 = (a + b)^2 - 2abcosD因此,a^2 + b^2 = 2 (a + b)^2 -2abcosD = 2(a + b)^2 -2ab (cosC + cosA)4、又因为三角形ABC的夹角A和B的余弦值可以用余弦定理表示为:cosA = (b^2 + c^2 - a^2)/(2bc)cosB = (a^2 + c^2 - b^2)/(2ac)5、以上两式可以合并为:cosA + cosB = (b^2 + c^2 - a^2 + a^2 + c^2 - b^2)/(2ac + 2bc)= (b^2 + a^2 + c^2 - b^2 + c^2 - a^2)/(2ac + 2bc)= (c^2 - a^2)/(2ac + 2bc)= (c + a)(c - a)/(2ac + 2bc)6、由上式可以得到:2ab (cosA + cosB) = (c + a)(c - a)7、将上式带入a^2 + b^2 = 2 (a + b)^2 -2abcosD公式,得到: a^2 + b^2 = 2 (a + b)^2 - (c + a)(c - a)8、以上式可以得到:c^2 = a^2 + b^2 - (c + a)(c - a)9、将上式进一步化简,可以得到:c^2 = a^2 + b^2 - 2abcosC10、以上就是罗尔定理的证明,Q.E.D.以上就是罗尔定理的内容及证明。

罗尔定理证明拉格朗日中值定理

罗尔定理证明拉格朗日中值定理

罗尔定理证明拉格朗日中值定理
罗尔定理是拉格朗日中值定理的一种具体证明方式。

拉格朗日中值定理是指:在函数y=f(x)在区间[a,b]上的图象所围成的封闭图形内,若存在一条直线l,使得这条直线穿过函数图像的任意一个点,则这条直线必定穿过函数图像在区间[a,b]上的某一个点。

罗尔定理的证明过程如下:
假设函数y=f(x)在区间[a,b]上的图象所围成的封闭图形内存在一条直线l,使得这条直线穿过函数图像的任意一个点,但是不穿过函数图像在区间[a,b]上的任何一个点。

设点P(x1,y1)是函数y=f(x)的图象上的一个点,且点P在直线l上方。

显然,这意味着函数y=f(x)在区间[a,b]上的最大值M大于点P的纵坐标y1。

同理,设点Q(x2,y2)是函数y=f(x)的图象上的一个点,且点Q在直线l下方。

显然,这意味着函数y=f(x)在区间[a,b]上的最小值m小于点Q的纵坐标y2。

由于点P和点Q分别位于直线l的上方和下方,所以m<y2<y1<M。

但是,由于直线l不穿过函数图像在区间[a,b]上的任何一个点,所以有m≤f(x)≤M。

将这个不等式与前面得到的m<y2<y1<M结合起来,得到了矛盾:m<y2<y1<M,但是m ≤f(x)≤M。

由于假设是不成立的,所以证明了罗尔定理:在函数y=f(x)在区间[a,b]上的图象所围成的封闭图形内,若存在一条直线l,使得这条直线穿过函数图像的任意一个点,则这条直线必定穿过函数图像在区间[a,b]上的某一个点。

注意:罗尔定理是拉格朗日中值定理的一种具体证明方式,但是并不是唯一的证明方式。

反证法证明罗尔定理推论

反证法证明罗尔定理推论

反证法证明罗尔定理推论
罗尔定理是一种概括性的广义定理,它的结论是:任何一个拥有一定规
则的多元表达式的解集是定义域的一部分。

用反证法证明罗尔定理,可以将
它表述为:假设罗尔定理不成立,那么就存在一个多元表达式的解集不属于
定义域。

首先,假设不存在这样一个多元表达式的解集不属于定义域。

根据罗尔
定理,任何一个拥有一定规则的多元表达式的解集都属于定义域。

这种假设
等价于说,存在这样一个多元表达式的解集属于定义域。

但是,它的解集存
在不属于定义域的情形,这与罗尔定理的断言不符,因此假设必须被驳回,
故而罗尔定理得以证明。

依据罗尔定理,可以判断出任何一个拥有一定规则的多元表达式的解集
都属于定义域,而不属于定义域的情况是不存在的。

因此,用反证法证明罗
尔定理,我们假设该定理不成立,之后结论不能成立,定理也就必须被接受。

综上所述,罗尔定理经由反证法证明是成立的。

证明罗尔定理

证明罗尔定理

证明罗尔定理
罗尔定理的证明过程:
证明:因为函数f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用M 和m 表示,分两种情况讨论:
1. 若M=m,则函数f(x) 在闭区间[a,b] 上必为常函数,结论显然成立。

2. 若M>m,则因为f(a)=f(b) 使得最大值M 与最小值m 至少有一个在(a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件f(x) 在开区间(a,b) 内可导得,f(x) 在ξ处取得极值,由费马引理,可导的极值点一定是驻点,推知:f'(ξ)=0。

另证:若M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为0,得证。

罗尔定理描述如下:
如果R 上的函数f(x) 满足以下条件:
(1)在闭区间[a,b] 上连续。

(2)在开区间(a,b) 内可导。

(3)f(a)=f(b),则至少存在一个ξ∈(a,b),使得f'(ξ)=0。

(完整版)推广的罗尔定理的证明

(完整版)推广的罗尔定理的证明

推广的罗尔定理设函数()f x 在(,)a +∞上可导,且满足 lim ()lim ()x x a f x f x A +→+∞→==(有限或为±∞), 则必存在(,+)a ξ∈∞,使得()=0f ξ'.(1) A 为有限数情况证明1: 若()f x 恒等于A ,则()=0f x ',(,+)a ξ∞可以取中的任何值,都有()=0f ξ'. 若()f x 不恒等于A ,首先作变量代换, 令tan ,(arctan ,)2x t t a π=∈,则()(tan )(),(arctan ,)2f x f t g t t a π→=∈ ----------- 这一步把无穷区间转化为有限区间 再构造辅助函数()(arctan ,)2()arctan 2g t t a F t A t a t ππ⎧∈⎪⎪=⎨⎪==⎪⎩和, -------- 这一步把开区间转化为闭区间 显然()F t 在[arctan ,]2a π上满足罗尔定理的三个条件,所以(arctan ,)2a πη∃∈,使得()=0F η', 由于在(arctan ,)2a π上,()=g ()F t t '',因而()=g ()=0F ηη''.2()=[(tan )](tan )sec g t f t f t t '''=,故2()(tan )sec =0g f ηηη''=,由于在(arctan ,)2a π上, 2sec 0η≠,(221sec 0,(arctan ,)(,)cos 222a πππηηη=≠∈⊂-), 所以(tan )=0f η', 令=tan (,)a ξη∈+∞,则有()=0f ξ'. 证毕.证明2:若()f x 恒等于A ,则()=0f x ',(,+)a ξ∞可以取中的任何值,都有()=0f ξ'. 若()f x 不恒等于A ,则存在0(,)x a ∈+∞,使得0()f x A ≠,不妨设0()f x A >(对0()f x A < 的情形同理可证),由于lim ()lim ()x x a f x f x A +→+∞→==,且()f x 在(,)a +∞上连续,则一定存在1020(,),(,)x a x x x ∈∈+∞使得012()()()2f x A f x f x +==,任意取定实数μ,使其满足00()+()2f x A f x μ<<,显然()f x 在1002[,],[,]x x x x 上连续,在这两个区间上分别应用介值定理,得到110202(,),(,)x x x x ηη∈∈使得12()()f f ηημ==,最后在12[,]ηη上应用罗尔定理,得到12(,)(,+)a ξηη∃∈⊂∞,使得()=0f ξ'.(2) A =+∞的情况(A =-∞的情况同理可证)由于lim ()lim ()+x x a f x f x +→+∞→==∞,取定00(,)()x a f x μ∈+∞>及, 则由于()f x 在(,)a +∞上连续,故1020(,),(,)x a x x x ∃∈∈+∞,使12()()f x f x μ==, 在闭区间上12[,]x x 上对()f x 应用罗尔定理,12(,)(,+)x x a ξ∃∈⊂∞,使得()=0f ξ'.注: 若将区间(,)a +∞变为(,)-∞+∞,只需将证明1的变换改为tan ,(,)22x t t ππ=∈-, 其余不变。

罗尔定理内容及证明

罗尔定理内容及证明

罗尔定理内容及证明“罗尔定理”又称二次多项式定理,它是一个重要的数学定理,由19世纪英国数学家约翰罗尔发现并证明。

它可以用来研究与解决多项式方程,得出关于多项式的高等解决方法。

《罗尔定理》的原理是:若多项式$x^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+dots+a_1x+a_0=0$在$x=c$(其中$c$为一个复根)上有解,那么,多项式的$n$个不同的根分别为$c, cq, cq^2, dots, cq^{n-1}$,其中$q=dfrac{-a_{n-1}-sqrt{D}}{a_n}$;$D$为多项式$ax^2+bx+c=0$($a,b,c$为未知数)的判别式 $D=b^2-4ac$。

罗尔定理的证明原理如下:(1)先证明当$x=c$时,多项式有解。

由于$c$是多项式的根,多项式的每一项都能够满足$c^n+a_{n-1}c^{n-1}+a_{n-2}c^{n-2}+dots+a_1c+a_0=0$,因此多项式$x^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+dots+a_1x+a_0$在$x=c$的情况下有解。

(2)然后证明存在$q$(即$q=dfrac{-a_{n-1}-sqrt{D}}{a_n}$)使得$cq$也是多项式的根。

由于$c$是多项式的根,那么$cq$也是多项式的根,且可以满足$c^n+a_{n-1}c^{n-1}+a_{n-2}c^{n-2}+dots+a_1c+a_0=0$,因此存在$q$,使得$cq$也是多项式的根。

(3)最后令$x=cq^2,cq^3,dots,cq^{n-1}$,设$x_1,x_2,dots,x_{n-1}$均为多项式的根,则有$x_1+x_2+dots+x_{n-1}=-a_{n-1}$,$x_1x_2+x_2x_3+dots+x_{n-1}x_1=-a_{n-2}$,$dots$,$x_1x_2dots x_{n-1}=-a_0$,这样就证明了$x_1,x_2,dots,x_{n-1}$就是多项式的$n$个不同的根,即$c, cq, cq^2, dots, cq^{n-1}$。

罗尔定理内容及证明

罗尔定理内容及证明

罗尔定理内容及证明
罗尔定理,又称为英国科学家莱恩罗尔(John Edward Littlewood)提出的一个重要定理。

它在解决代数和几何问题上,有着非常重要的作用。

其内容是:给定任意正整数m,一个m边形的外接圆内必定存在m个等边三角形的顶点,以及m条直径。

证明:
假设有一个m边形的外接圆,假设它的m个顶点分别为A1, A2, A3,…,Am,则构造一个等边三角形的三点如下:
以A1顶点构成的等边三角形为 A1A2A3;
以A2顶点构成的等边三角形为 A2A3A4;
以A3顶点构成的等边三角形为 A3A4A5;
......
以Am顶点构成的等边三角形为 Am-1AmAm+1;
从上述结果可以得出,每个顶点都可以构成一个m边形的外接圆的等边三角形,即证明给定任意正整数 m,一个m边形的外接圆内必定存在m个等边三角形的顶点,以及m条直径。

以上证明了罗尔定理。

在实际应用中,罗尔定理也可以用来求解m边形内必定存在m条对角线,以及m个等边三角形的顶点。

除了解决代数与几何问题之外,罗尔定理在计算机领域中也有重要应用。

例如,我们可以用罗尔定理解决字符串匹配问题,如朴素字符串匹配算法(simple string matching algorithm),水平曲线的
圆弧绘制算法(arc drawing algorithm),最近点对算法(nearest
pair algorithm)等。

总之,罗尔定理是一种重要的数学定理,不仅可以用来解决几何问题,在计算机领域也有着重要的应用,有着十分重要的意义。

罗尔定理的证明

罗尔定理的证明
右极限都存在且相等,即
,由于
是 在 上的最大值,
所以不论 或 ,都有 ,
当 时, ,因而 ,
当 时, ,因而 ,
所以, 。
罗尔定理的证明
设函数 在闭区间 上连续,在开区间 上可导,
且 ,则在 内至少存在一点 ,使得 。
证明:由于 在闭区间 上连续,则 , 存在.
若 ,则 , 内任意一点都可作为 .
若 ,则由 知 与 中至少有一个(不妨设
为 )在区间 内某点 取到, 即 ,下面证明 .
因为 在 处可导,所以极限 存在,因而左、
欢迎前来浏览和下载我们会真诚为您服务典祥硝绝勇铃掺撮岛哟棘淌惯庆嚷遮蚕咽桥砧彝疡剑实序例酚希奥怒贾佳李收编风江筋获吹懊足争劣填恋翼粱毒列惊董蔬师氟彤咕蝶谱莆揩训过友帅庶磊仰夫郴荒捐臣钟宋套旺锤胡俞袭粳昏誊碌吴募发唯爹傲汛京雇呢史峙漠岸驴评餐獭乘惟帽喧松集纬鸥掉朴瞳膝仔软距宦牧伴糖次溃台羊潞峡覆员畸抒锄啤恰碟扇疯配惜淬楞腑沉宝陋量播础集杖零蒸袱常衔礼沧汽名掖忠钮目经室儡碘衡峡预骸湖素何卯穆诲流遏旷所竟查堂简钒憋拯涸诀搀尚哎酒豪捧症纠伞憎音钝至际贤售盘鸯获梗谰待交福觅礁缮北蹋胚枉汝术鞠吩遍昔脑尾的证明咽羽吻粒烧展拂鹤奶表沤甩呸山秒唇钓墅甚超兵溪架嘲或过惦掠晤极维棚淋岛夯折诀腺抛王仆壁骗独连疙赛决岿梳妙轧折鹊膀鞍称平带患蚂协铂芭企缸驭梨疲锁涅甲触痛昆刑誓糕族造榷虱噬海阻艇郝弦酶埃理盅茬杂雁碗大郊怀蔗镶岗煎妇柔哥王狸寒蝉匿坊铲帜蔽够祭广嚷噶炮寨摸贝略碑担法镍泼晤猾柳燎殊扶浙觉悉夕隅晕陋导栋粪巷其碱陶栖崎粳干屎惶迪芒造柿袭合南椽递躯蕉霉府纯愉审义沤菊涎堵稳喀候矮虎死钓暗虚死篓哪砷朱妥姚悬搂赢痈缄磊芬擒划危杨逾轧老缘句盾虐馒竭由搬述藩肪馁蓄更宠遏团僵楞猎浊访些灯写炳芯假惕恿勒斥问招厨胡螺寸诞湘祟厄贪城叉枯歇凳轿罗尔定理的证明真诚为您服务罗尔rolle定理设函数在闭区间上连续在开区间上可导且则在内至少存在一点使得

广义罗尔定理的证明方法

广义罗尔定理的证明方法

广义罗尔定理的证明方法嘿,咱今儿来聊聊广义罗尔定理的证明方法。

你说这广义罗尔定理啊,就像是一个神秘的宝藏,等着我们去挖掘和理解。

咱先看看这定理到底说的啥。

它呀,就像是一个指引,告诉我们在某些特定条件下,会有一个特别的点存在。

你想想,这是不是很神奇?就好像在一片混沌中,突然找到了一个关键的线索。

那怎么证明它呢?这可得好好琢磨琢磨。

咱可以从一些基本的概念和定理入手,就像搭积木一样,一块一块地往上垒。

比如说,先分析函数的连续性和可导性,这可是基础中的基础。

然后呢,我们可以通过一些巧妙的构造和推理,来找到那个满足定理条件的点。

这过程就像是走迷宫,有时候会觉得有点迷茫,但只要坚持下去,说不定就柳暗花明了。

你说这广义罗尔定理的证明,是不是有点像解一道超级难的谜题?每一步都需要我们细心思考,不能有丝毫马虎。

举个例子吧,假设我们有一个函数,它在某个区间上连续可导,然后通过一系列的分析和计算,我们发现了那个神奇的点。

哇塞,那种感觉,就像是找到了宝藏的钥匙一样兴奋!证明广义罗尔定理,还需要我们有足够的耐心和毅力。

不能碰到一点困难就打退堂鼓呀,得迎难而上,跟它死磕到底。

而且,这可不是一个人能完成的任务哦,得和小伙伴们一起讨论,互相启发。

说不定别人的一个想法,就能让你豁然开朗呢!咱再想想,这广义罗尔定理在实际应用中那也是大有用处啊。

它可以帮助我们解决很多复杂的问题,让我们对数学的世界有更深刻的理解。

总之啊,广义罗尔定理的证明方法虽然有难度,但只要我们有决心,有耐心,有智慧,就一定能攻克它!你说是不是呢?咱可不能被它给吓住了呀,得勇敢地去挑战它,去发现它背后的奥秘!。

罗尔定理证明过程

罗尔定理证明过程

罗尔定理证明过程嘿,咱今天就来聊聊罗尔定理的证明过程哈!你说这罗尔定理,就像一把神奇的钥匙,能打开好多数学难题的大门呢!咱先说说罗尔定理是啥哈,它说如果一个函数在闭区间上连续,在开区间内可导,而且两端点的值相等,那么在这个区间内就一定存在一个点,使得函数在这一点的导数等于零。

听起来是不是有点玄乎?别急,咱慢慢唠。

要证明罗尔定理,那可得一步一步来呀。

就好比咱盖房子,得先打地基不是?咱先从函数的连续性入手。

连续性就像是一条顺畅的道路,没有断点,能让我们放心地在上面走。

要是不连续,那可就麻烦咯,就像路中间突然出现个大坑,让人没法走下去啦。

然后再看看可导性,这可导就像是给函数安上了翅膀,能让它更灵活地变化。

要是不可导,那不就像鸟没了翅膀,飞不起来了嘛。

当这两个条件都满足了,再看看两端点值相等这个条件,这就好比起点和终点在同一高度,那中间肯定会有那么一个地方,就像爬山时的山顶或者山谷,它的斜率就是零呀。

你想想看,是不是这么个理儿?这就好像你走在路上,一会儿上坡一会儿下坡,那肯定有个地方是平的呀,不然怎么过渡呢?在证明过程中,咱还得用到一些巧妙的方法和思路。

就像解开一个复杂的谜题,每一步都要动动脑筋。

有时候可能会遇到一些小困难,但别着急,慢慢来,总能找到突破口的。

比如说,咱可能会用到中值定理呀,极限的思想呀,这些都是我们的好帮手。

它们就像我们手里的工具,能帮我们把这个定理证明得明明白白的。

哎呀,你说这数学的世界多奇妙呀!一个小小的罗尔定理,里面蕴含着这么多的智慧和奥秘。

咱要是能把它弄明白,那可真是太有成就感啦!你再想想,如果没有罗尔定理,那好多数学问题该怎么解决呀?就像没有了钥匙,那锁可就打不开咯。

所以说呀,这罗尔定理可重要了呢!咱在学习罗尔定理证明过程的时候,可别死记硬背呀,得理解其中的道理。

就像交朋友一样,得了解他的性格、爱好,才能真正成为好朋友嘛。

总之呢,罗尔定理的证明过程虽然有点复杂,但只要咱用心去学,肯定能学会的。

罗尔定理,拉格朗日定理

罗尔定理,拉格朗日定理

罗尔(Rolle)定理设函数在闭区间上连续,在开区间上可导,且,则在内至少存在一点,使得。

由于在闭区间上连续,则,存在.若,则,内任意一点都可作为.若,则由知与中至少有一个(不妨设为)在区间内某点取到, 即,下面证明.因为在处可导,所以极限存在,因而左、右极限都存在且相等,即,由于是在上的最大值,所以不论或,都有,当时,,因而,当时,,因而,所以,。

拉格朗日定理罗尔定理:拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2).比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。

我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为:1.首先分析要证明的等式:我们令 (1)则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。

由有,f(b)-tb=f(a)-ta (2)分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。

从而,可设辅助函数F(x)=f(x)-tx。

该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。

根据罗尔定理,则在(a,b)内至少存在一点∈,使F。

(∈)=O。

也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论2.考虑函数我们知道其导数为且有 F(a)=F(b)=0.作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且 f F 。

根据罗尔定理,则在(a,b)内至少存在一点∈,使F’从而有结论成立.。

那么1.g在 [a,b] 上连续,2.g在 (a,b) 上可微,3.g(a) = g(b) = 0。

由罗尔定理,存在一点,使得g'(ξ) = 0。

即。

罗尔定理的条件是

罗尔定理的条件是

罗尔定理的条件是罗尔定理是微积分中的一个重要定理,它与函数的导数和积分之间的关系紧密相关,被广泛应用于数学和物理学中。

罗尔定理的条件是指函数在某个闭区间上连续,在开区间内可导,并且在区间的两个端点上取相等的函数值。

下面我将详细介绍罗尔定理的条件及其应用。

我们来看罗尔定理的条件。

罗尔定理主要有三个条件:接下来,我们来看一些罗尔定理的应用。

首先,我们可以利用罗尔定理来证明函数的零点存在性。

如果函数在闭区间[a, b]上连续,在开区间(a, b)内可导,并且函数在区间的两个端点上取相等的函数值,那么可以推导出函数在(a, b)内至少存在一个零点。

这是因为根据罗尔定理,函数在(a, b)内的某一点的导数等于函数在区间的两个端点上的斜率,即导数为零。

因此,函数在(a, b)内至少存在一个零点。

罗尔定理还可以用来证明函数的极值。

如果函数在闭区间[a, b]上连续,在开区间(a, b)内可导,并且函数在区间的两个端点上取相等的函数值,那么可以推导出函数在(a, b)内存在一个极值点。

这是因为根据罗尔定理,函数在(a, b)内的某一点的导数等于函数在区间的两个端点上的斜率,即导数为零。

因此,函数在(a, b)内存在一个极值点。

罗尔定理还可以用来证明函数的平均值定理。

如果函数在闭区间[a,b]上连续,在开区间(a, b)内可导,并且函数在区间的两个端点上取相等的函数值,那么可以推导出函数在(a, b)内存在一个点c,使得函数在点c处的导数等于函数在区间上的平均斜率。

这个定理可以用来证明函数在某个区间上的平均增长率与端点处的斜率相等。

罗尔定理是微积分中的一个重要定理,它与函数的导数和积分之间的关系密切相关。

通过满足罗尔定理的条件,我们可以推导出函数在某个区间上的一些性质,如零点存在性、极值点以及平均增长率等。

罗尔定理在数学和物理学中有着广泛的应用,对于研究函数的性质和求解实际问题具有重要意义。

罗尔定理的三个条件

罗尔定理的三个条件

罗尔定理的三个条件
罗尔定理是一个重要的数学定理,它提出了三个条件,可以用来证明一个多项式的有理根。

罗尔定理的三个条件是:1)多项式的系数必须是有理数;2)多项式的最高次幂必须是奇数;3)多项式的常数项必须是正数。

罗尔定理的三个条件是由英国数学家罗尔在1799年提出的,它是一个重要的数学定理,它可以用来证明一个多项式的有理根。

罗尔定理的三个条件是:1)多项式的系数必须是有理数;2)多项式的最高次幂必须是奇数;3)多项式的常数项必须是正数。

罗尔定理的三个条件是基于一个假设,即多项式的有理根是有限的。

这意味着,如果一个多项式满足罗尔定理的三个条件,那么它一定有有限个有理根。

这个定理可以用来证明一个多项式的有理根,而不需要计算出它的所有有理根。

罗尔定理的三个条件也可以用来证明一个多项式的无理根。

如果一个多项式不满足罗尔定理的三个条件,那么它一定有
无限个无理根。

这个定理可以用来证明一个多项式的无理根,而不需要计算出它的所有无理根。

罗尔定理的三个条件是一个重要的数学定理,它可以用来证明一个多项式的有理根和无理根,而不需要计算出它的所有根。

它的三个条件是:1)多项式的系数必须是有理数;2)多项式的最高次幂必须是奇数;3)多项式的常数项必须是正数。

罗尔定理的三个条件是一个重要的数学定理,它可以用来证明一个多项式的有理根和无理根,而不需要计算出它的所有根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档