高一(下)月考数学试卷

合集下载

高一数学下第一次月考卷(测试范围:第9-10章)

高一数学下第一次月考卷(测试范围:第9-10章)

2023-2024学年高一数学下学期第一次月考卷(测试范围:第9-10章)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知向量21,e e 是平面内所有向量的一组基底,则下面的四组向量中,不能作为基底的是( ) A .{}112,e e e - B .{}1212,3e e e e +-C .{}12122,36e e e e --+D .{}121223,23e e e e +-2.“sin20θ>”是“θ为第一或第三象限角”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.对于任意的平面向量a ,b ,c ,下列说法中正确的是( )A .若a b 且b c ∥,则a c ∥B .若a b a c ⋅=⋅,且0a ≠,则b c =C .()+⋅=⋅+⋅a b c a c b cD .()()a b c a b c ⋅=⋅412=,则πtan 3α⎛⎫+ ⎪⎝⎭为( )A .12-B .12 C .2- D .25.如图所示,已知,,2,AOB BA AC OD DB DC ==和OA 交于点E ,若OE OA λ=,则实数λ的值为()A .12 B .45 C .34 D .236.下列函数中,以π为周期且在,2ππ⎛⎫⎪⎝⎭上单调递增的是( )A .()22cos sin f x x x =-B .()2sin cos f x x x =C .()sin f x x =D .()cos2f x x =7.如图,在等腰ABC 中,已知2AB AC ==,120A ∠=,E ,F 分别是边AB ,AC 上的点,且AE AB λ=,AF AC μ=,其中λ,R μ∈,且21λμ+=,若线段EF ,BC 的中点分别为M ,N ,则MN 的最小值是( )A B C D 8.在ABC 中,角,,A B C 所对的边分别为,,a b c ,点,,,O G P Q 分别为ABC 所在平面内一点,且有222222||||||||||||OA BC OB CA OC AB +=+=+,0GA GB GC ++=,()()()0PA PB AB PB PC BC PC PA CA +⋅=+⋅=+⋅=,0aQA bQB cQC ++=,则点,,,O G P Q 分别为ABC 的( )A .垂心,重心,外心,内心B .垂心,重心,内心,外心C .外心,重心,垂心,内心D .外心,垂心,重心,内心 二、多选题(本大题共4小题,每小题5分,共20分.全对得5分,少选得3分,多选、错选不得分) 9.如图,在平行四边形ABCD 中,下列计算正确的是( )A .AB AD AC +=B .AB CD DO OA ++=C .AB AD CD AD ++=uu u r uuu r uu u r uuu r D .0AC BA DA ++=10.已知向量a b ,满足|2||||3|||,a b a a b a b +=+=-,且||2a =,则( ) A .||2b =r B .0a b += C .|2|4a b -= D .4a b ⋅=-11.关于函数()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,其中正确命题是( )A .()y f x =B .()y f x =是以π为最小正周期的周期函数C .将函数2y x =的图像向左平24π个单位后,将与已知函数的图像重合 D .()y f x =在区间13,2424ππ⎛⎫ ⎪⎝⎭上单调递减 12.正方形ABCD 的边长为4,E 是BC 中点,如图,点P 是以AB 为直径的半圆上任意点,AP AD AE λμ=+,则( )A .μ最大值为1B .λ最大值为2C .存在P 使得1λμ+=D .AP AD ⋅最大值是8三、填空题(本大题共4小题,每小题5分,共20分)13.已知1cos 3α=,cos()αβ-=02πβα<<<,则cos β= .14.已知α为锐角且满足11cos α+=,则α= . 15.如图.在ABC 中,AD AB ⊥,3BC BD =,||1AD =,则AC AD ⋅= .16.如图,在菱形ABCD 中,60BAD ∠=︒,,E F 分别是边,AB BC 上的点,且AE EB =,2BF FC =,连接,ED AF ,交点为G .设AG t AF =,则(1)t = ;(2)cos EGF ∠= .四、解答题(本大题共6小题,第17-18题每小题10分,第19-21题每小题12分,第22题14分,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)17.已知1πcos ,,072αα⎛⎫=∈- ⎪⎝⎭. (1)求πcos 3α⎛⎫- ⎪⎝⎭的值;(2)若()πsin 0,2αββ⎛⎫+=∈ ⎪⎝⎭,求β的值. 18.已知向量(1,3)a =-,(1,2)b =.(1)求a b ⋅;(2)求2a b -及a 在b 上的投影向量的坐标;(3)()a mb a -⊥,求m 的值.19.如图,在ABC ∆中,120BAC ∠=︒,2AB =,1AC =,D 是边BC 上一点,2DC BD =.(1)求AD BC ⋅的值;(2)若()0AB tCD CD -⋅=,求实数t 的值.20.已知向量()sin ,1a x =,1,sin 3b x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,()f x a b =⋅. (1)求函数()f x 的单调递增区间和最小正周期;(2)若当0,4x π⎡⎤∈⎢⎥⎣⎦时,关于x 的不等式()21f x m -≤有解,求实数m 的取值范围. 21.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ABC ∆和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段AB 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.22.已知函数()(),f x g x 是定在R 上的函数,且满足关系()()π2g x f x f x ⎛⎫=⋅+ ⎪⎝⎭. (1)若()sin cos f x x x =+,若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()y g x =的值域; (2)若()sin cos f x x x =+,存在12,R x x ∈,对任意x ∈R ,有()()()12g x g x g x ≤≤恒成立,求12x x -的最小值;(3)若()cos sin f x x x =+,要使得()()sin F x a x g x =+在()()*0,πN n n ∈内恰有2022个零点,请求出所有满足条件的a 与n .。

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。

2023-2024学年河南省青桐鸣大联考高一(下)月考数学试卷(含答案)

2023-2024学年河南省青桐鸣大联考高一(下)月考数学试卷(含答案)

2023-2024学年河南省青桐鸣大联考高一(下)月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知i为虚数单位,复数z满足−i⋅z=2+7i,则z=( )A. −7+2iB. −7−2iC. 7+2iD. 7−2i2.已知△ABC的直观图△A′B′C′如图所示,A′B′//x′轴,A′C′//y′轴,且A′C′=3,则在△ABC中,AC=( )A. 3B. 32C. 12D. 63.已知复数z1=2−ai,z2=b−1+2i,(a,b∈R,i为虚数单位),且z1=z2,则( )A. a=−1,b=1B. a=2,b=−3C. a=2,b=3D. a=−2,b=34.在平行四边形ABCD中,M为BC的中点,设AB=a,DM=b,则DB=( )A. 2b−aB. a−2bC. 3a−2bD. 3a+2b5.设α、β是两个不重合的平面,则α//β的一个充分条件为( )A. 平面α内有无数个点到平面β的距离相等B. 平面α内有无数条直线与平面β平行C. 两条异面直线同时与平面α,β都平行D. 两条平行直线同时与平面α,β都平行6.在△ABC中,∠A=60°,AB=2,AC=3,点D为边AC上一点,且AC=3AD,则AB⋅BD=( )A. 3B. 2C. −2D. −37.如图,在正四棱台ABCD−A1B1C1D1中.AB=3A1B1=3,AA1=5,则正四棱台ABCD−A1B1C1D1的表面积为( )A. 28B. 26C. 24D. 168.已知a,b,a+b,2b−a均为非零向量,a与a+b的夹角为θ1,b与2b−a的夹角为θ2,满足|a|=|b|,|a +b|cosθ1=|2b−a|cosθ2,则a,b的夹角θ=( )A. π6B. π3C. 2π3D. 5π6二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

河南省新乡市原阳县第一高级中学2023-2024学年高一下学期4月月考数学试题

河南省新乡市原阳县第一高级中学2023-2024学年高一下学期4月月考数学试题

河南省新乡市原阳县第一高级中学2023-2024学年高一下学期4月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知平面向量a=−2,0,b=−1,−1,则12a−2b等于()A.1,2B.−1,−2C.−1,2D.1,−22.如图,在△ABC中,D是线段BC上的一点,且BC=4BD,过点D的直线分别交直线AB,AC于点M,N,若AM=λAB,AN=μACλ>0,μ>0,则μ−1λ的最小值是()A.23−43B.23+43C.233−7D.23+233.我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称为“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形ABCD是由4个全等的直角三角形和中间的小正方形组成的,若AB=a,AD=b,E 为BF的中点,则AE=()A.45a+25b B.25a+45bC.43a+23b D.23a+43b4.设f x=ax2+bx+c(a、b、c∈R).已知关于x的方程f x=x有纯虚数根,则关于x的方程f f x=x的解的情况,下列描述正确的是()A.方程只有虚根解,其中两个是纯虚根B.可能方程有四个实数根的解C.可能有两个实数根,两个纯虚数根D.可能方程没有纯虚数根的解5.已知a=1,m与b=n,−4共线,且向量b与向量c=2,3垂直,则m+n=()A.152B.163C.−103D.−26.已知非零向量a,b满足 a+2b=7a=7 b,则 a,b=()A.π6B.π4C.π3D.2π37.图,四边形ABCD的斜二测画法直观图为等腰梯形A′B′C′D′.已知A′B′=4,C′D′=2,则下列说法正确的是()A.AB=2B.A′D′=22C.四边形ABCD的周长为4+22+23D.四边形ABCD的面积为628.在ΔABC中,点P满足BP=3PC,过点P的直线与AB、AC所在的直线分别交于点M、N,若AM=λAB,AN=μACλ>0,μ>0,则λ+μ的最小值为A.22+1B.32+1C.32D.52二、多选题9.给出下列四个命题,其中正确的是()A.非零向量a、b满足|a|=|b|=|a−b|,则a与a−b的夹角是120°B.在△ABC中,角A,B,C的对边分别为a,b,c,A=60°,a=6,若满足条件的△ABC有两个,则b的取值范围为6<b<22C.若单位向量a、b,夹角为120°,则当|2a+xb|x∈R取最小值时x=1D.已知OA =3,−4,OB =6,−3,OC =5−m,−3−m,若∠ABC为锐角,则实数m的取值范围是m>−3410.设△ABC的内角A,B,C所对的边分别为a,b,c,3(a cos C+c cos A)=2b sin B,且∠CAB=π3.若点D是△ABC外一点,DC=1,DA=3,下列说法中,正确的命题是()A.△ABC的内角B=π3B.△ABC一定是等边三角形C.四边形ABCD面积的最大值为532+3D.四边形ABCD面积无最大值11.在三角形ABC中,令CB=a,AC=b,若a+b=e1,a−2b=e2,e1=e2=1,e1⋅e2=12,则()A.e1,e2的夹角为π3B.a=2e1+e23,b=e1 −e23C.a//bD.三角形ABC的AB边上的中线长为76三、填空题12.复数Z=log2(a−1)+i⋅log2a2−2a−2是实数,则a=.13.设圆台的高为3,如图,在轴截面A1B1BA中,∠A1AB=60°,AA1⊥A1B,则圆台的体积为.14.已知平面向量α,β(α≠0,α≠β)满足|β|=1,且α与β−α的夹角为120°,则|α|的取值范围是__________________ .四、解答题c+2=a cos C.15.设a,b,c分别为△ABC内角A,B,C的对边,已知b=2,12(1)求A的值;(2)若5AD=2AB+3AC,CD=b,求c的值.16.已知向量a=3sin x,cos x ,b=cos x,cos x,设函数f x=a⋅b.上的单调增区间;(1)求f x在0,π2,f x−1≤m恒成立,求m的取值范围.(2)若对任意x∈0,π217.如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,DC∥EF.(1)若DC=2EF,求证:OE//平面ADF;(2)若FB=FD,求证:平面AFC⊥平面ABCD.18.如图,在△ABC中,CA=3,CB=4,∠ACB=60°,CH为AB边上的高.(1)求CH的长;(2)设CM=mCB,0<m<1.①若CH⋅MA=9,求实数m的值;②求MH⋅MA的最小值.19.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABCD沿EF折起,使BE⊥EC.(1)若BE=3,在折叠后的线段AD上是否存在一点P,使得CP//平面ABEF?若存在,求出APPD 的值;若不存在,说明理由.(2)求三棱锥A−CDF的体积的最大值,并求出此时点F到平面ACD的距离.。

2023-2024学年吉林省白山市抚松一中高一(下)月考数学试卷(4月份)+答案解析

2023-2024学年吉林省白山市抚松一中高一(下)月考数学试卷(4月份)+答案解析

2023-2024学年吉林省白山市抚松一中高一(下)月考数学试卷(4月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若向量,则()A. B. C. D.2.“甲和乙的生肖相同”是“甲和乙的生肖都是龙”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.复数的共轭复数为()A. B. C. D.4.若集合,则()A. B. C. D.5.在中,角A,B,C的对边分别为a,b,c,且,则()A. B. C. D.6.已知向量,则向量在上的投影向量的坐标为()A. B. C. D.7.在复数范围内,,是方程的两个不同的复数根,则的值为()A.1B.C.2D.或28.已知函数的部分图象如图所示,,,,则()A.4B.C.D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.将函数图象上所有的点向右平移个单位长度后,再将所得函数图象上所有点的横坐标缩短到原来的,得到函数的图象,则()A. B.的图象关于直线对称C.的图象关于点对称D.为奇函数10.已知函数,,则()A.当有2个零点时,只有1个零点B.当有3个零点时,只有1个零点C.当有2个零点时,有2个零点D.当有2个零点时,有4个零点11.湖光岩玛珥湖,位于广东省湛江市麻章区湖光镇,是中国乃至世界最大的湿玛珥湖,是中国玛珥湖研究的始发点,也是世界玛玶湖研究的关键点.某小组计划测量如图所示的湖光岩玛珥湖的东西方向的总湖长,即测量湖光岩玛珥湖湖岸的两个测量基点P,Q之间的距离,现在湖光岩玛珥湖的湖岸取另外两个测量基点M,N,测得米,,,则()A.米B.米C.米D.米三、填空题:本题共3小题,每小题5分,共15分。

12.若,则______.13.已知复数,若z为纯虚数,则z的虚部为______;若z在复平面内对应的点位于第四象限,则a的取值范围是______.14.已知P是正六边形ABCDEF边上任意一点,且,,则______.四、解答题:本题共5小题,共77分。

陕西省咸阳市2022-2023学年高一下学期第二次月考试题 数学含答案

陕西省咸阳市2022-2023学年高一下学期第二次月考试题 数学含答案

咸阳市2022~2023学年度第二学期第二次月考高一数学试题(答案在最后)注意事项:1.本试题共4页,满分150分,时间120分钟2.答卷前,考生务必将自己的姓名、班级和准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效4.考试结束后,监考员将答题卡按顺序收回,装袋整理:试题不回收.第Ⅰ卷(选择题共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.某市场监管局对所管辖的某超市在售的40种冷冻饮品中抽取了20种冷冻饮品,对其质量进行了抽检,则()A.该市场监管局的调查方法是普查B.样本的个体是每种冷冻饮品的质量C.样本的总体是超市在售的40种冷冻饮品D.样本容量是该超市的20种冷冻饮品数2.已知复数2i z =-,则()22z -=()A.8i- B.8iC.88i- D.88i+3.已知复数()()2i z m m m m =-+∈R 为纯虚数,则复数2iim +-在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.高一某班级有男生35人,女生15人,用分层抽样的方法从全班学生中抽取一个容量为10的样本,抽出的男生平均体重为70kg ,抽出的女生平均体重为50kg ,估计该班的平均体重是()A.54kgB.60kgC.64kgD.65kg5.某科研所对实验室培育得到的A ,B 两种植株种子进行种植实验,记录了5次实验产量(千克/亩)的统计数据如下:A 种子4849505152B 种子4848494951则平均产量较高与产量较稳定的分别是()A.A 种子;A 种子B.B 种子;B 种子C.A 种子;B 种子D.B 种子;A 种子6.在四面体ABCD 中,BCD △为正三角形,AB 与平面BCD 不垂直,则下列说法正确的是()A.AB 与CD 可能垂直B.A 在平面BCD 内的射影可能是BC.AB 与CD 不可能垂直D .平面ABC 与平面BCD 不可能垂直7.已知ABC 中,D 是BC 的中点,且||||AB AC AB AC +=- ,||||AD AB = ,则向量BA 在BC上的投影向量为()A.14BC B.4BC C.14BC-D.4BC -8.在正方体1111ABCD A B C D -中,平面α经过点B 、D ,平面β经过点A 、1D ,当平面αβ、分别截正方体所得截面面积最大时,平面αβ、所成的锐二面角大小为()A.30︒B.45︒C.60︒D.75︒二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a ,b 为两条不同的直线,α,β为两个不同的平面,则下列结论不正确的是()A.若a ∥b ,b ∥α,则a ∥αB.若a ∥b ,a ∥α,b ∥β,则α∥βC.若a ⊥b ,a ⊥α,b ∥β,则α⊥βD.若a ⊥α,b ∥α,则a ⊥b10.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包,假设行李包所受重力为G,作用在行李包上的两个拉力分别为12,F F ,且121,F F F = 与2F的夹角为θ,下列结论中正确的是()A.θ越小越省力,θ越大越费力B.θ的范围为[]0,πC .当2π3θ=时,1F G = D.当π2θ=时,1F G= 11.已知ABC 是等腰直角三角形,2AB AC ==,用斜二测画法画出它的直观图A B C ''' ,则B C ''的长可能是()A. B. C. D.1212.如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP xBA yBC =+,则下列说法正确的有()A.1233BD BA BC=+ B.132BD BO ⋅=C.BP BC ⋅存在最大值D.x y +的最大值为19+第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()(),2,1,1,1,3a m b c ===,且()2a b c -⊥ ,则实数m 的值为_______________.14.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.4954435482173793232887352056438426349164572455068877047447672176335025839212067615.在ABC 中,60,A BC BC == 边上的高为2,则满足条件的ABC 的个数为__________.16.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯的容积3113R π,则其内壁表面积为_______________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知12122,3m e e n e e =+=- ,其中12,e e是夹角为π3的单位向量.(1)求m;(2)求m 与n夹角的余弦值.18.某景点某天接待了1250名游客,老年625人,中青年500人,少年125人,该景点为了提升服务质量,采用分层抽样从当天游客中抽取100人,以评分方式进行满意度回访.将统计结果按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,制成如下频率分布直方图:(1)求抽取的样本中,老年、中青年、少年的人数各是多少;(2)估计当天游客满意度分值的75%分位数.19.已知复数12i z a =+是方程()2500,x bx a b R ++=>∈的一个解.(1)求a 、b 的值;(2)若复数2z 满足2123i z z z -=-,求2z 的最小值.20.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c sin )c A A =+.(1)求C ;(2)若3AB AC AC ⊥=,,角C 的平分线交AB 于点D ,点E 满足DE CD =,求sin AEB ∠.21.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,O 是AC 与BD 的交点,=45ADC ∠︒,2,AD AC PO ==⊥平面,2,ABCD PO M =是PD 的中点.(1)证明://PB 平面ACM ;(2)求直线AM 与平面ABCD 所成角的正切值.22.如图所示的几何体中,四边形ABCD 为平行四边形,=90ACD ∠︒,1AB =,2AD =,四边形ABEF 为正方形,平面ABEF ⊥平面ABCD ,P 为DF 的中点,AN CF ⊥,垂足为N .(1)求证:AN ⊥平面CDF ;(2)求异面直线BF 与PC 所成角的正切值;(3)求三棱锥B CEF -的体积.咸阳市2022~2023学年度第二学期第二次月考高一数学试题(答案在最后)注意事项:1.本试题共4页,满分150分,时间120分钟2.答卷前,考生务必将自己的姓名、班级和准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效4.考试结束后,监考员将答题卡按顺序收回,装袋整理:试题不回收.第Ⅰ卷(选择题共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.某市场监管局对所管辖的某超市在售的40种冷冻饮品中抽取了20种冷冻饮品,对其质量进行了抽检,则()A.该市场监管局的调查方法是普查B.样本的个体是每种冷冻饮品的质量C.样本的总体是超市在售的40种冷冻饮品D.样本容量是该超市的20种冷冻饮品数【答案】B 【解析】【分析】根据抽样方法、样本、总体、个体的概念可得答案.【详解】该市场监管局的调查方法是随机抽样,A 错误;样本的个体是每种冷冻饮品的质量,B 正确;样本的总体是超市在售的40种冷冻饮品的质量,C 错误;样本容量是20,D 错误,故选:B2.已知复数2i z =-,则()22z -=()A.8i -B.8iC.88i- D.88i+【答案】A 【解析】【分析】利用复数的运算,再结合共轭复数的意义求解作答.【详解】因2i z =-,有2i z =,则()()22222i 24i 48i=448i=8i z -=-=+--+--,所以()228i z -=-.故选:A3.已知复数()()2i z m m m m =-+∈R 为纯虚数,则复数2iim +-在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A 【解析】【分析】根据题意列式解出m ,再利用复数的运算求得2i 13i i 22m +=+-,结合复数的几何意义即可得出答案.【详解】若复数()()2i z m m m m =-+∈R 为纯虚数,则20m m m ⎧-=⎨≠⎩,解得1m =,则()()()()2i 1i 2i 2i 13i 13i i 1i 1i 1i 222m +++++====+---+,故复数2i i m +-在复平面内对应的点为13,22⎛⎫ ⎪⎝⎭,在第一象限.故选:A.4.高一某班级有男生35人,女生15人,用分层抽样的方法从全班学生中抽取一个容量为10的样本,抽出的男生平均体重为70kg ,抽出的女生平均体重为50kg ,估计该班的平均体重是()A.54kgB.60kgC.64kgD.65kg【答案】C 【解析】【详解】根据分层抽样的定义建立比例关系,再求平均数即可.【解答】根据分层抽样的定义可得抽取男生7人,女生3人,男生平均体重为70kg ,女生平均体重为50kg ,该班的平均体重是70750364kg 10⨯+⨯=,故选:C .5.某科研所对实验室培育得到的A ,B 两种植株种子进行种植实验,记录了5次实验产量(千克/亩)的统计数据如下:A 种子4849505152B 种子4848494951则平均产量较高与产量较稳定的分别是()A.A 种子;A 种子B.B 种子;B 种子C .A 种子;B 种子D.B 种子;A 种子【答案】C 【解析】【分析】分别计算平均值和方差,比较得到答案.【详解】()14849505152505A x =++++=,()()()()()22222214850495050505150525025A S ⎡⎤=-+-+-+-+-=⎣⎦;()14848494951495B x =++++=,()()()()()222222148494849494949495149 1.25B S ⎡⎤=-+-+-+-+-=⎣⎦;A B x x >,22A B S S >,故A 的平均产量高,B 的产量比较稳定.故选:C6.在四面体ABCD 中,BCD △为正三角形,AB 与平面BCD 不垂直,则下列说法正确的是()A.AB 与CD 可能垂直B.A 在平面BCD 内的射影可能是BC.AB 与CD 不可能垂直D.平面ABC 与平面BCD 不可能垂直【答案】A 【解析】【分析】A 选项只需满足AC AD =即可,B 选项与题干矛盾,C 选项与A 选项矛盾,D 选项只需满足AC ⊥平面BCD 即可.【详解】如图所示:取CD 的中点E ,连接AE ,BE假设AB CD ⊥,因为BCD 为等边三角形,所以BE CD ⊥,又因为AB BE B ⋂=,所以CD ⊥平面ABE ,所以CD AE⊥又因为E 是CD 中点,所以AC AD =,只需满足AC AD =,即可做到AB CD ⊥,故A 正确C 错误;对于B :若A 在平面BCD 内的射影为B ,则有AB ⊥平面BCD ,与题干矛盾,故B 错误;对于D :过C 点可以做出一条直线,使得该直线垂直与平面BCD ,A 点只需在该直线上,即满足AC ⊥平面BCD 即可达到要求,故D 错误.故选:A7.已知ABC 中,D 是BC 的中点,且||||AB AC AB AC +=- ,||||AD AB = ,则向量BA 在BC上的投影向量为()A.14BC B.34BC C.14BC-D.34BC -【答案】A 【解析】【分析】首先根据已知条件可知AB AC ⊥,从而推得ABD △为等边三角形,最后结合投影向量的定义即可求解.【详解】因为||||AB AC AB AC +=-,则()()22AB ACAB AC +=- ,所以0AB AC ⋅= ,则AB AC ⊥,因为D 是BC 的中点,所以AD BD CD == ,又因为||||AD AB =,所以ABD △为等边三角形,故点A 作AE BD ⊥交BD 于点E ,则E 为BD 中点,所以向量BA 在向量BC上的投影向量为14BE BC = .故选:A .8.在正方体1111ABCD A B C D -中,平面α经过点B 、D ,平面β经过点A 、1D ,当平面αβ、分别截正方体所得截面面积最大时,平面αβ、所成的锐二面角大小为()A.30︒B.45︒C.60︒D.75︒【答案】C 【解析】【分析】设平面α与面BCD 所成的二面角为θ,二面角1C BD C --为γ,分π,2θγ⎛⎤∈ ⎥⎝⎦和(0,]θγ∈两种情况讨论,证明平面α经过点B 、D 且截正方体所得截面面积最大时,平面α与面11BDB D 重合,从而可得出答案.【详解】平面α经过点B 、D 且截正方体所得截面面积最大时,平面α与面11BDB D 重合,证明:设平面α与面BCD 所成的二面角为θ,二面角1C BD C --为γ,当π,2θγ⎛⎤∈ ⎥⎝⎦时,记平面α截正方体所得截面为面BDEF ,111111,(0,1]1C E C F AB C D C B λλ==∈=,则()222211(12312(1)22EFBD S λλλλλ=+-+=-++,令()222()12(1)h λλλ=-++,因为2()4(1)0h λλλ'=+>,所以()11max max ()(1)2,2EFBD BDB D h h S S λ====当(0,]θγ∈时,显然平面α截正方体所得截面面积最大时,截面为面11,2C BD C BD S =,当0θ=时,平面α截正方体所得截面为,1ABCD ABCD S =,所以平面α截正方体所得截面面积最大时截面为面11BDB D ,同理平面β过1A D 、时,截正方体所得截面面积最大时截面为面11AD BC ,连接11,,BD AC B C ,面α与面β所成锐二面角为111B BD C --,因为1B C ⊥面11,AD BC AC ⊥面11BDB D ,所以1,AC B C 的所成角大小为二面角111B BD C --大小,因为160B CA =∠︒,所以面α与面β所成锐二面角大小为60︒.故选:C .【点睛】关键点点睛:解决本题的关键在于说明平面α经过点B 、D 且截正方体所得截面面积最大时,平面α与面11BDB D 重合,考查了分类讨论思想和极限思想.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a ,b 为两条不同的直线,α,β为两个不同的平面,则下列结论不正确的是()A.若a ∥b ,b ∥α,则a ∥αB.若a ∥b ,a ∥α,b ∥β,则α∥βC.若a ⊥b ,a ⊥α,b ∥β,则α⊥βD.若a ⊥α,b ∥α,则a ⊥b【答案】ABC 【解析】【分析】A.利用直线与平面的位置关系判断;B.利用平面与平面的位置关系判断;C.利用平面与平面的位置关系判断;D.利用线面垂直的性质定理判断.【详解】A.若a ∥b ,b ∥α,则a ∥α或a α⊂,故错误;B.若a ∥b ,a ∥α,b ∥β,则α∥β或α与β相交,故错误;C.若a ⊥b ,a ⊥α,b ∥β,则α与β平行或相交,故错误;D.若a ⊥α,b ∥α,则a ⊥b ,故正确;故选:ABC10.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包,假设行李包所受重力为G,作用在行李包上的两个拉力分别为12,F F ,且121,F F F = 与2F的夹角为θ,下列结论中正确的是()A.θ越小越省力,θ越大越费力B.θ的范围为[]0,πC.当2π3θ=时,1F G= D.当π2θ=时,1F G= 【答案】AC 【解析】【分析】利用平面向量的加法运算以及模长、数量积公式进行求解即可得.【详解】对A :根据题意,得12G F F =+,所以2222121212cos 2(1cos )G F F F F F θθ=++⨯⨯=+,解得221G Fθ=+ ,因为()0,πθ∈时,cos y θ=单调递减,所以θ越小越省力,θ越大越费力,故A 正确;对B :由题意知θ的取值范围是()0,π,故B 错误;对C :因为2212(1cos )G Fθ=+ ,所以当2π3θ=时,221F G = ,所以1F G =,故C 正确;对D :因为2212(1cos )G Fθ=+ ,所以当π2θ=时,2212GF = ,所以1F =,故D 错误.故选:AC.11.已知ABC 是等腰直角三角形,2AB AC ==,用斜二测画法画出它的直观图A B C ''' ,则B C ''的长可能是()A. B.C.D.12【答案】AC 【解析】【分析】通过斜二测画法的定义可知BC 为x '轴时,B C ''=为最大值,以BC 为y '轴,则此时12B C BC ='='为最小值,故B C ''的长度范围是,C 选项可以以AB 为x '轴进行求解出,从而求出正确结果.【详解】以BC 为x '轴,画出直观图,如图2,此时B C BC ===''A 正确,以BC 为y '轴,则此时12B C BC ='=',则B C ''的长度范围是,若以AB 或AC 为x 轴,画出直观图,如图1,以AB 为x '轴,则2,1A B A C ''''==,此时过点C '作C D '⊥x '于点D ,则45C A B '''∠=︒,则2A D C D '='=,22B D '=-,由勾股定理得:B C =''C 正确;故选:AC12.如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP xBA yBC =+,则下列说法正确的有()A.1233BD BA BC=+ B.132BD BO ⋅=C.BP BC ⋅存在最大值D.x y +的最大值为19+【答案】ABCD 【解析】【分析】对于A 、B ,将,BD BO 分别用,BA BC表示,再结合数量积的运算律即可判断;对于C 、D ,以点O 为原点建立平面直角坐标系,设()[]cos ,sin ,π,2πP ααα∈,根据平面向量的坐标表示及坐标运算即可判断.【详解】对A :因为23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,所以13OA OD DC AC ===,则()11123333BD BC CD BC CA BC BA BC BA BC =+=+=+-=+,故A 正确;对B :()22213333BO BC CO BC CA BC BA BC BA BC =+=+=+-=+,则2212212253333999BD BO BA BC BA BC BA BC BA BC⎛⎫⎛⎫⋅=+⋅+=++⋅ ⎪ ⎪⎝⎭⎝⎭51132233922=++⨯⨯⨯=,故B 正确;对C 、D :如图,以点O 为原点建立平面直角坐标系,则()()11,0,,,2,022A B C ⎛⎫- ⎪⎪⎝⎭,因为点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,所以点P 的轨迹方程为221x y +=,且在x 轴的下半部分,设()[]cos ,sin ,π,2πP ααα∈,则133333333cos ,sin ,,,,222222BP BC BA αα⎛⎫⎛⎫⎛⎫=--=-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3327πcos 3cos 624243BP BC ααα⎛⎫⋅=--+=++ ⎪⎝⎭,因为[]π,2πα∈,所以π4π7π,333α⎡⎤+∈⎢⎥⎣⎦,所以当π2π3α+=时,BP BC ⋅ 取得最大值9,故C 正确;因为BP xBA yBC =+ ,所以133cos ,sin ,,222222x y αα⎛⎫⎛⎫⎛⎫--=--+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()()13cos ,sin ,2222x y x y αα⎛⎫⎛⎫--=---+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()sin 22x y α-=-+,所以23sin 19x y α+=-+,因为[]π,2πα∈,所以当3π2α=时,x y +取得最大值2319+,故D 正确.故选:ABCD.第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()(),2,1,1,1,3a m b c ===,且()2a b c -⊥ ,则实数m 的值为_______________.【答案】4-【解析】【分析】借助向量垂直,则数量积为0计算即可得.【详解】()221,3a b m -=-,由()2a b c -⊥ ,可得()20a b c -⋅= ,即有2190m -+=,解得4m =-.故答案为:4-.14.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.49544354821737932328873520564384263491645724550688770474476721763350258392120676【答案】05【解析】【分析】根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【点睛】本题主要考查了简单随机抽样中的随机数表法,属于容易题.15.在ABC 中,60,A BC BC == 边上的高为2,则满足条件的ABC 的个数为__________.【答案】2【解析】【分析】根据正弦定理计算出三角形外接圆半径,求得A 到BC 的距离的最大值,和BC 边上的高为2比较,即可确定答案.【详解】因为ABC 中,60,A BC == ,所以ABC 的外接圆半径为122sin 60R BC ︒=⨯=,即A 位于以2为半径的圆弧 BAC上,如图,当ABC 为正三角形时,此时顶点A 到BC 的距离的最大值为6032︒=>,如图当A 位于,E F 处时,此时,BE CF 为外接圆直径,则,EC BC FB BC ⊥⊥,则2EC FB ==,满足60,A BC BC ==边上的高为2,故满足条件的ABC 的个数为2个,故答案为:2【点睛】方法点睛:解答本题判断符合条件的三角形个数问题,采用作图分析即数形结合,即可判断得出结论.16.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯的容积3113R π,则其内壁表面积为_______________.【答案】28R π【解析】【分析】先计算出圆柱的高,内壁的表面积等于圆柱的侧面积加半球的表面积.【详解】设圆柱的高为h ,内壁的表面积为S ,由题意可知:323211·33R R h R πππ+=,解得:3h R =.内壁的表面积等于圆柱的侧面积加半球的表面积,即222·28S R h R R πππ=+=.故答案为:28R π四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知12122,3m e e n e e =+=- ,其中12,e e是夹角为π3的单位向量.(1)求m;(2)求m 与n夹角的余弦值.【答案】(1(2)1114【解析】【分析】(1)代入向量模的数量积公式m =,即可求解;(2)代入向量夹角的数量积公式,即可求解.【小问1详解】12,e e 是夹角为π3的单位向量,m ∴== .【小问2详解】12,e e 是夹角为π3的单位向量,n ∴== ()()2212121122π112366cos 132m n e e e e e e e e ⋅=+⋅-=+⋅-=+-=,11112cos ,14m n m n m n⋅∴==.18.某景点某天接待了1250名游客,老年625人,中青年500人,少年125人,该景点为了提升服务质量,采用分层抽样从当天游客中抽取100人,以评分方式进行满意度回访.将统计结果按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,制成如下频率分布直方图:(1)求抽取的样本中,老年、中青年、少年的人数各是多少;(2)估计当天游客满意度分值的75%分位数.【答案】(1)50人,40人,10人(2)82.5【解析】【分析】(1)求出老年、中青年、少年的人数比例,从而求抽取样本中老年、中青年、少年的人数;(2)利用百分位数的定义进行求解即可得.【小问1详解】老年625人,中青年500人,少年125人,故老年、中青年、少年的人数比例为625:500:1255:4:1=,故抽取100人,样本中老年人数为510050541⨯=++人,中青年人数为410040541⨯=++人,少年人数为110010541⨯=++人;【小问2详解】设当天游客满意度分值的75%分位数为x ,因为()0.0100.0250.035100.70.75++⨯=<,()0.0100.0250.0350.020100.90.75+++⨯=>,所以x 位于区间[)80,90内,则()800.0200.750.7x -⨯=-,解得:82.5x =,所以估计当天游客满意度分值的75%分位数为82.5.19.已知复数12i z a =+是方程()2500,x bx a b R ++=>∈的一个解.(1)求a 、b 的值;(2)若复数2z 满足2123i z z z -=-,求2z 的最小值.【答案】(1)1a =,4b =-;(2)2.【解析】【分析】(1)将2i x a =+代入方程250x bx ++=,利用复数的四则运算结合复数相等可得出关于a 、b 的方程,结合0a >可求得a 、b 的值;(2)设()2i ,z x y x y R =+∈,根据复数的模长公式结合已知条件可得出1y x =+,再利用复数的模长公式结合二次函数的基本性质可求得2z 的最小值.【详解】(1)依题意得,()()22i 2i 50a b a ++++=,即()()24254i 0a b a ab -++++=,所以24250400a b a ab a ⎧-++=⎪+=⎨⎪>⎩,解得1a =,4b =-;(2)由(1)可得12i z =+,设()2i ,z x y x y R =+∈,则21z z -=,23i z -=因为2123i z z z -=-=,整理得1y x=+.2z ==故当12x =时,2z 取得最小值2.20.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,csin )c A A =+.(1)求C ;(2)若3AB AC AC ⊥=,,角C 的平分线交AB 于点D ,点E 满足DE CD =,求sin AEB ∠.【答案】(1)π3C =(2)321sin 14AEB ∠=【解析】【分析】(1)由条件和正弦定理边化角即可求得结果;(2)根据正弦定理和余弦定理结合条件求解即可.【小问1详解】)sin sinB C A A=+,())sin sinA C C A A+=+,cos sin sinA C C A=.因为sin0A≠sinC C=,所以tan C=又0πC<<,所以π3C=.【小问2详解】如图所示,因为π,33ACB AC∠==,所以AB=又因为CD为ACB∠的平分线,所以AD CD DB===.因为DE CD=,所以在BDE中,DB DE==又π3BDE∠=,所以BDE为等边三角形,所以BE=在ADEV中,由余弦定理可得2222π2cos213AE AD DE AD DE=+-⨯⨯=,即AE=,在ADEV中,由正弦定理可得sin sinAB AEAEB ABE=∠∠,即3321πsin sin3AEB=∠,得sin14AEB∠=.21.如图,在四棱锥P ABCD-中,底面ABCD为平行四边形,O是AC与BD的交点,=45ADC∠︒,2,AD AC PO==⊥平面,2,ABCD PO M=是PD的中点.(1)证明://PB 平面ACM ;(2)求直线AM 与平面ABCD 所成角的正切值.【答案】(1)证明见解析(2)255.【解析】【分析】(1)借助线面平行的判定定理即可得;(2)找出直线AM 与平面ABCD 所成角,借助正切函数定义计算即可得.【小问1详解】连接OM ,在平行四边形ABCD 中,O 为AC 与BD 的交点,O ∴为BD 的中点,又M 为PD 的中点,PB MO ∴∥,又PB ⊄平面,ACM MO ⊂平面,//ACM PB ∴平面ACM ;【小问2详解】取DO 的中点N ,连接,MN AN ,M 为PD 的中点,MN PO ∴∥,且112MN PO ==,由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,MAN ∴∠是直线AM 与平面ABCD 所成的角,45,2,45,90ADC AD AC ACD ADC CAD ∠=︒==∴∠=∠=︒∴∠=︒ ,在Rt DAO △中,12,12AD AO AC ===,DO ∴=122AN DO ==,在Rt ANM △中,25tan 5MN MAN AN ∠===,∴直线AM 与平面ABCD.22.如图所示的几何体中,四边形ABCD 为平行四边形,=90ACD ∠︒,1AB =,2AD =,四边形ABEF 为正方形,平面ABEF ⊥平面ABCD ,P 为DF 的中点,AN CF ⊥,垂足为N.(1)求证:AN ⊥平面CDF ;(2)求异面直线BF 与PC 所成角的正切值;(3)求三棱锥B CEF -的体积.【答案】(1)证明见解析(2)62(3)6【解析】【分析】(1)由AB AF ⊥,CD AF ⊥,可证得CD ⊥平面ACF ,得CD AN ⊥,又AN CF ⊥,即可证得结论;(2)设AC BD O = ,P 为DF 的中点,O 是BD 中点,得BF PO ∥,则CPO ∠是异面直线BF 与PC 所成角,即可求解;(3)可证得AF ⊥平面ABCD ,则三棱锥B CEF -的体积:B CEF C BEF V V --=,计算即可.【小问1详解】四边形ABEF 为正方形,AB AF ∴⊥,四边形ABCD 为平行四边形,=90ACD ∠︒,CD AC ∴⊥,AB CD ,CD AF ∴⊥,AF AC A = ,,AF AC ⊂平面ACF ,CD \^平面ACF ,AN ⊂ 平面AFC ,CD AN ∴⊥,AN CF ⊥ ,⋂=CF CD C ,,CF CD ⊂平面CDF ,AN ∴⊥平面CDF.【小问2详解】四边形ABCD 为平行四边形,=90ACD ∠︒,1AB =,2AD =,AC ∴===32AO CO ∴==, 四边形ABEF 为正方形,平面ABEF ⊥平面ABCD ,平面ABEF ⋂平面ABCD AC =,=90ACD ∠︒,CD ⊂平面ABCD ,CD \^平面PAC ,PC ⊂ 平面PAC ,CD PC ∴⊥,P 为DF的中点,122AP CP FD ∴=====,设AC BD O = ,P 为DF 的中点,O 是BD 中点,BF PO ∴∥,CPO ∴∠是异面直线BF 与PC所成角,sin 552CO CPO PC ∠===,10cos 5CPO ∴∠=,6tan 2CPO ∠=,∴异面直线BF 与PC 所成角的正切值为62.【小问3详解】平面ABEF ⊥平面ABCD ,平面ABEF ⋂平面ABCD AB =,AF AB ⊥,AF ⊂平面ABEF ,AF ∴⊥平面ABCD ,CA ==∴三棱锥B CEF -的体积:111113326B CEF C BEF BEF V V S CA --==⨯=⨯⨯⨯= .。

2023-2024学年吉林省延边州珲春第一高级中学高一(下)第一次月考数学试卷+答案解析

2023-2024学年吉林省延边州珲春第一高级中学高一(下)第一次月考数学试卷+答案解析

2023-2024学年吉林省延边州珲春第一高级中学高一(下)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,,全集,则()A.B.C.D.I2.欧拉恒等式为虚部单位,e 为自然对数的底数被称为数学中最奇妙的公式,它是复分析中欧拉公式的特例:当自变量时,,得根据欧拉公式,复数的虚部为()A.B.C.D.3.在矩形ABCD 中,E 为线段AB 的中点,则()A. B.C.D.4.在中,角A ,B ,C 的对边分别为a ,b ,c ,若,且,则角A 的余弦值为()A.B.C.D.5.已知向量满足,则()A. B.0C.1D.26.若函数的零点所在的区间为,则实数a 的取值范围是()A. B.C.D.7.在中,已知角A 、B 、C 的对边分别是a 、b 、c ,且,,则的形状是()A.直角三角形 B.等腰三角形 C.等边三角形D.等腰直角三角形8.已O 知是的外心,,,则()A.10B.9C.8D.6二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知复数,则()A. B.复数z的共轭复数为C.复平面内表示复数z的点位于第一象限D.复数z是方程的一个根10.在中,角A,B,C的对边分别为a,b,根据下列条件,判断三角形解的情况,其中正确的是()A.,,,有唯一解B.,,,无解C.,有两解D.,,,有唯一解11.设P为所在平面内一点,则下列说法正确的是()A.若,则点P是的重心B.若,则点P是的垂心C.若,则点P是的内心D.若,则点P是的外心三、填空题:本题共3小题,每小题5分,共15分。

12.已知复数是纯虚数,其中i为虚数单位,则实数m的值为______.13.已知,,²,则的最小值为______.14.拿破仑定理是法国著名军事家拿破仑波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形此等边三角形称为拿破仑三角形的顶点”.在中,已知,且,现以BC,AC,AB为边向外作三个等边三角形,其外接圆圆心依次记为,,,则的面积最大值为______.四、解答题:本题共5小题,共77分。

高一数学 第二次月考试卷(含答案)

高一数学 第二次月考试卷(含答案)

高一数学 第二次月考试卷班级______姓名________ 命题教师——一、选择题(本题12小题,每题5分,共60分)1、函数1y x=+ D ) A. [)4,-+∞ B .()()4,00,-+∞ C .()4,-+∞ D. [)()4,00,-+∞2、若集合{}{}21,02,A x x B x x =-<<=<<则集合A B 等于(D )A 、{}11x x -<<B 、{}21x x -<<C 、{}22x x -<<D 、{}01x x <<3、若集合{}2228x A x Z +=∈<≤,{}220B x R x x =∈->,则()R A C B 所含的元素个数为( C )A 、0B 、1C 、2D 、34、函数1()f x x x=-的图像关于( C )。

A. y 轴对称 B .直线y x =-对称 C .坐标原点对称 D.直线y x =对称5、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (D) A.2 B.1 C.0 D.-26、若)(x f 是偶函数,其定义域为),(+∞-∞,且在[)+∞,0上是减函数,则)23(-f 与)252(2++a a f 的大小关系是 ( C ) A 、)252()23(2++>-a a f f B 、)252()23(2++<-a a f f C 、)252()23(2++≥-a a f f D 、)252()23(2++≤-a a f f 7、若)(x f ,)(x g 都是奇函数,且2)()()(++=x bg x af x F 在),0(+∞上有最大值8,则)(x F 在)0,(-∞上有 ( D )A 、最小值8-B 、最大值8-C 、最小值6-D 、最小值4-8、设253()5a =,352()5b =,252()5c =,则,,a b c 的大小关系是 ( A ) A 、a c b >> B 、a b c >> C 、c a b >> D 、b c a >>9、函数1()(0,1)x f x a a a +=>≠的值域为[)1,+∞,则(4)f -与(1)f 的关系是( A )A 、(4)(1)f f ->B 、(4)(1)f f -=C 、(4)(1)f f -<D 、不能确定10、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范( B )A. 3(,3)2 B. 3,32⎡⎤⎢⎥⎣⎦ C. (]0,3 D. 3,32⎡⎫⎪⎢⎣⎭11、已知[]1,1-∈x 时,02)(2>+-=a ax x x f 恒成立,则实数a 的取值范围是( A ) A.(0,2) B.),(∞+2 C. ),(∞+0 D.(0,4) 12、奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( D ) A 、2- B 、1- C 、0 D 、1二、填空题(本题共4小题,每题5分,共20分)13、设集合{}{}21,1,3,2,4,A B a a =-=++{}3A B =,则实数a 的值为_1____ 。

辽宁省大连市滨城高中联盟2023-2024学年高一下学期4月月考试题 数学含答案

辽宁省大连市滨城高中联盟2023-2024学年高一下学期4月月考试题 数学含答案

滨城高中联盟2023-2024学年度下学期高一4月份考试数学试卷(答案在最后)命题人:一、单选题本题共8道小题,每小题5分,共40分,在每道小题给出的四个选项中,只有一项是符合题目要求的1.2024- 的终边在()A.第一象限B.第二象限C.第三象限D.第四象限2.若()π,πx ∈-,使等式()sin πsin 1x =-成立的x 的值是()A.π2-B.π2 C.π5π,66D.π5π,66--3.函数()21sin 21xf x x ⎛⎫=-⋅ ⎪+⎝⎭的图象大致为()A. B.C. D.4.月牙泉,古称沙井,俗名药泉,自汉朝起即为“敦煌八景”之一,得名“月泉晓澈”,因其形酷似一弯新月而得名,如图所示,月牙泉边缘都是圆弧,两段圆弧可以看成是ABC 的外接圆的一部分和以AB 为直径的圆的一部分,若C 是 AB 的中点,2π3ACB ∠=,南北距离AB 的长大约,则该月牙泉的面积约为()(参考数据:π 1.73≈≈)A.22288mB.25792mC.27312mD.28112m 5.若sin ,cos θθ是方程20x mx m -+=的两根,则m 的值为()A.1B.1+C.1±D.1-6.已知()f x 是定义在R 上的奇函数,在()0,∞+上是减函数且有()0f x >,若12π5π2πsin ,cos ,tan 777a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.a b c >>B.c a b >>C.b a c>> D.c b a>>7.已知函数()()cos sin f x x =,现给出下列四个选项正确的是()A.()f x 为奇函数B.()f x 的最小正周期为2πC.π2x =是()f x 的一条对称轴D.()f x 在ππ,22⎛⎫-⎪⎝⎭上单调递增8.定义,,a a b a b b a b≥⎧⊗=⎨<⎩,已知函数()()2211,32sin 32cos f x g x x x ==--,则函数()()()F x f x g x =⊗的最小值为()A.12 B.23 C.1 D.43二、多选题本题共三道小题,每小题6分,共18分,在每道小题给出的四个选项中,多个选项是符合题目要求的,部分正确得2或3分,有选错的得0分9.下列选项正确的是()A.函数()()sin 2(0)f x x ωϕω=+>的最小正周期是πωB.若α是第一象限角,则tan 02α>C.函数()πtan 26f x x ⎛⎫=+⎪⎝⎭的对称中心是()ππ,0,Z 122k k ⎛⎫-+∈ ⎪⎝⎭D.在ABC 中,“sin cos tan 0A B C <”是“ABC 是钝角三角形”的充要条件10.函数()()ππ02,22f x x ωϕωϕ⎛⎫=+<≤<< ⎪⎝⎭的部分图象如图所示,则下列说法中正确的是()A.()f x 的表达式可以写成()5π24f x x ⎛⎫=+ ⎪⎝⎭B.()f x 的图象向右平移3π8个单位长度后得到的新函数是奇函数C.()π14g x f x ⎛⎫=++ ⎪⎝⎭的对称中心ππ,1,82k k Z ⎛⎫-+∈ ⎪⎝⎭D.若方程()1f x =在()0,m 上有且只有6个根,则5π13π,24m ⎛⎫∈⎪⎝⎭11.已知函数()()2log ,40ππ4sin ,02436x x f x x x ⎧--<<⎪=⎨⎛⎫+≤<⎪ ⎪⎝⎭⎩,若()()(0)g x f x t t =->有2n 个零点()n N +∈,记为12212,,,,n n x x x x - ,且12212n n x x x x -<<<< ,则下列结论正确的是()A.()0,2t ∈B.1217,24x x ⎛⎫+∈-- ⎪⎝⎭C.45189,484x x ⎛⎫∈⎪⎝⎭D.()3452122182n n x x x x x -+++++= 三、填空题本题共三道小题,每小题5分,共15分12.函数()1πlg sin 26f x x =⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦的定义域是__________.13.已知函数()22tan sin sin cos 2cos f x x x x x =-+,则()2f =__________.14.已知定义在R 上的偶函数()f x ,当0x ≥时满足()π16ππ2sin 2,0,6613π,226x x x f x x x -+⎧⎛⎫+≤≤ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫+> ⎪⎪⎝⎭⎩关于的方程()()2[]230f x af x -+=有且仅有8个不同实根,则实数a 的取值范围是__________.四、解答题本题共五道小题,其中15题满分13分,16、17题满分各15分,18、19题满分各17分共77分.15.在单位圆中,锐角α的终边与单位圆相交于点,2P m ⎛⎫⎪ ⎪⎝⎭,连接圆心O 和P 得到射线OP ,将射线OP 绕点O 按逆时针方向旋转θ后与单位圆相交于点B ,其中π0,2θ⎛⎫∈ ⎪⎝⎭.(1)求()()()322π3π4sin 2sin 4cos π2222cos 5πcos ααααα⎛⎫⎛⎫++--+ ⎪ ⎪⎝⎭⎝⎭+++-的值;(2)记点B 的横坐标为()f θ,若π164f θ⎛⎫-= ⎪⎝⎭,求π5πcos cos 36θθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值.16.已知点()()()()1122,,,A x f x B x f x 是函数()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>>-<<⎪⎝⎭图象上的任意两点,()01f =-,且当()()12max 4f x f x -=时,12minπ2x x -=.(1)求当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,()f x 的单调递增区间;(2)将()y f x =图象上所有点的横坐标变为原来的12倍,纵坐标也变为原来的12倍,再将所得函数图象上的所有点向左平移π8个单位得到()y g x =的图象,若()g x 在区间()0,m 上有最大值没有最小值,求实数m 的取值范围.17.位于大连森林动物园的“大连浪漫之星”摩天轮享有“大连观光新地标,浪漫打卡新高度”的美称.如图,摩天轮的轮径(直径)为70米,座舱距离地面的最大高度可达80米,摩天轮的圆周上均匀地安装着30个座舱,并且运行时按逆时针匀速旋转,转一周需要18分钟.如图,想要观光的乘客需先从地面上楼梯至乘降点P ,在乘降点P 处进入座舱后开始开始观光,再次回到乘降点P 时观光结束.本题中座舱都被视为圆周上的点,每个座舱高度忽略不计.(1)甲乙两名游客分别坐在A B 、两个不同的座舱内,他们之间间隔4个座舱,求劣弧 AB 的弧长l (单位:米);(2)设游客从乘降点P 处进舱,开始转动t 分钟后距离地面的高度为H 米,求在转动一周的过程中,H 关于时间t 的函数解析式;(3)若游客在距离地面至少62.5米的高度能够获得最佳视觉效果,请问摩天轮转动一周能有多长时间使(1)中的甲,乙两位游客都有最佳视觉效果.18.已知函数()()sin 2(0π)f x x ϕϕ=+<<,且满足ππ1212f x f x ⎛⎫⎛⎫-+=--- ⎪ ⎪⎝⎭⎝⎭(1)设()2cos 2sin g x x a x =+,若对任意的1ππ,22x ⎡⎤∈-⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,都有()()123g x f x <+,求实数a 的取值范围;(2)当(1)()2cos 2sin g x x a x =+中12a =时,若[]12,0,1x x ∀∈∀∈R ,()42(0)x xh x m m m =⋅-+>都有()()2140h x g x -≥成立,求实数m 的取值范围.19.若函数()f x 满足()3π4f x f x ⎛⎫+=- ⎪⎝⎭且()()πR 2f x f x x ⎛⎫+=-∈ ⎪⎝⎭,则称函数()f x 为“M 函数”.(1)试判断()4sin3xf x =是否为“M 函数”,并说明理由;(2)函数()f x 为“M 函数”,且当π,π4x ⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,求()y f x =的解析式,并写出在3π0,2⎡⎤⎢⎥⎣⎦上的单调递增区间;(3)在(2)的条件下,当()π3π,πN 22k x k ⎡⎤∈-+∈⎢⎥⎣⎦时,关于x 的方程()f x a =(a 为常数)有解,记该方程所有解的和为()S k ,求()3S .滨城高中联盟2023-2024学年度下学期高一4月份考试数学试卷答案详解一、单选题1.【答案】B【详解】易知20241366360-=-⨯ ,而136 的终边在第二象限,故1640- 的终边在第二象限.即B 正确.2.【答案】D【详解】由()sin πsin 1x =-得ππsin 2π,2x k k Z =-+∈,所以1sin 2,2x k k Z =-+∈,又[]sin 1,1x ∈-,所以1sin 2x =-,所以π2π6x k =-+或5π2π,6x k k Z =-+∈,因为()π,πx ∈-,所以π6-或5π6-.故选:D3.【答案】C【详解】()21sin 21x f x x ⎛⎫=-⋅ ⎪+⎝⎭,由已知()f x 的定义域为R ,又()()()()()221121sin sin sin 212112x x x x xf x x x x f x ---⎛⎫⎛⎫--⎛⎫-=-⋅-=⋅-=⋅-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,所以()f x 为偶函数,图象关于y 轴对称,故排除AB ,当1x =时,()12111sin1sin10213f ⎛⎫=-=> ⎪+⎝⎭,故排除D.故选:C.4.【答案】D【详解】设ABC 的外接圆的半径为r ,圆心为0,如图,因为1π,23BCO BCA OB OC ∠∠===,所以OBC 是等边三角形,120322AB BD ===因为月牙内弧所对的圆心角为2π2π2π233-⨯=,所以内弧的弧长2π12080π3l =⨯=,所以弓形ABC 的面积为11180π120604800π22S =⨯⨯-⨯=-以AB 为直径的半圆的面积为21π5400π2⨯=,所以该月牙泉的面积为(5400π4800π600π188462288112--=+≈+=,故选:D5.【答案】A【详解】由题设2Δ()40m m =--≥,得4m ≥或0m ≤.由韦达定理得sin cos m θθ+=且sin cos m θθ=,所以22(sin cos )12sin cos 12m m θθθθ+=+⇒=+,即2210m m --=,可得12m =±4m ≥或0m ≤,所以故12m =-.故选:A 6.【答案】B 【详解】根据题意,12π12π2π2πsinsin 2πsin sin 07777⎛⎫⎛⎫=-=-=-< ⎪ ⎪⎝⎭⎝⎭,所以2π2πsin sin 077a f f ⎛⎫⎛⎫=-=-< ⎪ ⎪⎝⎭⎝⎭5π2π2π2π2πcoscos πcos 0,cos cos 077777b f f ⎛⎫⎛⎫⎛⎫=-=-<=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为π2ππ472<<,由三角函数线知2π2πcos sin 77<,所以2π2πcos sin 77->-已知()f x 是定义在R 上的奇函数,在()0,∞+上是减函数且有()0f x >,所以在(),0∞-上是减函数且有()0f x <则0b a <<,已知2πtan 07>,则有2πtan 07c f ⎛⎫=> ⎪⎝⎭,所以.故选B.7.【答案】C【详解】因为()f x 的定义域为()()()()()R,cos sin cos sin cos sin f x x x x f x ⎡⎤-=-=-==⎣⎦,所以()f x 为偶函数,A 错误;由()()πf x f x =+,可得()f x 的最小正周期为π,B 错误;()ππcos sin cos cos 22f x x x ⎡⎤⎛⎫⎛⎫+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()()ππcos sin cos cos cos cos 22f x x x x ⎡⎤⎛⎫⎛⎫-=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为ππ22f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,所以π2x =是()f x 的一条对称轴,C 正确;当π,02x ⎛⎫∈-⎪⎝⎭时,函数sin y x =单调递增,值域为()1,0-,当()1,0x ∈-时,函数cos y x =单调递增,故()f x 在π,02⎛⎫-⎪⎝⎭上单调递增.当π0,2x ⎛⎫∈ ⎪⎝⎭时,函数sin y x =单调递增,值域为()0,1,当()0,1x ∈时,函数cos y x =单调递减,故()f x 在π0,2⎛⎫⎪⎝⎭上单调递减,D 错误.故选:C.8.【答案】A【详解】依题意得()()()(),F x f x F x g x ≥≥,则()()()2F x f x g x ≥+,()()()()2222221111132sin 32cos 32sin 32cos 432sin 32cos f x g x x x x x x x ⎛⎫⎡⎤+=+=+-+- ⎪⎣⎦----⎝⎭2222132cos 32sin 1221432sin 32cos 4x x x x ⎛⎛⎫--=++≥+= ⎪ --⎝⎭⎝(当且仅当222232cos 32sin 32sin 32cos x x x x --=--,即221sin cos 2x x ==时“=”成立.此时,()()1f x g x ==,()()21,F x F x ∴≥∴的最小值为12,故选:A.二、多选题9.【答案】AB【详解】对A :最小正周期是2ππ2ωω=,故A 正确;对B :若α是第一象限角,则2α是第一或第三象限角,所以tan 02α>,故B 正确;对C :令()()ππππ2Z Z 62124k k x k x k +=∈⇒=-+∈,故C 错误;对D :在ABC 中,由0πA <<知sin 0A >,又由sin cos tan 0A B C <,则有cos 0tan 0B C >⎧⎨<⎩或cos 0tan 0B C <⎧⎨>⎩,所以C 或B 为钝角,满足充分性,而ABC 是钝角三角形,A 为钝角,则有sin cos tan 0A B C >,不满足必要性,故D 错误.故选:AB 10.【答案】ABC【详解】由()01f =-,得1ϕ=-,即sin 2ϕ=-,又ππ22ϕ-<<,π4ϕ∴=-,又()f x 的图象过点π,08⎛⎫⎪⎝⎭,则π08f ⎛⎫= ⎪⎝⎭,即ππsin 084ω⎛⎫-= ⎪⎝⎭,πππ84k ω∴-=,即得82,k k Z ω=+∈,又02,2ωω<≤∴=,所以()π5π2244f x x x ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭,故A 正确;()f x 向右平移3π8个单位后得3352228842y f x x x x ππππ⎡⎤⎛⎫⎛⎫⎡⎤=-=-+=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,为奇函数,故B 正确;对于C ,()πππ2121444g x x x ⎡⎤⎛⎫⎛⎫=+-+=++ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,()()πππ2π482k x k k Z x k Z +=∈⇒=-+∈所以对称中心ππ,1,82k k Z ⎛⎫-+∈ ⎪⎝⎭,故C 正确;对于D ,由()1f x =,得5πcos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ,Z 2x k k =+∈,方程()1f x =即()ππππsin 20,2,242444x x m x m ⎛⎫⎛⎫-=∈∴--- ⎪ ⎪⎝⎭⎝⎭又在()0,m 上有6个根,π19π25π2,444m ⎛⎤-∈ ⎥⎝⎦,所以5π13π,24m ⎛⎤∈ ⎥⎝⎦,故D 错误.故选:ABC.11.【答案】ABD【详解】将函数2log ,(04)y x x =<<的图象沿y 轴对称并将x 轴下方部分翻折到x 轴上方,即可得到()()2log ,(40)f x x x =--<<的图象;对于()ππ4sin ,02436f x x x ⎛⎫=+≤< ⎪⎝⎭,最小正周期为2π6π3T ==,故[)0,24上有4个周期,令ππππ,Z 362x k k +=+∈,则可得()ππ4sin ,02436f x x x ⎛⎫=+≤<⎪⎝⎭的对称轴为31,0,1,2,3,,7x k k =+= ;由此作出函数()()2log ,40ππ4sin ,02436x x f x x x ⎧--<<⎪=⎨⎛⎫+≤<⎪ ⎪⎝⎭⎩的图象,如图:则()()(0)g x f x t t =->的零点问题即为()f x 的图象与直线y t =的交点问题,由图象可知,当4t >时,()f x 的图象与直线y t =有1个交点,不合题意;当4t =时,()f x 的图象与直线y t =有5个交点,不合题意;当24t ≤<时,()f x 的图象与直线y t =有9个交点,不合题意;当02t <<,即()0,2t ∈时,()f x 的图象与直线y t =有10个交点,符合题意,A 正确;由题意可知1241,10x x -<<--<<,满足()()2122log log x x -=-,则()()2122log log x x -=--,即()()()()2122212log log 0,log 0x x x x -+-=--=,()()()()()1212121,2,x x x x x x ∴--=∴-+->=≠,即122x x +<-,由图像知()0,2t ∈,有2n 个零点()n N +∈,所以()1214,1,1,4x x ⎛⎫∈--∈--⎪⎝⎭,由对勾函数得1217,2,B 4x x ⎛⎫+∈-- ⎪⎝⎭正确;由函数图象可得;4541114,,62x x x ⎛⎫+=∈ ⎪⎝⎭,故()454518714,48,C 4x x x x ⎛⎫=-∈ ⎪⎝⎭错误;由图象可知()f x 的图象与直线y t =有10个交点,即5n =,且34,x x 关于直线4x =对称,故348x x +=,同理得455667788991014,20,26,32,38,44x x x x x x x x x x x x +=+=+=+=+=+=,故()()345212345291022n n x x x x x x x x x x -+++++=+++++ 8142026323844182=++++++=,D 正确.故选:ABD三、填空题12.【答案】()πππ5ππ,ππ,π,Z 126612k k k k k ⎛⎫⎛⎫-++⋃++∈ ⎪ ⎪⎝⎭⎝⎭或者π5πππ1212x k x k ⎧-+<<+⎨⎩且ππ,Z 6x k k ⎫≠+∈⎬⎭【详解】由函数定义可知πsin 206πsin 216x x ⎧⎛⎫+> ⎪⎪⎪⎝⎭⎨⎛⎫⎪+≠ ⎪⎪⎝⎭⎩,可得π2π2π2π6,ππ22π62k x k k Z x k ⎧<+<+⎪⎪∈⎨⎪+≠+⎪⎩,所以定义域是()πππ5ππ,ππ,π,Z 126612k k k k k ⎛⎫⎛⎫-++⋃++∈ ⎪ ⎪⎝⎭⎝⎭或者π5πππ1212x k x k ⎧-+<<+⎨⎩且ππ,Z 6x k k ⎫≠+∈⎬⎭13.【答案】45【详解】因为()22222222sin sin cos 2cos tan tan 2tan sin sin cos 2cos sin cos tan 1x x x x x x f x x x x x x x x -+-+=-+==++,所以()42242415f -+==+.14.【答案】74⎫⎪⎭【详解】因为π06x ≤≤,可得πππ2662x ≤+≤,所以()f x 在π0,6⎡⎤⎢⎥⎣⎦单调递增,()π01,26f f ⎛⎫== ⎪⎝⎭,又由π6x >时,()π161322x f x -+⎛⎫=+ ⎪⎝⎭为单调递减函数,且π26f ⎛⎫= ⎪⎝⎭,因为函数()f x 是R 上的偶函数,画出函数()f x的图象,如图所示,设()t f x =,则方程()()2[]230f x af x -+=可化为2230t at -+=,由图象可得:当2t =时,方程()t f x =有2个实数根;当322t <<时,方程()t f x =有4个实数根;当312t <<时,方程()t f x =有2个实数根;当1t =时,方程()t f x =有1个实数根;要使得()()2[]230f x af x -+=有8个不同的根,设12,t t 是方程2230t at -+=的两根12,t t ,设()223g t t at =-+,(1)1212322322t t t t ⎧<<⎪⎪⎪<<⎨⎪≠⎪⎪⎩,即()2Δ4120322393302424430a a g a g a ⎧=->⎪⎪<<⎪⎨⎛⎫⎪=-+> ⎪⎪⎝⎭⎪=-+>⎩74a <<,综上可得,实数a的取值范围是74⎫⎪⎭.四、解答题15.【答案】(1)1;(2)1514-【详解】(1)由于点P 在单位圆上,且α是锐角,可得12m =,所以1cos 2α=,所以()()()322π3π4sin 2sin 4cos π2222cos 5πcos ααααα⎛⎫⎛⎫++--+ ⎪ ⎪⎝⎭⎝⎭+++-3224cos 2cos 4cos 2cos 122cos cos αααααα++===++(2)由(1)可知1cos 2α=,且α为锐角,可得π3xOP α∠==,根据三角函数定义可得:()πcos 3f θθ⎛⎫=+⎪⎝⎭,因为ππ1cos 0664f θθ⎛⎫⎛⎫-=+=> ⎪ ⎪⎝⎭⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭,因此ππ0,62θ⎛⎫+∈ ⎪⎝⎭,所以πsin 64θ⎛⎫+= ⎪⎝⎭所以π5ππππcos cos cos cos π36626θθθθ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=+-++- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππsin cos 66θθ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭1514-=16.【答案】(1)π5π11π0,,,3612⎡⎤⎡⎤⎢⎢⎣⎦⎣⎦;(2)π7π2424m <≤【详解】(1)因为()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭,且()()12max 24f x f x A -==,所以2A =依题意可得()02sin 1π02f ϕϕ⎧==-⎪⎨-<<⎪⎩得π6ϕ=-又 当()()12max 4f x f x -=时,12minπ2x x -=,1ππ22T ω∴==,又0ω>,即2ω=,()π2sin 26f x x ⎛⎫∴=- ⎪⎝⎭令πππ2π22π,262k x k k Z -+≤-≤+∈得()f x 在R 的单调递增区间为πππ,π,63k k k Z⎡⎤-++∈⎢⎥⎣⎦又11π0,12x ⎡⎤∈⎢⎣⎦,所以()f x 的单调递增区间为π5π11π0,,,3612⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(2)将()y f x =图象上所有点的横坐标变为原来的12倍,纵坐标变为原来的12倍得到πsin 46y x ⎛⎫=- ⎪⎝⎭再πsin 46y x ⎛⎫=-⎪⎝⎭向左平移π8个单位得到()πππsin 4sin 4863y g x x x ⎡⎤⎛⎫⎛⎫==+-=+ ⎪ ⎢⎝⎭⎝⎭⎣⎦,当()0,x m ∈,所以πππ4,4333x m ⎛⎫+∈+ ⎪⎝⎭,因为()g x 在区间()0,m 上有最大值没有最小值,所以ππ3π4232m <+≤,解得π7π2424m <≤,17.【答案】(1)35π3米;(2)()π35cos 45,0189H t t t =-+≤≤;(3)3分钟【详解】(1)解:由题知摩天轮的圆周上均匀地安装着30个座舱,所以两个相邻座舱所对的圆心角为:2ππ3015=,因为甲、乙之间间隔4个座舱,所以劣弧 AB 所对的圆心角为ππ5153⨯=所以π35π3533l r α==⨯=,即劣弧 AB的弧长为35π3米.(单位:米)(2)如图,以摩天轮转轮中心O 为坐标原点,分别以过O 的水平线和坚直线为,x y 轴,建立平面直角坐标系.不妨设开始转动t 分钟后距离地面的高度()()sin ,(0,0,0)H t A t b A b ωϕω=++>>>(单位:米),由题可知,max min ()80,()807010H t H t ==-=,所以max min()()352H t H t A -==,max min ()()452H t H t b +==,因为2π18T ω==,解得π9ω=,此时()π35sin 45,(0)9H t t ϕω⎛⎫=++>⎪⎝⎭因为()0807010H =-=,代入有:35sin 4510ϕ+=,解得π2π,Z 2k k ϕ=-+∈故()πππππ35sin 2π4535sin 4535cos 4592929H t t k t t ⎛⎫⎛⎫=-++=-+=-+⎪ ⎪⎝⎭⎝⎭综上:()π35cos45,0189H t t t =-+≤≤;(t 的范围)(3)因为在距离地面至少62.5米的高度能够获得最佳视觉效果,所以()()62.5,0,18H t t ≥∈,即π35cos 4562.59t -+≥,解得:π1cos92t ≤-甲,即2ππ4π393t ≤≤,解得612t ≤≤甲,所以1266-=分钟,故有6分钟的时间使游客甲有最佳视觉效果,因为劣弧AB 所对的圆心角为π3,所以甲乙相隔的时间为π32π18t =乙,解得3t =乙分钟当甲刚开始有最佳视觉效果时,乙需3分钟后才有视觉效果,故甲乙都有最佳视觉效果的时间为633-=分钟.18.【答案】(1)()2,2-;(2)[)3,∞+【详解】(1)因为()()sin 2(0π)f x x ϕϕ=+<<满足ππ1212f x f x ⎛⎫⎛⎫-+=--- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的对称中心为π,012⎛⎫-⎪⎝⎭,所以π6ϕ=,即()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,因为2π0,2x ⎡⎤∈⎢⎥⎣⎦,所以2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,所以()22π1sin 2,162f x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦,又因为对任意的12πππ,,0,222x x ⎡⎤⎡⎤∈-∈⎢⎥⎢⎥⎣⎦⎣⎦,都有()()123g x f x <+成立,所以()()()121max max max 3,134g x f x g x <+<+=,()22cos 2sin sin 2sin 1g x x a x x a x =+=-++,因为1ππ,22x ⎡⎤∈-⎢⎥⎣⎦,所以[]1sin 1,1x ∈-,设[]sin ,1,1t x t =∈-,则有()221t t at ϕ=-++图象开口向下,对称轴为t a =的抛物线,当1a ≥时,()t ϕ在[]1,1t ∈-上单调递增,所以()max ()12t a ϕϕ==,所以24a <,解得2a <,所以12a ≤<;当1a ≤-时,()t ϕ在[]1,1t ∈-上单调递减,所以()max ()12t a ϕϕ=-=-,所以24a -<,解得2a >-,故21a -<≤-;当11a -<<时,()2max ()1t a a ϕϕ==+,故214a +<,解得a <<11a -<<,综上所述:实数a 的取值范围为()2,2-.(2)当12a =时,对[]12,0,1x x ∀∈∀∈R ,都有()()21504h x g x -≥成立,则()min max 5()4h x g x ⎡⎤≥⎢⎥⎣⎦由(1)可知12a =时,max 5()4g x =,所以()max [4]5g x =.则()5h x ≥在[]0,1x ∈恒成立,即()425xxh x m m =⋅-+≥在[]0,1x ∈恒成立则5241xx m +≥+在[]0,1x ∈恒成立.令[]52,6,7xt t +=∈,则()12126102610t h t t t t t==-++-,因为()22610h t t t =+-在[]6,7t ∈单调递增,所以2min 261()61063h t =+-=,所以()11313h t ≤=,所以3m ≥,综上所述,实数m 的取值范围为[)3,∞+.19.【答案】(1)不是,理由见解析(2)答案见解析(3)()7π,0220π,012330π,240π,12a a a S a a =⎧⎪⎪<<=⎪⎪=⎨=⎪⎪⎪<<⎪⎩或【详解】(1)解:()4sin 3xf x =不是为“M 函数”,理由如下:因为()π4π2π444πsin sin ,sin sin2323333x x f x x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+=+-=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以,()()πR 2f x f x x ⎛⎫+≠-∈⎪⎝⎭,因此,函数()4sin3xf x =不是为“M 函数”.(2)解:函数()f x 满足()3π4f x f x ⎛⎫+=- ⎪⎝⎭,令3π4x x =+得()3π3π3π444f x fx f x ⎡⎤⎛⎫⎛⎫++=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即()3π2f x f x ⎛⎫+= ⎪⎝⎭所以,函数()f x 为周期函数,且最小正周期为3π2T =,因为()()πR 2f x f x x ⎛⎫+=-∈⎪⎝⎭,则()f x 的一个对称轴为π4x =.①当()3ππ3π,π242k k x k Z ⎡⎤∈++∈⎢⎥⎣⎦时,()3ππ,π24k x k Z ⎡⎤-∈∈⎢⎥⎣⎦,则()()3π3πsin 22k k f x f x x k Z ⎛⎫⎛⎫=-=-∈ ⎪ ⎪⎝⎭⎝⎭;②当()3ππ3ππ,Z 2224k k x k ⎡⎤∈-+∈⎢⎥⎣⎦,则()3πππ,Z 224k x k ⎡⎤-∈-∈⎢⎥⎣⎦,则()π3ππ,πZ 224k x k ⎛⎫⎡⎤--∈∈ ⎪⎢⎥⎝⎭⎣⎦,所以,()π3ππ3π3πsin cos 22222k k k f x f x x x k Z ⎫⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--=--=-∈⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎭.综上所述,()()()3π3ππ3ππcos ,222243π3ππ3πsin ,π2242k k k x x k Z f x k k k x x k Z ⎧⎛⎫--≤≤+∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤+∈ ⎪⎪⎝⎭⎩,所以,函数()f x 在3π0,2⎡⎤⎢⎥⎣⎦上的单调递增区间为ππ3π,,π,422⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.(3)解:由(2)可得函数()f x 在π,π2⎡⎤-⎢⎥⎣⎦上的图象如下图所示,下面考虑方程()f x a =在区间π,π2⎡⎤-⎢⎥⎣⎦的根之和.①当202a ≤<或1a =时,方程()f x a =有两个实数解,其和为π2;②当22a =时,方程()f x a =有三个实数解,其和为3π4;③当212a <<时,方程()f x a =有四个实数解,其和为π.当()π3π,πN 22k x k ⎡⎤∈-+∈⎢⎥⎣⎦时,关于x 的方程()f x a =(a 为常数)有解,记该方程所有解的和为()S k ,所以,当0a =时,()()π3π341237π22S =-⨯+⨯++=;当202a <<或1a =时,()()π3π32412320π42S ⎡⎤=⨯⨯+⨯++=⎢⎥⎣⎦;当22a =时,()()π3π33412330π42S ⎡⎤=⨯⨯+⨯++=⎢⎥⎣⎦;当212a <<时,()()π3π34412340π42S ⎡⎤=⨯⨯+⨯++=⎢⎥⎣⎦.因此,()7π,0220π,0123230π,2240π,12a a a S a a =⎧⎪⎪<<=⎪⎪=⎨=⎪⎪⎪<<⎪⎩或。

2023-2024学年安徽省安庆市怀宁县新安中学高一(下)月考数学试卷(6月份)(含答案)

2023-2024学年安徽省安庆市怀宁县新安中学高一(下)月考数学试卷(6月份)(含答案)

2023-2024学年安徽省安庆市怀宁县新安中学高一(下)月考数学试卷(6月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知e 1,e 2是单位向量,且e 1,e 2的夹角为π3,则|e 1+te 2|(t ∈R)的最小值为( )A. 12B.32C. 1D.522.已知点P ,A ,B ,C 在同一个球的球表面上,PA ⊥平面ABC ,AB ⊥AC ,PB = 5,BC =3,PC =2,则该球的表面积为( )A. 6πB. 8πC. 12πD. 16π3.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ).A. 2πB. 32πC. 233πD. 12π4.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且acosC +3asinC−b−c =0,则A 为( )A. π6B. π3C. 2π3D. π45.若z ∈C ,且|z|=1,则|z−3i|的最小值是( )A. 2B. 3C. 4D. 56.已知正四面体的各棱长均为3,各顶点均在同一球面上,则该球的表面积为( )A. 9πB. 12πC. 27π4D. 27π27.已知在一个表面积为24的正方体ABCD−A 1B 1C 1D 1中,点E 在B 1D 上运动,则当BE +A 1E 取得最小值时,AE =( )A. 2B. 322C.3D. 3248.已知点P 为△ABC 所在平面内一点,且满足AP =λ(AB|AB|cosBAC|AC|cosC)(λ∈R),则直线AP 必经过△ABC的( )A. 重心B. 内心C. 垂心D. 外心二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知平面向量OA 、OB 、OC 为三个单位向量,且OA ⋅OB =0,若OC =xOA +yOB(x,y ∈R),则x +y 的取值可能为( )A. −2B. 1C. 2D. 3210.半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.传统的足球,就是根据这一发现而制成,最早用于1970年的世界杯比赛.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若这个二十四等边体的棱长都为2,则下列结论正确的是( )A. MQ⊥平面AEMHB. 异面直线BC和EA所成角为60°D. 该二十四等边体外接球的表面积为16πC. 该二十四等边体的体积为402311.如图,在正方体ABCD−A1B1C1D1中,E是棱DD1的中点,F在侧面CDD1C1上运动,且满足B1F//平面A1BE.则下列命题中正确的有( )A. 侧面CDD1C1上存在点F,使得B1F⊥CDB. 直线B1F与直线CD1所成角可能为60°C. 三棱锥A1−BEF的体积为定值D. 设正方体棱长为1,则过点E,F,A的平面截正方体所得的截面面积最大值为52三、填空题:本题共3小题,每小题5分,共15分。

山东省潍坊市部分学校2023-2024学年高一下学期第二次月考数学试题

山东省潍坊市部分学校2023-2024学年高一下学期第二次月考数学试题

山东省潍坊市部分学校2023-2024学年高一下学期第二次月考数学试题一、单选题1.在ABC V 中,角,,A B C 的对边分别为,,a b c ,且222a c b a c+-=,4ac =,则B A B C ⋅=u u u r u u u r ( )AB .C .2D .2-2.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是A .众数是82B .中位数是82C .极差是30D .平均数是823.在复平面内,复数()4i 1i +的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是( )A .1784π3B .1884π3C .2304π3D .2504π35.正四棱柱1111ABCD A B C D -中,三棱锥1A ABD -的体积为11,3AC 与底面ABCD 所成角的)A .10B .12C .14D .186.在ABC V 中,AB AC =,若点O 为ABC V 的垂心,且满足14AO AB xAC =+u u u r u u u r u u u r ,则c o s BAC ∠的值为( )A .12 B .13 C .14 D .157.在明代珠算发明之前,我们的先祖从春秋开始多是用算筹为工具来记数、列式和计算的.算筹实际上是一根根相同长度的小木棍,如图是利用算筹表示数1~9的一种方法,例如:47可以表示为“”,已知用算筹表示一个不含“0”且没有重复数字的三位数共有504种等可能的结果,则这个数至少要用8根小木棍的概率为( )A .1114B .314C .7384D .678.在一次考试中有一道4个选项的双选题,其中B 和C 是正确选项,A 和D 是错误选项,甲、乙两名同学都完全不会这道题目,只能在4个选项中随机选取两个选项.设事件M =“甲、乙两人所选选项恰有一个相同”,事件N =“甲、乙两人所选选项完全不同”,事件X =“甲、乙两人所选选项完全相同”,事件Y =“甲、乙两人均未选择B 选项”,则( )A .事件M 与事件N 相互独立B .事件X 与事件Y 相互独立C .事件M 与事件Y 相互独立D .事件N 与事件Y 相互独立二、多选题9.有下列说法,其中正确的说法为( )A .若sin 2sin 2AB =,则ABC V 是等腰三角形B .若PA PB PB PC PC PA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,则P 是三角形ABC 的垂心C .若222sin sin cos 1A B C ++<,则ABC V 为钝角三角形D .若//a b r r ,则存在唯一实数λ使得a b λ=r r10.已知m ,n 是不同的直线,α,β是不重合的平面,则下列命题中,真命题有( )A .若//αβ,m α⊥,//m n ,则n β⊥B .若//m α,//m β,n αβ=I ,则//m nC .若//m α,//m n ,则//n αD .若m α⊥,m β⊥,n ⊂α,则//n β11.正多面体也称柏拉图立体(被誉为最有规律的立体结构),是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正八面体ABCDEF的棱长都是2(如图),则( )A .//BE 平面ADFB .直线BC 与平面BEDF 所成的角为60°C .若点P 为棱EB 上的动点,则AP CP +的最小值为D .若点P 为棱EB 上的动点,则三棱锥F ADP -的体积为定值43三、填空题12.已知三个复数1z ,2z ,3z ,且122z z ==,3z 1z ,2z 所对应的向量1OZ u u u u r ,2OZ u u u u r 满足120OZ OZ ⋅=u u u u r u u u u r ;则312z z z --的最大值为. 13.在棱长为2的正方体1111ABCD A B C D -中,则它的外接球的表面积为;若E 为11B C 的中点,则过B 、D 、E 三点的平面截正方体1111ABCD A B C D -所得的截面面积为.14.已知由小到大排列的6个数据1,2,3,5,6,m ,若这6个数据的极差是它们中位数的2倍,则m 的值是.四、解答题15.已知复数z 在复平面上对应点在第一象限,且z =2z 的虚部为2.(1)求复数z ;(2)设复数z 、2z 、2z z -在复平面上对应点分别为A 、B 、C ,求AB AC ⋅uu u r uu u r 的值.16.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,E 为棱1AA 的中点,12,3AB AA ==.(1)求三棱锥A BDE -的体积.(2)在1DD 上是否存在一点P ,使得平面1//PAC 平面EBD .如果存在,请说明P 点位置并证明.如果不存在,请说明理由.17.如图,在长方体1111ABCD A B C D -中,13,2AB BC BB ===,(1)求证:11BD B C ⊥;(2)求直线1BD 与平面11ADD A 所成角的正切值.18.奔驰定理是一个关于三角形的几何定理,它的图形形状和奔驰轿车logo 相似,因此得名.如图,P 是ABC V 内的任意一点,角A ,B ,C 所对的边分别为a ,b ,c ,总有优美等式:0PBC PAC PAB PA S PB S PC S ⋅+⋅+⋅=u u u r u u u r u u u r r △△△.(1)若P 是ABC V 的内心,234b a c ==,延长AP 交BC 于点D ,求AP PD; (2)若P 是锐角ABC V 的外心,2A B =,PB xPA yPC =+u u u r u u u r u u u r ,求x y +的取值范围.19.第19届亚运会将于2023年9月23日至10月8日举办,本届亚运会共设40个竞赛大项.其中首次增设了电子竞技项目.与传统的淘汰赛不同,近年来一个新型的赛制“双败赛制”赢得了许多赛事的青睐.传统的淘汰赛失败一场就丧失了冠军争夺的权利,而在双败赛制下,每人或者每个队伍只有失败了两场才会淘汰出局,因此更有容错率.假设最终进入到半决赛有四支队伍,淘汰赛制下会将他们四支队伍两两分组进行比赛,胜者进入到总决赛,总决赛的胜者即为最终的冠军.双败赛制下,两两分组,胜者进入到胜者组,败者进入到败者组,胜者组两个队伍对决的胜者将进入到总决赛,败者进入到败者组.之前进入到败者组的两个队伍对决的败者将直接淘汰,胜者将跟胜者组的败者对决,其中的胜者进入总决赛,最后总决赛的胜者即为冠军,双败赛制下会发现一个有意思的事情,在胜者组中的胜者只要输一场比赛即总决赛就无法拿到冠军,但是其它的队伍却有一次失败的机会,近年来从败者组杀上来拿到冠军的不在少数,因此很多人戏谑这个赛制对强者不公平,是否真的如此呢?这里我们简单研究一下两个赛制,假设四支队伍分别为A、B、C、D,其中A对阵其他三个队伍获胜概率均为p,另外三支队伍彼此之间对阵时获胜概率均为12.最初分组时AB同组,CD同组.(1)若34p ,在淘汰赛赛制下,A、C获得冠军的概率分别为多少?(2)分别计算两种赛制下A获得冠军的概率(用p表示),并据此简单分析一下双败赛制下对队伍的影响,是否如很多人质疑的“对强者不公平”?。

高一下学期数学第一次月考试卷附带答案

高一下学期数学第一次月考试卷附带答案

高一下学期数学第一次月考试卷附带答案(满分150分 时间:120分钟)一.单选题。

(共8小题,每小题5分,共40分) 1.已知(1+i )z=3-i ,其中i 为虚数单位,则|z |=( ) A.5 B.√5 C.2 D.√22.已知复数z=1+2i1+i (i 为虚数单位),则z 的共轭复数z ̅在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,正方形O’A’B’C’的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长是( )A.4B.6C.8D.2+2√2(第3题图) (第4题图)4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为( ) A.2√33B.23C.√24D.135.设b ,c 表示两条直线,α,β表示两个平面,下列命题正确的是( ) A.若b ∥α,c ⊂α,则b ∥c B.若b ⊂α,b ∥c ,则c ⊂α C.若c ∥α,α⊥β,则c ⊥β D.若c ∥α,c ⊥β,则α⊥β6.已知圆锥的顶点为P ,底面圆心为O ,若过直线OP 的平面截圆锥所得的截面是面积为4的等腰直角三角形,则该圆锥的侧面积为( )A.4√2πB.2√2πC.4πD.(4√2+4)π7.已知圆锥的母线长为10,侧面展开图的圆心角为4π5,则该圆锥的体积为( ) A.62√213π B.32√6π C.16√6π D.32√213π8.已知在正方体中,AD 1,A 1D 交于点O ,则( )A.OB⊥平面ACC1A1B.OB⊥平面A1B1CDC.OB∥平面CD1B1D.OB⊥BC1二.多选题.(共4小题,每小题5分,共20分)9.已知复数z=3+4i,下列说法正确的是()A.复数z的实部为3B.复数z的共轭复数为3-4iC.复数z的虚部为4iD.复数z的模为510.如图,点A,B,C,M,N是正方体的顶点或所在棱的中点,则满足MN∥平面ABC的有()A. B. C. D.11.如图,一个圆柱盒一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A.圆锥的侧面积为2πR2B.圆柱与球的表面积比为32C.圆柱的侧面积与球的表面积相等D.圆柱与球的体积比为32(第11题图)(第12题图)12.如图,在正方形ABCD中,E、F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF 以及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,下列说法正确的是()A.AG⊥平面EFHB.AH⊥平面EFHC.HF⊥平面AEHD.HG⊥平面AEF二.填空题。

2023-2024学年湖南高一下册第一次月考数学试卷(含解析)

2023-2024学年湖南高一下册第一次月考数学试卷(含解析)

2023-2024学年湖南高一下册第一次月考数学试卷一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,下列说法正确的是()A.若210x +=,则i x =B.实部为零的复数是纯虚数C.()21i z x =+可能是实数D.复数2i z =+的虚部是i2.设集合(){}1lg 1,24xA xy x B x ⎧⎫==-=>⎨⎬⎩⎭∣∣,则()A B ⋂=R ð()A.()1,∞+B.(]2,1-C.()2,1-D.[)1,∞+3.若命题“2,40x x x a ∀∈-+≠R ”为假命题,则实数a 的取值范围是()A.(],4∞- B.(),4∞- C.(),4∞-- D.[)4,∞-+4.下列说法正确的是()A.“ac bc =”是“a b =”的充分条件B.“1x ”是“21x ”的必要条件C.“()cos y x ϕ=+的一个对称中心是原点”是“2,2k k πϕπ=-∈Z ”的充分不必要条件D.“0a b ⋅< ”的充分不必要条件是“a 与b的夹角为钝角”5.设1535212log 2,log 2,23a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.a b c <<B.b a c <<C.b c a<< D.a c b<<6.已知不等式20ax bx c ++>的解集为{23}xx -<<∣,且对于[]1,5x ∀∈,不等式220bx amx c ++>恒成立,则m 的取值范围为()A.(,∞-B.(,∞-C.[)13,∞+ D.(),13∞-7.若向量()()(),2,2,3,2,4a x b c ===- ,且a c ∥,则a 在b上的投影向量为()A.812,1313⎛⎫⎪⎝⎭ B.812,1313⎛⎫-⎪⎝⎭ C.()8,12 D.413138.已知函数()sin f x x =,若存在12,,,m x x x 满足1204m x x x π<<< ,且()()()()()()()*1223182,m m f x f x f x f x f x f x m m --+-++-=∈N ,则m 的最小值为()A.5B.6C.7D.8二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是()A.向量AB 与CD是共线向量,则,,,A B C D 四点必在一条直线上B.零向量与零向量共线C.若,a b b c == ,则a c= D.温度含零上温度和零下温度,所以温度是向量10.下列说法正确的是()A.若α为第一象限角,则2α为第一或第三象限角B.函数()sin 4f x x πϕ⎛⎫=++ ⎪⎝⎭是偶函数,则ϕ的一个可能值为34πC.3x π=是函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的一条对称轴D.若扇形的圆心角为60 ,半径为1cm ,则该扇形的弧长为60cm 11.已知0,0a b c >>>,则下列结论一定正确的是()A.b b ca a c+<+ B.3322a b a b ab ->-C.22b a a b a b+<+ D.2()a b a ba b ab +>12.已知函数()f x 的定义域为(),1f x -R 为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-,则下列结论正确的是()A.()f x 为周期函数且最小正周期为8B.7324f ⎛⎫=⎪⎝⎭C.()f x 在()6,8上为增函数D.方程()lg 0f x x +=有且仅有7个实数解三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数23(0x y a a -=+>,且1)a ≠的图象恒过定点P ,若点P 也在函数()32log 1y x b =++的图象上,则b =__________.14.化简:()2tan1234cos 122sin12-=-__________.15.已知函数()2log ,02,sin ,210,4x x f x x x π⎧<<⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩若存在1234,,,x x x x ,满足1234x x x x <<<,且()()()()1234f x f x f x f x ===,则1234x x x x 的取值范围为__________.16.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知,a b c ≠=2233sin ,cos cos cos 52A AB A A B =-=-,则ABC 的面积是__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且22232b c bc a +-=.(1)求cos A 的值;(2)若2,3B A b ==,求a 的值.18.(本小题满分12分)如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P .(1)若8AP AC ⋅=,求AP 的长;(2)设||6,||8,,3AB AC BAC AP xAB y AC π∠====+,求y x -的值.19.(本小题满分12分)有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速度可以表示为函数501log lg 210xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,0x 代表测量过程中某类候鸟每分钟的耗氧量偏差(参考数据:1.4lg20.30,59.52≈≈).(1)当05x =,候鸟停下休息时,它每分钟的耗氧量约为多少单位?(2)若雄鸟的飞行速度为1.75km /min ,同类雌鸟的飞行速度为1.5km /min ,则此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?20.(本小题满分12分)已知函数()f x 对任意实数x y 、恒有()()()f x y f x f y +=+,当0x >时()0f x <,且()12f -=.(1)求()f x 在区间[]2,4-上的最小值;(2)若()222f x m am <-+对所有的][1,1,1,1x a ⎡⎤∈-∈-⎣⎦恒成立,求实数m 的取值范围.21.(本小题满分12分)如图,在海岸线EF 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC ,该曲线段是函数()()[]sin (0,0,0,),4,0y A x A x ωϕωϕπ=+>>∈∈-的图象,图象的最高点为()1,2B -.边界的中间部分为长1千米的直线段CD ,且CD EF ∥.游乐场的后一部分边界是以O 为圆心的一段圆弧 DE.(1)曲线段FGBC 上的入口G 距海岸线EF 的距离为1千米,现准备从入口G 修一条笔直的景观路到O ,求景观路GO 长;(2)如图,在扇形ODE 区域内建一个平行四边形休闲区OMPQ ,平行四边形的一边在海岸线EF 上,一边在半径OD 上,另外一个顶点P 在圆弧 DE上,且POE ∠θ=,求平行四边形休闲区OMPQ 面积的最大值及此时θ的值.22.(本小题满分12分)已知函数()()2ee ,ln xx f x a g x x =-=.(1)求函数()26g x x --的单调递减区间;(2)若对任意21,e ex ⎡⎤∈⎢⎥⎣⎦,存在()()()112,0,x f x g x ∞∈-≠,求实数a 的取值范围;(3)若函数()()()F x f x f x =+-,求函数()F x 零点的个数.数学答案一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案CBADBBAB1.C A.i x =±,说法不正确;B.实部为零的复数可能虚部也为零,从而是实数,说法不正确;C.当i x =时,()21i z x =+是实数,说法正确;D.复数2i z =+的虚部是1,说法不正确.故选C .2.B 由题知()()1,,2,A B ∞∞=+=-+,从而得到()(]R 2,1A B ⋂=-ð.故选B .3.A 命题“2,40x x x a ∀∈-+≠R ”为假命题,2“,40x x x a ∴∃∈-+=R ”是真命题,∴方程240x x a -+=有实数根,则2Δ(4)40a =--,解得4a ,故选A.4.D对于A ,当0c =时,满足ac bc =,此时可能有,A a b ≠错误;对于2B,1x 等价于1x 或1x -,故“1x ”是“21x ”的充分不必要条件,B 错误;对于C ,“()cos y x ϕ=+的一个对称中心是原点”等价于()2k k πϕπ=+∈Z ,故“()cos y x ϕ=+的一个对称中心是原点”是“2k ϕπ=,2k π-∈Z 的必要不充分条件,C 错误;对于D ,0a b ⋅< 等价于a 与b的夹角,2πθπ⎛⎤∈⎥⎝⎦,故“0a b⋅< ”的充分不必要条件是“a 与b的夹角为钝角”,D 正确.故选D.5.B 因为33322213log 2log log 122a ==<=且153355221131122log 2log ,log 2log ,12222233a b c -⎛⎫⎛⎫=>==<=>= ⎪ ⎪⎝⎭⎝⎭,故b a c <<.故选B.6.B 由不等式20ax bx c ++>的解集为{23}xx -<<∣,可知2,3-为方程20ax bx c ++=的两个根,故0a <且()231,236b ca a-=-+==-⨯=-,即,6b a c a =-=-,则不等式220bx amx c ++>变为2120ax amx a -+->,由于[]0,1,5a x <∈,则上式可转化为12m x x <+在[]1,5恒成立,又12x x +=,当且仅当x =m <.故选B.7.A 因为a c∥,所以44x -=,得1x =-,所以()1,2a =- ,又()2,3b =,所以,cos ,b a b a b b a b⋅===所以a 在b上的投影向量为:812cos ,,1313b a a b b ⎛⎫⋅==⎪⎝⎭,故选A.8.B 因为()sin f x x =对任意(),,1,2,3,,i j x x i j m = ,都有()()max min ()()2i j f x f x f x f x --=,要使m 取得最小值,应尽可能多让()1,2,3,,i x i m = 取得最值点,考虑1204m x x x π<<< ,且()()()()()()()*1223182,m m f x f x f x f x f x f x m m --+-++-=∈N ,则m 的最小值为6,故选B.二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.题号9101112答案ADACABDABD9.AD向量AB 与CD是共线向量,则,,,A B C D 四点不一定在一条直线上,故A 错误;零向量与任一向量共线,故B 正确;若,a b b c == ,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选A D.10.AC 对于A :若α为第一象限角,则22,2k k k ππαπ<<+∈Z ,则:,24k k k απππ<<+∈Z ,所以2α为第一或第三象限角,故A 正确;对于B :函数()sin 4f x x πϕ⎛⎫=++ ⎪⎝⎭是偶函数,若ϕ的一个可能值为34π,当34πϕ=时,()()sin sin f x x x π=+=-,函数为奇函数,故B 错误;对于C :2cos 23f ππ⎛⎫==- ⎪⎝⎭,所以3x π=是函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的一条对称轴,故C 正确;对于D :扇形圆心角为3π,半径为1cm ,则该扇形的弧长为cm 3π,故D 错误.故选AC.11.ABD 对于()()A,c b a b b c a a c a a c -+-=++,由a b >,得0b a -<,所以()()0c b a a a c -<+,所以b b ca a c+<+,故A 正确;对于B ,()()()()()332222220a b a b ab a b a ab b ab a b a b ---=-++-=-+>,故B 正确;对于()()()()22222222222()11C,0b a b a b a b a b a b a a b a b b a a b a b a b ab ab --+---⎛⎫+--=+=--==> ⎪⎝⎭,故C 错误;对于D ,2()a b a ba b ab +>等价于()ln ln ln ln 2a ba ab b a b ++>+,等价于ln ln ln ln 0a a b b b a a b +-->,即()()ln ln 0a b a b -->,故D 正确.故选ABD.12.ABD 因为()1f x -为奇函数,所以()()11f x f x --=--,即()f x 关于点()1,0-对称;因为()1f x +为偶函数,所以()()11f x f x -+=+,即()f x 关于直线1x =对称;则()()()()()()()112314f x fx f x f x f x =-+=-+=---=--,所以()()8f x f x =-,故()f x 的最小正周期为8,A 正确;275531111311111,B 222222224f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=-=--=--=--=---=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦正确;由于()f x 在()1,0-上单调递减,且()f x 关于点()1,0-对称,故()f x 在()2,0-上单调递减,又()f x 的周期为8,则()f x 在()6,8上也为减函数,C 错误;作出函数()f x 的图象可知,函数()y f x =的图象与函数lg y x =-的图象恰有7个交点,D 正确,故选ABD.三、填空题:本大题共4小题,每小题5分,共20分.13.2由题意可知,函数23(0x y a a -=+>,且1)a ≠的图象恒过定点()2,4,则有()32log 214b ++=,解得2b =.14.-4原式()()()222sin123tan123sin123cos12cos124cos 122sin1222cos 121sin1222cos 121sin12co s12-===---()()2132sin122sin 48222sin4841cos24sin242cos 121sin24sin482⎛⎫ ⎪--⎝⎭====--.15.(20,32)作出函数()2log ,02,sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫⎪⎪⎝⎭⎩的图象,如图所示,因为()()()()12341234,f x f x f x f x x x x x ===<<<,所以,由图象可知,212234log log ,2612x x x x -=+=⨯=,且()32,4x ∈,则()2123433331,1212x x x x x x x x ==-=-+,由于23312y x x =-+在()2,4上单调递增,故2032y <<,所以1234x x x x 的取值范围为()20,32.16.369350+由题意得1cos21cos233sin22222A B A B ++-=-,即3131sin2cos2cos22222A AB B -=-,所以sin 2sin 266A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.由a b ≠得A B ≠,又()0,A B π+∈,得2266A B πππ-+-=,即23A B π+=,所以3C π=.由3,5sin sin a c c A A C ===,得65a =.由a c <,得A C <,从而4cos 5A =,故()343sin sin sin cos cos sin 10B AC A C A C +=+=+=,所以ABC的面积为1163433693sin 2251050S ac B ++==⨯⨯=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)在ABC 中,2223,2b c a bc +-=.由余弦定理222cos 2b c a A bc +-=,332cos 24bcA bc ∴==.(2)由(1)知,70,sin 24A A π<<∴==.32,sin sin22sin cos 2448B A B A A A =∴===⨯⨯=,又73sin 43,,2sin sin sin 378a b b A b a A B B ⨯==∴== ..18.(1) 在平行四边形ABCD 中,AP BD ⊥,垂足为P ,()22208AP AC AP AO AP AP PO AP AP ∴⋅=⋅=⋅+=⋅+=,22||4AP AP ∴== ,解得2AP = ,故AP 长为2.(2)2AP x AB y AC x AB y AO =+=+ ,且,,B P O 三点共线,21x y ∴+=①,又6,8,3AB AC BAC π∠=== ,则1cos 122AB AO AB AC BAC ∠⋅=⋅= ,由AP BD ⊥可知()()20AP BO x AB y AO AO AB ⋅=+⋅-= ,展开()22220y AO x AB x y AB AO -+-⋅= ,化简得到3y x =②联立①②解得13,77x y ==,故27y x -=.19.(1)由题意得,当候鸟停下休息时,它的速度是0,将05x =和0v =代入题目所给的公式,可得510log lg5210x =-,.即()5log 2lg521lg2 1.410x ==-≈,从而 1.410595.2x ≈⨯≈,故候鸟停下休息时,它每分钟的耗氧量约为95.2个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,由题意得:15025011.75log lg ,21011.5log lg ,210x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得15211log 42x x ⎛⎫= ⎪⎝⎭,解得:12x x =,倍.20.(1)取0x y ==,则()()()0020,00f f f +=∴=,取y x =-,则()()()()00f x x f x f x f -=+-==,()()f x f x ∴-=-对任意x ∈R 恒成立,()f x ∴为奇函数;任取()12,,x x ∞∞∈-+且12x x <,则()()()2121210,0x x f x f x f x x ->+-=-<,()()21f x f x ∴<--,又()f x 为奇函数,()()12f x f x ∴>.故()f x 为R 上的减函数.[]()()2,4,4x f x f ∈-∴ ,()()()()()42241418f f f f ===⨯--=- ,故()f x 在[]2,4-上的最小值为-8.(2)()f x 在[]1,1-上是减函数,()()12f x f ∴-=,()222f x m am <-+ 对所有][1,1,1,1x a ⎡⎤∈-∈-⎣⎦恒成立.2222m am ∴-+>对[]1,1a ∀∈-恒成立;即220m am ->对[]1,1a ∀∈-恒成立,令()22g a am m =-+,则()()10,10,g g ⎧->⎪⎨>⎪⎩即2220,20,m m m m ⎧+>⎨-+>⎩解得:2m >或2m <-.∴实数m 的取值范围为()(),22,∞∞--⋃+.21.(1)由已知条件,得2A =,又23,12,46T T ππωω===∴= ,又当1x =-时,有2sin 26y πϕ⎛⎫=-+= ⎪⎝⎭,且()20,,3πϕπϕ∈∴=,∴曲线段FGBC 的解析式为[]22sin ,4,063y x x ππ⎛⎫=+∈- ⎪⎝⎭.由22sin 163y x ππ⎛⎫=+= ⎪⎝⎭,根据图象得到()22636x k k ππππ+=+∈Z ,解得()312x k k =-+∈Z ,又[]()4,0,0, 3.3,1x k x G ∈-∴==-∴-.OG ∴=.∴千米.(2)如图,1OC CD ==,2,6OD COD π∠∴==,作1PP x ⊥轴于1P 点,在Rt 1OPP 中,1sin 2sin PP OP θθ==,在OMP 中,2sin sin 33OP OM ππθ=⎛⎫- ⎪⎝⎭,sin 2332cos sin 23sin 3OP OM πθθθπ⎛⎫- ⎪⎝⎭∴==-,12cos 2sin 3QMPQ S OM PP θθθ⎛⎫=⋅=-⨯ ⎪ ⎪⎝⎭.24323234sin cos 2sin2333θθθθθ=-=+-sin 2,0,3633ππθθ⎛⎫⎛⎫=+-∈ ⎪ ⎪⎝⎭⎝⎭.当262ππθ+=,即6πθ=时,平行四边形面积有最大值为233平方千米.22.(1)由260x x -->得:2x <-或3x >,即()26g x x --的定义域为{2x x <-∣或3}x >,令26,ln m x x y m =--=在()0,m ∞∈+内单调递增,而(),2x ∞∈--时,26m x x =--为减函数,()3,x ∞∈+时,26m x x =--为增函数,故函数()26g x x --的单调递减区间是(),2∞--(2)由21,e e x ⎡⎤∈⎢⎥⎣⎦与()1,0x ∞∈-可知()[]()121,1,e 0,1x g x ∈-∈,所以112e e 1x x a ->或112e e 1x x a -<-,分离参数得11211e e x x a >+,或11211e e x x a <-有解,令11ex n =,则21,n a n n >>+或2a n n <-有解,得2a >或0a <.(3)依题意()()()222e e e e e e e e 2x x x x x xx x F x a a a a ----=-+-=+-+-,令e e x x t -=+,则函数()F x 转化为()()222h t at t a t =--,此时只需讨论方程220at t a --=大于等于2的解的个数,①当0a =时,()0h t t =-=没有大于等于2的解,此时()F x 没有零点;②当0a >时,()020h a =-<,当()20h >时,1a >,方程没有大于等于2的解,此时()F x 没有零点;当()20h =时,1a =,方程有一个等于2的解,函数()F x 有一个零点;当()20h <时,01a <<,方程有一个大于2的解,函数()F x 有两个零点.③当0a <时,()()020,2220h a h a =->=-<恒成立,即方程不存在大于等于2的解,此时函数()F x 没有零点;·综上所述,当1a =时,()F x 有一个零点;当01a <<时,()F x 有两个零点;当0a 或1a >时,()F x 没有零点.。

2023-2024学年湖南省郴州一中等校联考高一(下)月考数学试卷(5月份)+答案解析

2023-2024学年湖南省郴州一中等校联考高一(下)月考数学试卷(5月份)+答案解析

2023-2024学年湖南省郴州一中等校联考高一(下)月考数学试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设集合,,则()A. B. C.D.2.若,则()A.B.C.D.3.已知奇函数在R 上单调递增,且,则不等式的解集为()A.B.C. D.4.某班同学利用课外实践课,测量A ,B 两地之间的距离,在C 处测得A ,C 两地之间的距离是4千米,B ,C 两地之间的距离是6千米,且,则A ,B 两地之间的距离是()A.千米B.千米C.千米D.千米5.已知命题p :函数在内有零点,则命题p 成立的一个必要不充分条件是()A. B. C.D.6.()A.B.C.D.7.如图,在正方体中,,E 在线段上,则的最小值是()A. B. C. D.8.已知长方体的底面ABCD 是边长为1的正方形,侧棱,在矩形内有一动点P 满足,且,则的最小值为()A.B.C.D.2二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知m ,n 是两条不同的直线,,是两个不同的平面,下列结论不正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,则10.已知函数,则下列结论正确的是()A.的图象向左平移个单位长度后得到函数的图象B.直线是图象的一条对称轴C.在上单调递减D.的图象关于点对称11.已知三棱锥的所有棱长都是6,D ,E 分别是三棱锥外接球和内切球上的点,则()A.三棱锥的体积是B.三棱锥内切球的半径是C.DE 长度的取值范围是D.三棱锥外接球的体积是三、填空题:本题共3小题,每小题5分,共15分。

12.某连锁超市在A ,B ,C 三地的数量之比为2:m :4,现采用分层抽样的方法抽取18家该连锁超市进行调研,已知A 地被抽取了4家,则B 地被抽取的数量是______.13.若实数,则的最小值为______,此时______.14.在长方形ABCD 中,,,点E 在线段AB 上,,沿DE 将折起,使得,此时四棱锥的体积为______.四、解答题:本题共5小题,共77分。

广东省佛山市高一下学期第二次月考数学试题(解析版)

广东省佛山市高一下学期第二次月考数学试题(解析版)

高一数学试题审题人:高一数学备课组本试卷共4页,全卷满分150分.考试时间120分钟一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求.1. 已知向量,,则( )(2,3)a = (3,2)b =r |2|a b -=A.B. 2C.D.【答案】C 【解析】【分析】求出,求模即可.2(1,4)a b -=【详解】∵,,∴,(2,3)a =(3,2)b =r 2(1,4)a b -=∴. |2|a b -==故选:C.2. 下列函数中最小正周期为且是奇函数的为( ) πA.B.tan2y x =πtan 4y x ⎛⎫=+ ⎪⎝⎭C. D.3cos 2π2y x ⎛⎫=+⎪⎝⎭πsin 22y x ⎛⎫=+ ⎪⎝⎭【答案】C 【解析】【分析】根据正切函数的周期与奇偶性可判断AB ,根据诱导公式化简CD 的解析式,再根据正余弦函数的奇偶性可判断.【详解】的最小正周期为,故A 错误; tan2y x =π2为非奇非偶函数,故B 错误;πtan 4y x ⎛⎫=+ ⎪⎝⎭,易知为奇函数,且最小正周期为,故C 正确;3cos 2πsin 22y x x ⎛⎫=+= ⎪⎝⎭2ππ2=为偶函数,故D 错误.πsin 2cos 22y x x ⎛⎫=+= ⎪⎝⎭故选:C.3. ,,,且三点共线,则=( ) 12AB e e =- 1232BC e e =+122C e D ke =+ A C D 、、k A. 8B. 4C. 2D. 1【答案】A 【解析】【分析】由已知可求,由三点共线得,根据向量共线的定理即可求出124AC e e =+A C D 、、AC CD A k的值.【详解】由题得,121212324AC AB BC e e e e e e =+=-++=+因为三点共线,A C D 、、所以,AC CD A 所以存在实数,使得,λAC CD λ=所以,()121212422e e ke e k e e λλλ+=+=+所以,解得. 421k λλ=⎧⎨=⎩1,82k λ==故选:A4. 若一个圆锥的侧面展开图是中心角为且面积为的扇形面,则该圆锥的底面半径为( ). 90︒πA. 2 B. 1C.D.1214【答案】C 【解析】【分析】根据扇形的面积计算出扇形的半径,即圆锥的母线长,由此可计算出扇形的弧长,即为圆锥的底面圆周长,进而可计算出该圆锥的底面半径.【详解】如图,设扇形的半径,即圆锥的母线长为,圆锥的底面半径为,l r由圆锥的侧面展开图是中心角为且面积为的扇形面,得,则, 90︒π21ππ4l =2l =从而扇形的半径为2,即圆锥的母线长为2. 故扇形的弧长,即圆锥的底面周长为,即,解得, π2π2⨯=2ππr =12r =所以该圆锥的底面半径为. 12故选:C.5. 已知平面向量满足与的夹角为,则实数的值为( ),a b a a = b ()30,b a a λ-⊥λA. B. 2C. D.2-12-12【答案】B 【解析】【分析】根据向量垂直时数量积等于0,结合数量积运算律以及数量积的定义,展开计算,即得答案.【详解】因为,所以,()b a a λ-⊥()0b a a λ-⋅=即,故, 20a b a λ⋅-=130,2λλ=∴=故选:B6. 在中,已知,那么一定是( )ABC A 2cos c a B =⋅ABC A A. 等腰直角三角形 B. 等腰三角形 C. 直角三角形 D. 等边三角形【答案】B 【解析】 【分析】利用正弦函数进行边化角,再利用正弦函数的两角和公式求解即可 【详解】解:已知, 2c a cosB A =则:,2sinC sinAcosB =整理得:, ()2sin A B sinAcosB +=则:, ()0sin A B -=所以:. A B =故选:B7. “大美中国古建筑名塔”榴花塔以红石为基,用青砖灰沙砌筑建成.如图,记榴花塔高为,测量小组选OT 取与塔底在同一水平面内的两个测量点和,现测得,,O A B 105OBA ∠=︒45OAB ∠=︒45m AB =,在点处测得塔顶的仰角为30°,则塔高为( )B T OTA. B.C.D.【答案】A 【解析】【分析】先在中利用正弦定理求,再在中求即可. AOB A OB =BOT A tan 30OT OB =︒【详解】依题意,中,,,即,AOB A 30AOB ∠=︒sin sin AB OB AOB OAB ∴=∠∠45sin 30sin 45OB=︒︒解得. OB =在中,,即. BOT A tan tan 30OTOBT OB =∠=︒tan 30OT OB =︒==故选:A.8. 对于函数,下列结论中正确的是( ) ()2sin (cos sin )1f x x x x =-+A. 的最大值为 ()f x 1B. 的图象可由的图象向右平移个单位长度得到 ()f x 2y x =π4C. 在上单调递减 ()f x 3,48ππ⎛⎫⎪⎝⎭D. 的图象关于点中心对称 ()f x π,18⎛⎫⎪⎝⎭【答案】C 【解析】【分析】由可得,故A 错误;将的图象向π()24f x x ⎛⎫=- ⎪⎝⎭()f x 2y x =右平移个单位长度得到的图象,所以B 错误;根据余弦函数的减区间可知在4π2y x =()f x上单调递减,所以C 正确;由可知D 不正确. 3,48ππ⎛⎫⎪⎝⎭π()8f =【详解】,2π()2sin (cos sin )1sin 22sin 1sin 2cos 224f x x x x x x x x x ⎛⎫=-+=-+=+=- ⎪⎝⎭所以当,,即,时,,故A 错误; π22π4x k -=Z k ∈ππ8x k =+Z k ∈()f x将的图象向右平移个单位长度得到2y x =4π的图象,所以B 错误;ππ22242y x x x ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭由,得,所以是的一个单调π2π2π2π()4k x k k ≤-≤+∈Z π5πππ()88k x k k +≤≤+∈Z π,85π8⎡⎤⎢⎥⎣⎦()f x 递减区间,所以在上单调递减,所以C 正确; ()f x3,48ππ⎛⎫⎪⎝⎭因为不是的图象的对称中心,所以D 不正确.πππ()884f =⨯-=π,18⎛⎫⎪⎝⎭()f x 故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知向量,则( )(2,1),(3,1)a b ==-A. ,则B.c = a c ⊥ ()a b a+∥C. 与D. 向量在向量上的投影向量为 a a b - ab 12b - 【答案】ACD 【解析】【分析】求出即可判断A ;根据平面向量共线的坐标表示即可判断B;求出两向量夹角的余弦值,a c ⋅从而可判断C ,根据投影向量的计算公式计算即可判断D. 【详解】解:对于A ,因为, 0a c ⋅==所以,故A 正确;ac ⊥对于B ,,(1,2)a b +=-因为,所以与不平行,故B 错误;112250-⨯-⨯=-≠()a b +a对于C ,,()5,0a b -=则,()cos ,a b a a b a a b a-⋅-===-所以与,故C 正确; aa b -对于D ,向量在向量上的投影向量为,故D 正确. ab 12a b b b bb⋅⋅==-故选:ACD . 10. 已知,关于该函数有下列说法中的是( ). ()1sin 22f x x =A. 的最小正周期是 ()f x 2πB. 在上单调递增()f x ππ,44⎡⎤-⎢⎥⎣⎦C. 当时,的取值范围为 ππ,63x ⎡⎤∈-⎢⎥⎣⎦()f x 12⎡⎤⎢⎥⎣⎦D. 的图象可由的图象向左平移个单位长度得到()f x ()1πsin 224g x x ⎛⎫=+ ⎪⎝⎭π8【答案】BC 【解析】【分析】对于ABC ,根据正弦函数的性质逐一分析判断即可;对于D ,利用三角函数平移的性质即可判断.【详解】对于,它的最小正周期,故A 错误;()1sin 22f x x =2ππ2T ==当时,, ππ,44x ⎡⎤∈-⎢⎥⎣⎦ππ2,22x ⎡⎤∈-⎢⎥⎣⎦又在上单调递增,所以函数在上单调递增,故B 正确;sin y x =ππ,22⎡⎤-⎢⎥⎣⎦()f x ππ,44⎡⎤-⎢⎥⎣⎦当时,,所以, ππ,63x ⎡⎤∈-⎢⎥⎣⎦π2π2,33x ⎡⎤∈-⎢⎥⎣⎦sin 2x ⎡⎤∈⎢⎥⎣⎦所以的取值范围为,故C 正确; ()f x 12⎡⎤⎢⎥⎣⎦的图象向左平移个单位长度得到解析式为()1πsin 224g x x ⎛⎫=+ ⎪⎝⎭π8,故D 错误;1ππ1π1sin 2sin 2cos 2284222y x x x ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:BC .11. 在中,内角A ,B ,C 的对边分别为a ,b ,c ,若,,则下ABC A sin :sin :sin 2:A B C =6b =列说法正确的是( ) A. 为钝角三角形 ABC A B.3C π=C. 周长为ABC A 10+D. 的外接圆面积为ABC A 1123π【答案】BC 【解析】【分析】利用正弦定理可得三边,然后利用余弦定理,正弦定理逐项判断即得. 【详解】因为,sin :sin :sin 2:A B C =所以, ::2:a b c =6b =∴, 4,a c ==∴,故,a cb <<A C B<<,(2222244436a c b +=+=>=所以B 为锐角,故为锐角三角形,故A 错误;ABC A 由,,可得,故B 正确;2221636281cos 22462a b c C ab +-+-===⨯⨯()0,C π∈3C π=由上可知周长为C 正确;ABC A 10+由正弦定理可得的外接圆直径为,即, ABCA 2sin c R C ===R =的外接圆面积为,故D 错误. ABC A 2283R ππ=故选:BC.12.如图,在直三棱柱中,,,,侧面的对111ABC A B C -12AA =1AB BC ==90ABC ︒∠=11AACC 角线交点,点是侧棱上的一个动点,下列结论正确的是( )O E 1BBA. 直三棱柱的体积是1B. 直三棱柱的外接球表面积是8πC. 三棱锥的体积与点的位置有关 1E AAO -E D. 的最小值为 1AE EC +【答案】AD 【解析】【分析】由题意画出图形,计算直三棱柱的体积即可判断A ;直棱柱放在圆柱中,求出直棱柱底面外接圆半径,进而求出外接球半径,利用球的表面积公式即可判断B ;由棱锥底面积与高为定值判断C ;将侧面展开即可求出最小值判断D .【详解】在直三棱柱中,,,, 111ABC A B C -12AA =1AB BC ==90ABC ︒∠=所以其体积, 111212V Sh ==⨯⨯⨯=故A 正确;对于B ,由直三棱柱结构特征及外接球的对称性可得, 111ABC A B C -其外接球即为长宽高分别为2,1,1的长方体的外接球,,=所以其外接球的表面积为, 24π6π⨯=故B 错误;由平面,且点E 是侧棱上的一个动点,1//BB 11AAC C 1BB,111122ABC S =⨯⨯=A三棱锥的高,1E AAO -h111112222AA O AA C S S ==⨯=A A,11136-∴==E AA O V 故三棱锥的体积为定值,故C 错误; 1E AAO -将四边形沿翻折,使四边形与四边形位于同一平面内, 11BCC B 1BB 11ABB A 11BCC B 此时,连接与相交于点E ,此时最小, 1111112=+=AC A B C B 1AC 1BB 1AE EC +即,11AE EC AC +===故D 正确. 故选:AD .三、填空题(本题共4小题,每小题5分,共20分)13. 若且,则__________. 4sin 5α=π,π2α⎛⎫∈ ⎪⎝⎭()sin π2α-=【答案】## 2425-0.96-【解析】【分析】先由三角函数的平方关系求得,再利用正弦函数的倍角公式即可求出结果. 3cos 5α=-【详解】因为,,所以, 4sin 5α=π,π2α⎛⎫∈ ⎪⎝⎭3cos 5α==-所以. ()4324sin π2sin 22sin cos 25525αααα⎛⎫-===⨯⨯-=- ⎪⎝⎭故答案为:. 2425-14. 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【解析】【分析】利用计算即可.11A NMD D AMN V V --=【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以 11111112323A NMD D AMN V V --==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些.15. 记函数的最小正周期为T ,若为的()()cos (0,0π)f x x ωϕωϕ=+><<()f T =9x π=()f x 零点,则的最小值为____________. ω【答案】 3【解析】【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从T ()f T =ϕπ9x =ω而得解;【详解】解: 因为,(,) ()()cos f x x ωϕ=+0ω>0πϕ<<所以最小正周期,因为, 2πT ω=()()2πcos cos 2πcos f T ωϕϕϕω⎛⎫=⋅+=+==⎪⎝⎭又,所以,即,0πϕ<<π6ϕ=()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭又为的零点,所以,解得, π9x =()f x ππππ,Z 962k k ω+=+∈39,Z k k ω=+∈因为,所以当时; 0ω>0k =min 3ω=故答案为: 316. 如图,摩天轮的半径为40m ,O 点距地面的高度为50m ,摩天轮作匀速转动,每12分钟转一圈,摩天轮上P 点的起始位置在最低处,那么在t 分钟时,P 点距地面的高度________(m ).h =【答案】5040cos 6tπ-【解析】【分析】根据每12分钟转一圈,可以求出周期,再根据圆的半径可以求出振幅,最后可以写出在t 分钟时,P 点距地面的高度的表达式. h 【详解】每12分钟转一圈,所以.圆的半径为40,所以振幅A 为40m . 摩天轮上P 点的起2=12=6ππωω⇒始位置在最低处,此时高度为50-40=10,所以P 点距地面的高度.5040cos6h tπ=-【点睛】本题考查了根据实际背景求余弦型函数的解析式,考查了数学阅读能力.四、解答题:本小题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 如图,在菱形中,.ABCD 1,22CF CD CE EB ==(1)若,求的值;EF xAB y AD =+23x y +(2)若,求.6,60AB BAD ∠==AC EF ⋅ 【答案】(1)1(2)9【分析】(1)利用向量的线性运算求,结合平面向量的基本定理求得,进而求得.EF,x y 23x y +(2)先求得,然后利用转化法求得.AB AD ⋅ AC EF ⋅ 【小问1详解】 因为, 1122CF CD AB ==-2CE EB = 所以, 2233EC BC AD == 所以, 21213232EF EC CF BC CD AD AB =+=+=- 所以, 12,23x y =-=故.231x y +=【小问2详解】,AC AB AD =+ , ()221211223263AC EF AB AD AB AD AB AB AD AD ⎛⎫∴⋅=+⋅-+=-+⋅+ ⎪⎝⎭为菱形,,ABCD ||||6,60AD AB BAD ∠∴=== 所以,66cos6018AB AD ⋅=⨯⨯= . 2211261869263AC EF ∴⋅=-⨯+⨯+⨯= 18. 如图所示,四边形是直角梯形,其中,,若将图中阴影部分绕旋转ABCD AD AB ⊥//AD BC AB 一周.(1)求阴影部分形成的几何体的表面积.(2)求阴影部分形成的几何体的体积.【答案】(1);(2). 68π1403π【分析】(1)由题意知所求旋转体的表面由三部分组成:圆台下底面、侧面和半球面,求面积之和即可; (2)该几何体为圆台去掉一个半球,根据圆台、球的体积公式求解即可.【详解】(1)由题意知所求旋转体的表面由三部分组成:圆台下底面、侧面和半球面,, 214282S ππ=⨯⨯=半球,(25)35S ππ=+=圆台侧.2525S ππ=⨯=圆台底故所求几何体的表面积为.8352568ππππ++=(2), 221254523V πππ⎡⎤=⨯⨯+⨯⨯=⎢⎥⎣⎦圆台, 341162323V ππ=⨯⨯=半球所求几何体体积为. 161405233V V πππ-=-=圆台半球【点睛】本题主要考查了旋转体的表面积与体积,考查了台体与球的面积、体积公式,属于中档题. 19. 已知,且 π,,π2αβ⎡⎤∈⎢⎥⎣⎦()3cos π5α-=(1)求的值; πtan 4α⎛⎫- ⎪⎝⎭(2)若,求的值. ()3sin 5αβ-=sin β【答案】(1)7-(2)1【解析】 【分析】(1)结合诱导公式可得,根据同角三角函数关系可得,再由两角差的正切公3cos 5α=-tan α式,即可得出结果;(2)根据题中条件,得到,根据平方关系可得,再由π02αβ<-<()4cos 5αβ-=,根据两角差的正弦公式,即可求出结果.()sin sin βααβ=--⎡⎤⎣⎦【小问1详解】因为,所以, ()3cos πcos 5αα-=-=3cos 5α=-又因为,所以, ,2ππα⎡⎤∈⎢⎥⎣⎦4sin 5α==因此, sin tan s 43co ααα==-所以. 4π1tantan π34tan 7π441tan tan 143ααα+-⎛⎫-===- ⎪⎝⎭+⋅-【小问2详解】因为,所以, π,,π2αβ⎡⎤∈⎢⎥⎣⎦ππ22αβ-≤-≤又,所以, ()3sin 5αβ-=π02αβ<-<所以, ()4cos 5αβ-==所以,()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=---⎣⎦即. 4433sin 15555β=⨯+⨯=20. 在中,a ,b ,c 分别为内角A ,B ,C 的对边,且.ABC A 22cos b c a C =+(1)求角A 的值;(2)若,求面积的最大值.2a =ABCA 【答案】(1)π3(2【解析】【分析】(1)由正弦定理将边化角,再利用正弦函数的和差公式化简即可求得角A ;(2)利用余弦定理与基本不等式求得,从而利用三角形的面积公式即可求得面积的最大4bc ≤ABC A 值.【小问1详解】因为,22cos b c a C =+所以由正弦定理得,2sin sin 2sin cos B C A C =+又,()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣所以,()2sin cos cos sin sin 2sin cos A C A C C A C +=+所以,2cos sin sin A C C =因为,则,所以, 0πC <<sin 0C ≠1cos 2A =因为,所以. ()0,πA ∈π3A =【小问2详解】由(1)得,又, π3A =2a =所以由余弦定理,得,即, 2222cos a b c bc A =+-22π42cos 3b c bc =+-224b c bc =+-所以,可得,当且仅当时,等号成立,2242b c bc bc +=+≥4bc ≤2b c ==所以的面积 ABC A 1sin 2S bc A ==≤所以ABC A 21. 建设生态文明是关系人民福祉、关乎民族未来的长远大计.某市通宵营业的大型商场,为响应国家节能减排的号召,在气温低于时,才开放中央空调,否则关闭中央空调.如图是该市冬季某一天的气温0C ︒(单位:)随时间(,单位:小时)的大致变化曲线,若该曲线近似满足0C ︒t 024t ≤≤关系. 3π()sin((0,0)4f t A t b A ωω=-+>>(1)求的表达式;()y f t =(2)请根据(1)的结论,求该商场的中央空调在一天内开启的时长.【答案】(1) ()()π3π8sin 4024124f t t t ⎛⎫=-+≤≤⎪⎝⎭(2)8小时【解析】【分析】(1)直接利用函数图像,求出,进而求出的表达式; ,,A b ω()f t (2)利用条件和由(1)中所求结果建立不等式,再借助的图像与性质即π3π1sin 1242t ⎛⎫-<-⎪⎝⎭sin y x =可求出结果.【小问1详解】如图,因为图像上最低点坐标为,与之相邻的最高点坐标为()3πsin (0,0)4f t A t b A ωω⎛⎫=-+>> ⎪⎝⎭()3,4-,()15,12所以, ()1248,15312,448422T A b A --===-==-+=-+=所以,又,所以, 2π24T ω==0ω>π12ω=所以. ()()π3π8sin 4024124f t t t ⎛⎫=-+≤≤ ⎪⎝⎭【小问2详解】 根据题设,由(1)得,即, π3π8sin 40124t ⎛⎫-+<⎪⎝⎭π3π1sin 1242t ⎛⎫-<- ⎪⎝⎭由的图像得, sin y x =7ππ3π11π2π2π,Z 61246k t k k +<-<+∈解得,23243124,Z k t k k +<<+∈又因为,024t ≤≤当时,,当时,,1k =-07t ≤<0k =2324t <≤所以或,07t ≤<2324t <≤所以该商场的中央空调应在一天内开启时长为8小时.22. 如图,洪泽湖湿地为拓展旅游业务,现准备在湿地内建造一个观景台,已知射线为湿地两P ,AB AC 边夹角为的公路(长度均超过千米),在两条公路上分别设立游客接送点,从观景台120︒2,AB AC ,M N 到建造两条观光线路,测得千米,千米.P ,M N ,PM PN 2AM =2AN =(1)求线段的长度;MN (2)若,求两条观光线路与之和的最大值.60MPN ∠=︒PM PN【答案】(1)千米;(2)千米【解析】【分析】(1)在中利用余弦定理即可求得结果;(2)设,根据正弦定理可用表AMN ∆PMN α∠=α示出和,从而可将整理为,根据的范围可知PM PN PM PN +()30α+ α()sin 301α+=时,取得最大值.【详解】(1)在中,由余弦定理得: AMN ∆ 2222212cos12022222122MN AM AN AM AN ⎛⎫=+-⋅=+-⨯⨯⨯-= ⎪⎝⎭MN ∴=(2)设,因为,所以PMN α∠=60MPN ∠= 120PNM α∠=- 在中,由正弦定理得: PMN ∆()sin sin sin 120MN PM PN MPN αα==∠-, 4sin MN MPN ==∠ ()4sin 120PM α∴=- 4sin PN α=()14sin 1204sin 4sin 4sin 2PM PN ααααα⎫∴+=-+=++⎪⎪⎭()6sin 30ααα=+=+0120α<< 3030150α∴<+<当,即时,取到最大值∴3090α+= 60α= PM PN +两条观光线路距离之和的最大值为 ∴【点睛】本题考查利用正弦定理、余弦定理求解实际问题,涉及到三角函数最值的求解问题,关键是能够将所求距离之和转化为关于角的函数问题,得到函数关系式后根据三角函数最值的求解方法求得结果.。

广东省2023-2024学年高一下学期第一次月考试题 数学含答案

广东省2023-2024学年高一下学期第一次月考试题 数学含答案

2023-2024学年第二学期高一教学质量检测数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()2,1a =- ,()1,1b =- ,则()()23a b a b +⋅-等于()A.10B.-10C.3D.-32.函数()2cos 2f x x x =是()A.周期为2π的奇函数 B.周期为2π的偶函数C.周期为4π的奇函数 D.周期为4π的偶函数3.将向量()1,1OA = 绕坐标原点O 逆时针旋转60°得到OB ,则OA AB ⋅=()A.-2B.2C.-1D.14.一个质点受到平面上的三个力1F ,2F ,3F (单位:牛顿)的作用而处于平衡状态,已知1F ,2F成60°角且12F = ,24F = ,则3F =()A.6B.2C. D.5.在ABC △中,若sin cos a B A =,且sin 2sin cos C A B =,那么ABC △一定是()A.等腰直角三角形B.直角三角形C.锐角三角形D.等边三角形6.请运用所学三角恒等变换公式,化简计算tan102sin102︒+︒,并从以下选项中选择该式子正确的值()A.12C.2D.17.在ABC △中,D 是AB 的中点,E 是CD 的中点,若AE CA CB λμ=+,则λμ+=()A.34-B.12-C.34D.18.已知菱形ABCD 的边长为1,60ABC ∠=︒,点E 是AB 边上的动点,则DE DC ⋅的最大值为().A.1B.32C.12D.32二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得6分,部分选对的得部分,有选错的得0分.9.下列关于平面向量的命题正确的是()A.若a b ∥ ,b c ∥ ,则a c∥ B.两个非零向量a ,b 垂直的充要条件是:0a b ⋅=C.若向量AB CD =,则A ,B ,C ,D ,四点必在一条直线上D.向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b aλ= 10.如图,函数()()2tan 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,且满足ABC △的面积为2π,则下列结论不正确的是()A.4ω=B.函数()f x 的图象对称中心为,082k ππ⎛⎫-+ ⎪⎝⎭,k ∈Z C.()f x 的单调增区间是5,8282k k ππππ⎛⎫++⎪⎝⎭,k ∈Z D.将函数()f x 的图象向右平移4π个单位长度后可以得到函数2tan y x ω=的图象11.如图,弹簧挂着的小球做上下运动,它在s t 时相对于平衡位置的高度h (单位:cm )由关系式()sin h A t ωϕ=+,[)0,t ∈+∞确定,其中0A >,0ω>,(]0,ϕπ∈.小球从最高点出发,经过2s 后,第一次回到最高点,则()A.4πϕ=B.ωπ=C. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为22D. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为12三、填空题:本题共3小题,每小题5分,共15分.12.如图,在正六边形ABCDEF 中,2AF ED EF AB -++=__________.13.已知(2a = ,若向量b 满足()a b a +⊥ ,则b 在a方向上的投影向量的坐标为__________.14.已知ABC △的内角A ,B ,C 的对边为a ,b ,c ,ABC △3,且2cos 2b A c a =-,4a c +=,则ABC △的周长为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知α,β为锐角,1tan 2α=,()5cos 13αβ+=.(1)求cos 2$α的值;(2)求()tan αβ-的值.16.(15分)已知4a = ,2b = ,且a 与b的夹角为120°,求:(1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ- 与3a b λ-平行,求实数λ的值.17.(15分)如图,四边形ABCD 中,1AB =,3BC =,2CD DA ==,60DCB ∠=︒.(1)求对角线BD 的长:(2)设DAB θ∠=,求cos θ的值,并求四边形ABCD 的面积.18.(17分)如图,某公园摩天轮的半径为40m ,圆心距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处.(1)已知在时刻t (单位:min )时点P 距离地面的高度()()sin f t A t h ωϕ=++(其中0A >,0ω>,ϕπ<,求函数()f t 解析式及2023min 时点P 距离地面的高度;(2)当点P距离地面(50m +及以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?19.(17分)设向量()12,a a a = ,()12,b b b = ,定义一种向量()()()12121122,,,a b a a b b a b a b ⊗=⨯=.已知向量12,2m ⎛⎫= ⎪⎝⎭ ,,03n π⎛⎫= ⎪⎝⎭,点()00,P x y 为函数sin y x =图象上的点,点(),Q x y 为()y f x =的图象上的动点,且满足OQ m OP n =⊗+(其中O 为坐标原点).(1)求()y f x =的表达式并求它的周期;(2)把函数()y f x =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数()y g x =的图象.设函数()()()h x g x t t =-∈R ,试讨论函数()h x 在区间0,2π⎡⎤⎢⎥⎣⎦内的零点个数.2023-2024学年第二学期高一教学质量检测数学答案1.B 【详解】由向量()2,1a =- ,()1,1b =- ,可得()24,3a b +=- ,()31,2a b -=-,所以()()()()23413210a b a b +⋅-=⨯-+-⨯=-.2.A 【详解】由题意得()2cos 2sin 42f x x x x ==,所以()()()4sin 422f x x x f x -=-=-=-,故()f x 为奇函数,周期242T ππ==.3.C 【详解】因为OA == OB = ,()21212OA AB OA OB OA OA OB OA ⋅=⋅-=⋅-=-=- .4.D 【详解】∵物体处于平衡状态,∴1230F F F ++=,即()312F F F =-+ ,∴312F F F =+===5.D 【详解】因为sin cos a B A =,则sin sin cos A B B A =,因为(),0,A B π∈,则sin 0B >,所以tan A =,则3A π=,又因为sin 2sin cos C A B =,A B C π++=,则()sin 2sin cos A B A B +=,则sin cos cos sin 2sin cos A B A B A B +=,即sin cos cos sin 0A B A B -=,即()sin 0A B -=,又因为(),0,A B π∈,则A B ππ-<-<,所以3A B π==,即3A B C π===.即ABC △一定是等边三角形,故D 正确.6.A 【详解】2sin102cos10tan102sin102sin1022cos102cos10︒︒+︒⨯︒︒+︒=+︒=︒︒()2sin 30102sin 202cos102cos10︒+︒-︒︒+︒==︒︒()2sin 30cos10cos30sin102cos10︒+︒︒-︒︒=︒cos10cos1012cos102cos102︒+︒︒︒===︒︒7.B 【详解】ABC △中,D 是AB 的中点,E 是CD 的中点,则()1111113122222244AE AC AD AC AB AC AC CB CA CB ⎛⎫⎛⎫=+=+=++=-+ ⎪ ⎪⎝⎭⎝⎭,所以34λ=-,14μ=,所以12λμ+=-.8.D 【详解】设AE x =,[]0,1x ∈,()DE DC DA AE DC DA DC AE DC⋅=+⋅=⋅+⋅113cos cos0,222DA DC ADC AE DC x ⎡⎤=⋅∠+︒=+∈⎢⎥⎣⎦ ,∴DE DC ⋅ 的最大值为32.故选:D.9.BD 【详解】对于A ,当0b =时,不一定成立,A 错误;对于B ,两个非零向量a ,b ,当向量a ,b 垂直可得0a b ⋅= ,反之0a b ⋅= 也一定有向量a ,b垂直,∴B 正确;对于C ,若向量AB CD = ,AB 与CD方向和大小都相同,但A ,B ,C ,D 四点不一定在一条直线上,∴C 错误;对于D ,由向量共线定理可得向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b a λ=,∴D 正确.10.ABD 【详解】A :当0x =时,()02tan 24OC f π===,又2ABC S π=△,所以112222ABCS AB OC AB π==⨯=△,得2AB π=,即函数()f x 的最小正周期为2π,由T πω=得2ω=,故A 不正确;B :由选项A 可知()2tan 24f x x π⎛⎫=+⎪⎝⎭,令242k x ππ+=,k Z ∈,解得48k x ππ=-,k Z ∈,即函数()f x 的对称中心为,048k ππ⎛⎫-⎪⎝⎭,k Z ∈,故B 错误;C :由32242k x k πππππ+<+<+,k Z ∈,得58282k k x ππππ+<<+,k Z ∈,故C 正确;D :将函数()f x 图象向右平移8π个长度单位,得函数2tan 2y x =的图象,故D 不正确.11.BC 【详解】对于AB ,由题可知小球运动的周期2s T =,又0ω>,所以22πω=,解得ωπ=,当0s t =时,sin A A ϕ=,又(]0,ϕπ∈,所以2πϕ=,故A 错误,B 正确;对于CD ,则sin cos 2h A t A t πππ⎛⎫=+= ⎪⎝⎭,所以 3.75s t =与10s t =时的相对于平衡位置的高度之比为()()15cos coscos 3.75244cos 10cos10cos 02A A πππππ⎛⎫- ⎪⨯⎝⎭===⨯,故C 正确D 错误.故选:BC.12.0【详解】由题意,根据正六边形的性质()222AF ED EF AB AF ED EF AB AF DF AB-++=--+=++ 22220AF CA AB CF AB BA AB =++=+=+= .故答案为:0.13.(1,-【详解】由题意知()a b a +⊥ ,故()0a b a +⋅= ,所以20a a b +⋅=,而(a =,则a ==23a b a ⋅=-=- ,则b 在a方向上的投影向量为(1,a a aab ⋅⋅==- ,即b在a方向上的投影向量的坐标为(1,-,故答案为:(1,-.14.6【详解】∵2cos 2b A c a =-,∴222222b c a b c a bc+-⋅=-,∴22222b c a c ac +-=-,∴222a cb ac+-=∴2221cos 22a cb B ac +-==∵0B π<<,∴3B π=,∵1sin 24ABC S ac B ac ===△∴4ac =,∵4a c +=,∴2a c ==,又3B π=,∴ABC △是边长为2的等边三角形,∴ABC △的周长为6.15.【详解】(1)22222211cos sin 1tan 34cos 21cos sin 1tan 514ααααααα---====+++;(2)由1tan 2α=,得22tan 14tan 211tan 314ααα===--,因为α,β为锐角,所以,0,2παβ⎛⎫∈ ⎪⎝⎭,则()0,αβπ+∈,又因()5cos 13αβ+=,所以0,2παβ⎛⎫+∈ ⎪⎝⎭,所以()12sin 13αβ+==,所以()()()sin 12tan cos 5αβαβαβ++==+,则()()()()412tan 2tan 1635tan tan 24121tan 2tan 63135ααβαβααβααβ--+-=-+==-⎡⎤⎣⎦+++⨯.16.【详解】(1)2a b -====(2)因为()2222168412a ba ab b +=+⋅+=-+=,所以a b += ,又()216412a a b a a b ⋅+=+⋅=-=,所以()3cos ,2a a b a a b a a b⋅++===+ ,又[],0,a a b π+∈ 所以a 与a b + 的夹角为6π;(3)因为向量2a b λ- 与3a b λ-平行,所以存在实数k 使()233a b k a b ka kb λλλ-=-=- ,所以23kkλλ=⎧⎨-=-⎩,解得λ=17.【详解】(1)解:连接BD ,在BCD △中,3BC =,2CD =,60DCB ∠=︒得:22212cos 9423272BD CD BC CD BC DCB =+-⨯⨯∠=+-⨯⨯⨯=∴BD =(2)在ABD △中,由DAB θ∠=,1AB =,2DA =,7BD =2221471cos 22122AB DA BD AB DA θ+-+-===-⨯⨯⨯,∴120θ=,四边形ABCD 的面积:11sin sin 22BCD ABC S S S BC CD BCD AB AD θ=+=⨯⨯⨯∠+⨯⨯⨯△△∴13133212232222S =⨯⨯⨯+⨯⨯⨯=.18.【详解】(1)依题意,40A =,50h =,3T =,则23πω=,所以()240sin 503f t t πϕ⎛⎫=++⎪⎝⎭,由()010f =可得,40sin 5010ϕ+=,sin 1ϕ=-,因为ϕπ<,所以2πϕ=-.故在时刻t 时点P 距离地面的离度()()240sin 50032f t t t ππ⎛⎫=-+≥⎪⎝⎭.因此()2202340sin 2023507032f ππ⎛⎫=⨯-+=⎪⎝⎭,故2023min 时点P 距离地面的高度为70m.(2)由(1)知()2240sin 505040cos 323f t t t πππ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,其中0t ≥.依题意,令()503f t ≥+240cos 33t π⎛⎫-≥ ⎪⎝⎭23cos 32t π⎛⎫≤- ⎪⎝⎭,解得52722636k t k πππππ+≤≤+,k ∈Z .则573344k t k +≤≤+,k ∈Z .由75330.544k k ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,可知转一圈中有0.5min 时间可以看到公园全貌.19.【详解】(1)因为12,2m ⎛⎫= ⎪⎝⎭,()00,OP x y =,因为点()00,P x y 为sin y x =的图象上的动点,所以00sin y x =,0000112,2,sin 22m OP x y x x ⎛⎫⎛⎫⊗== ⎪ ⎪⎝⎭⎝⎭;因为OQ m OP n =⊗+ ,所以()000011,2,sin ,02,sin 2332x y x x x x ππ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以00231sin 2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩,即0032sin 2x x x y π⎧-⎪⎪=⎨⎪=⎪⎩,所以()11sin 226y f x x π⎛⎫==- ⎪⎝⎭,它的周期为4T π=;(2)由(1)知()1sin 226g x x π⎛⎫=- ⎪⎝⎭,52,666x πππ⎡⎤-∈-⎢⎣⎦,当262x ππ-=时,3x π=所以()1sin 226g x x π⎛⎫=- ⎪⎝⎭在0,3π⎡⎤⎢⎥⎣⎦上单调递增,在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,其函数图象如下图所示:由图可知,当12t=或1144t-≤<时,函数()h x在区间0,2π⎡⎤⎢⎣⎦内只有一个零点,当1142t≤<时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内有两个零点,当14t<-或12t>时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内没有零点.。

福建省厦门市同安第一中学2023-2024学年高一下学期第一次月考数学试卷

福建省厦门市同安第一中学2023-2024学年高一下学期第一次月考数学试卷

福建省厦门市同安第一中学2023-2024学年高一下学期第一次月考数学试卷一、单选题1.复数13i z =-,其中i 为虚数单位,则z =( )A B .2C D .52.向量()2,1a =r ,()1,b x =r ,若a b ⊥r r ,则( ) A .12x =B .12x =-C .2x =D .2x =- 3.在ABC V 中,已知D 为BC 上一点,且满足3BD DC =u u u r u u u r ,则AD =u u u r( )A .3144AB AC +u u u r u u u r B .1344AB AC +u u ur u u u rC .1233AB AC +u u u r u u u rD .2133AB AC +u u ur u u u r4.已知向量()()1,2,2,1a b ==r r ,则a r 在b r上的投影向量为( ) A .42,55⎛⎫ ⎪⎝⎭B .84,55⎛⎫ ⎪⎝⎭C .48,55⎛⎫ ⎪⎝⎭D .24,55⎛⎫ ⎪⎝⎭5.如图,已知两座灯塔A 和B 与海洋观察站C 的距离都等于30km ,灯塔A 在观察站C 的北偏东20︒,灯塔B 在观察站C 的南偏东40︒,则灯塔A 与灯塔B 的距离为( )A .30kmB .C .D .6.已知ABC V 所在平面内一点D 满足102DA DB DC ++=u u u r u u u r u u u r r,则ABC V 的面积是ABD △的面积的( ) A .5倍B .4倍C .3倍D .2倍7.如图,在等腰直角ABC V 中,斜边2AC =,M 为AB 的中点,D 为AC 的中点.将线段AC 绕着点D 旋转得到线段EF ,则ME MF ⋅=u u u r u u u r( )A .2-B .32-C .1-D .12-8.在斜三角形ABC 中,角,,A B C 的对边分别为()222,,,sin23sin a b c b C a b c B ==+-,点O 满足20OA OB OC ++=u u u r u u u r u u u r,且1cos 4CAO ∠=,则ABC V 的面积为( )A .B .C D二、多选题9.复数12z i =+,i 是虚数单位,则以下结论正确的是( ) A .12i z =- B .3z >C .z 的虚部为2D .z 在复平面内对应的点位于第一象限10.已知向量a r ,b r满足1==a b r r 且2b a -=r r )A .a b -rr B .2a b +=rrC .,60a b =or rD .a b ⊥r r11.在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,且23cos 3cos b C c B a +=,则下列说法正确的是( )A .若2BC A +=,则ABC V 的外接圆的面积为3πB .若π4A =,且ABC V 有两解,则b 的取值范围为⎡⎣C .若2C A =,且ABC V 为锐角三角形,则c的取值范围为( D .若2A C =,且sin 2sin B C =,O 为ABC V 的内心,则AOB V三、填空题12.已知复数2(34)(4)i R m m m m +-++∈()是纯虚数,则实数m =.13.已知,2,||2||2,,AB a b AC a b a b a b =+=-==u u u r u u u r r r r rr r r r 的夹角为π3,则三角形ABC 的BC 边上中线的长为.14.已知ABC V 是锐角三角形,内角A ,B ,C 所对应的边分别为a ,b ,.c 若2A B =,则a cb+的取值范围是.四、解答题15.如图,在平面四边形ABCD 中,3π4ABC ∠=,2ABC S =△,BAC DAC ∠=∠,24CD AB ==.(1)求线段AC 的长度; (2)求sin ADC ∠的值.16.已知平面向量,a b rr 是单位向量,且()2a a b ⊥-r r r .(1)求向量,a b rr 的夹角;(2)若1,2a b ⎛-= ⎝⎭r r ,向量c r 与向量a b -r r 共线,且||||c a b =+r r r ,求向量c r . 17.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =r (),cos a A ,n =r()cos ,B b c -,且m n ⋅r rcos c A =⋅,ABC V 外接圆面积为3π. (1)求A ;(2)求ABC V 周长的最大值.18.在梯形ABCD 中,//,2,1,120AB CD AB BC CD BCD ︒===∠=,,P Q 分别为直线,BC CD上的动点.(1)当,P Q 为线段,BC CD 上的中点,试用AB u u u r和AD u u u r 来表示QP u u u r ;(2)若14BP BC =u u u r u u u r,求||AP u u u r ;(3)若,,0,0,BP BC DQ DC G μλλμ==>>u u u r u u u r u u u r u u u r为APQ ∆的重心,若,,D G B 在同一条直线上,求λμ的最大值.19.如图,设ABC V 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,cos BAD ∠=(1)求边b 的长度; (2)求ABC V 的面积;(3)点G 为AD 上一点,25AG AD =u u u r u u u r,过点G 的直线与边AB ,AC (不含端点)分别交于E ,F .若910AG EF ⋅=u u u r u u u r ,求AEFABC S S V V 的值.。

天津市重点高一下学期第一次月考数学试题(解析版)

天津市重点高一下学期第一次月考数学试题(解析版)

一、单选题1.若角的终边上一点的坐标为,则( ) α(11)-,cos α=A .B .CD .1-1【答案】C【分析】根据任意角三角函数的定义即可求解.【详解】∵角的终边上一点的坐标为,它与原点的距离 α(11)-,r ==∴ cos x r α===故选:C.2.下列说法正确的是( ) A .第二象限角比第一象限角大 B .角与角是终边相同角60︒600︒C .三角形的内角是第一象限角或第二象限角D .将表的分针拨慢分钟,则分针转过的角的弧度数为 10π3【答案】D【分析】举反例说明A 错误;由终边相同角的概念说明B 错误;由三角形的内角的范围说明C 错误;求出分针转过的角的弧度数说明D 正确.【详解】对于,是第二象限角,是第一象限角,,故A 错误; A 120︒420︒120420︒<︒对于B ,,与终边不同,故B 错误;600360240︒=︒+︒60︒对于C ,三角形的内角是第一象限角或第二象限角或轴正半轴上的角,故C 错误; y 对于D ,分针转一周为分钟,转过的角度为,将分针拨慢是逆时针旋转, 602π钟表拨慢分钟,则分针所转过的弧度数为,故D 正确.∴101π2π63⨯=故选:D .3.下列叙述中正确的个数是:( )①若,则;②若,则或;③若,则④若a b = 32a b >a b = a b = a b =- ma mb = a b = ,则⑤若,则,a b b c ∥∥a c ∥a b = a bA A .0B .1C .2D .3【答案】B【分析】由向量不能比较大小判断①;举例判断②;由时判断③;由时判断④;由相0m =0b =等向量和平行向量的关系判断⑤.【详解】解:因为向量不能比较大小,所以①错误, 如单位向量模都为1,方向任意,所以②错误,当时,,但是与不一定相等,所以③错误, 0m =0ma mb ==r r ra b 当时,和可能不平行,所以④错误, 0b = a c两个向量相等则它们一定平行,所以⑤正确, 故选:B4.若,则( ) sin cos θθ-=44sin cos +=θθA .B .C .D .34567889【答案】C【分析】根据同角三角函数的基本关系和二倍角的正弦公式可得,结合 1sin 22θ=计算即可.44sin cos +=θθ211sin 22θ=-【详解】 sin cos θθ-=得,即,221sin 2sin cos cos 2θθθθ-+=11sin 22θ-=所以, 1sin 22θ=所以 4422222sin cos (sin cos )2sin cos θθθθθθ+=+-.2211171sin 21()2228θ=-=-⨯=故选:C5.已知,则( ) 1sin()3πα+=3cos 2πα⎛⎫-=⎪⎝⎭A .B .C .D 13-13【答案】B【分析】已知等式左边利用诱导公式化简求出的值,原式利用诱导公式化简后将的值代sin a sin a 入计算即可求出值.【详解】()1sin sin ,3παα+=-= 31cos()sin .23παα∴-=-=故选:B【点睛】诱导公式可以将任意角的三角函数转化为锐角三角函数,因此常用于化简求值,一般步骤:任意负角的三角函数→任意正角的三角函数→的三角函数→锐角的三角函数.[0,2)π6.已知,的值为0,2πθ⎛⎫∈ ⎪⎝⎭sin 4πθ⎛⎫-= ⎪⎝⎭sin 23πθ⎛⎫+ ⎪⎝⎭A B C D 【答案】D【详解】sin 4πθ⎛⎫-= ⎪⎝⎭3sin )sin 2,cos sin 5θθθθθ⇒-=⇒=>πππ4(0,(0,),2(0,22425θθθθ∈∴∈∈=所以,选D. sin 23πθ⎛⎫+ ⎪⎝⎭314525=⨯+=7.在中,,则是 ABC ∆AB BC AB BC ==+ ABC ∆A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形【答案】B【解析】根据向量的线性运算化简判定即可.【详解】,则,故是等边三角形.AB BC AC +=||||||AB BC AC == ABC ∆故选:B【点睛】本题主要考查了利用向量判定三角形形状的方法,属于基础题型.8.定义为中较大的数,已知函数,给出下列命题: {}max ,a b ,a b (){}max sin ,cos f x x x =①为非奇非偶函数; ()f x ②的值域为;()f x []1,1-③是以为最小正周期的周期函数; ()f x π④当时,. ()π2π2ππZ 2k x k k -+<<+∈()0f x >其中正确的为( ) A .②④ B .①③C .③④D .①④【答案】D【分析】作出函数的图象,利用图象确定出奇偶性,值域,周期,单调区间,即可求解. ()f x 【详解】解:作出函数的图象,如下:()f x令,则,,解得,,sin cos x x =π04x ⎛⎫-= ⎪⎝⎭ππ4x k -=Z k ∈ππ4x k =+Z k ∈当,时 5π2π4x k =+Z k ∈()f x =由图可知,是非奇非偶函数,值域为,故①正确,②错误; ()f x ⎡⎤⎢⎥⎣⎦因为是以为最小正周期的周期函数,故③错误; ()f x 2π由图可知,时,,故④正确. ()π2π2ππZ 2k x k k -+<<+∈()0f x >故选:D.9.的值为( ) sin 45cos15cos 225sin15⋅+⋅A .B .C .D 1212-【答案】A【分析】利用差的正弦公式化简计算.【详解】sin 45cos15cos 225sin15sin 45cos15cos 45sin15︒︒︒︒=︒︒︒︒⋅+⋅⋅-⋅. ()1sin 4515sin 302=︒-︒=︒=故选:A.10.已知函数是奇函数,且的最小正周期为,将()()()sin 0,0,f x A x A ωϕωϕπ=+>><()f x π的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),所得图象对应的函数为()y f x =2()g x.若( ) 4g π⎛⎫= ⎪⎝⎭38f π⎛⎫=⎪⎝⎭A .B . 2-C D .2【答案】C【分析】先根据原函数的奇偶性及周期性确定的值,然后得到的解析式,再根据,ωϕ()g x,最后求解的值. 4g π⎛⎫⎪⎝⎭A 38f π⎛⎫ ⎪⎝⎭【详解】因为函数是奇函数,且其最小正周期为,()()()sin 0,0,f x A x A ωϕωϕπ=+>><π所以,则,得.0,2ϕω==()sin 2f x A x =()sin g x A x =又,故,sin 44g A ππ⎛⎫== ⎪⎝⎭2A =()2sin 2f x x =所以,332sin84f ππ⎛⎫== ⎪⎝⎭故选:C.【点睛】本题考查型函数的图象及性质,难度一般.解答时先要()()()sin +0,0f x A x b A ωϕω=+>>根据题目条件确定出、及的值,然后解答所给问题. A ωϕ11.函数(其中,)的图象如下图所示,为了得到的图象,()sin()f x x ωϕ=+0ω>02πϕ<≤sin y x =则需将的图象( )()y f x =A .横坐标缩短到原来的,再向右平移个单位 124πB .横坐标缩短到原来的,再向左平移个单位128πC .横坐标伸长到原来的2倍,再向右平移个单位 4πD .横坐标伸长到原来的2倍,再向左平移个单位8π【答案】C【解析】先根据图象的特点可求出,然后再根据周期变换与相位变换即可得出()sin 24f x x π⎛⎫=+ ⎪⎝⎭答案.【详解】由图可知,,所以,故, 1732882T πππ=-=T π=22T πω==故函数,()()sin 2f x x ϕ=+又函数图象经过点,故有,即, 3,08π⎛⎫ ⎪⎝⎭3sin 208πϕ⎛⎫⨯+= ⎪⎝⎭328k πϕπ⨯+=所以(), 34πφk π=-Z k ∈又,所以,02πϕ<≤4πϕ=所以,()sin 24f x x π⎛⎫=+ ⎪⎝⎭故将函数图象的横坐标伸长到原来的2倍得到的图象,然后再向()sin 24f x x π⎛⎫=+ ⎪⎝⎭4y sin x π⎛⎫=+ ⎪⎝⎭右平移个单位即可得到的图象.4πsin y x =故选:C .【点睛】本题考查由三角函数图象确定解析式,考查三角函数图象的平移伸缩变换,考查逻辑思维能力和运算求解能力,考查数形结合思想,属于常考题.12.已知函数,给出以下四个命题:①的最小正周期为;②()sin (sin cos )f x x x x =⋅+()f x π()f x 在上的值域为;③的图像关于点中心对称;④的图像关于直线0,4⎡⎤⎢⎣⎦π[]0,1()f x 51,82π⎛⎫⎪⎝⎭()f x 对称.其中正确命题的个数是( )118x π=A . B .C .D .1234【答案】D【解析】化简,根据函数的周期,值域,对称性逐项验证,即可求得结()sin (sin cos )f x x x x =⋅+论.【详解】2()sin (sin cos )sin cos sin 1111sin 2cos 2,22242f x x x x x x xx x x π=⋅+=⋅+=-+=-+周期为,①正确;()f x π110,,2[,[,4444422x x x πππππ⎡⎤∈-∈--∈-⎢⎥⎣⎦的值域为,②正确;()f x []0,1,③正确; 511(822f ππ=+=为的最大值,11511()8222f ππ=+=()f x ④正确. 故选:D【点睛】本题考查三角函数的化简,以及三角函数的性质,属于中档题.二、填空题13.若,则_______. 2sin 3α=sin()πα-=【答案】23【解析】直接利用诱导公式得到答案. 【详解】 2sin()sin 3παα-==故答案为:23【点睛】本题考查了诱导公式,属于简单题.14.向量_________AB MB BO BC OM +=+++【答案】##ACCA - 【分析】利用向量加法的三角形法则及向量加法的运算律即可求解.【详解】()()AB MB BO BC OM AB BO MB BC OM +++=+++++ .()AO MC OM AO OM MC AM MC AC +=+=+=++=故答案为:.AC15.函数________.y =【答案】 72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【分析】根据使函数有意义必须满足,再由正弦函数的性质得到的范围. 12sin 0x -≥x 【详解】由题意得:12sin 0x -≥ 1sin 2x ∴≤ 722,66k x k k ππππ∴-≤≤+∈Z 即 72,2,66x k k k ππππ⎡⎤∈-+∈⎢⎥⎣⎦Z 故答案为 72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【点睛】本题考查关于三角函数的定义域问题,属于基础题.16.若方程在上有解,则实数m 的取值范围是________.sin 41x m =+[]0,2x π∈【答案】1,02⎡⎤-⎢⎥⎣⎦【解析】先求出的范围,将代入,解不等式即可得m 的取值范围. sin x sin 41x m =+【详解】解:, [][]0,2,sin 1,1x y x π∈∴=∈- ,[]1sin 114,x m ∈-+∴=,1,02m ⎡⎤∈-⎢⎥⎣⎦故答案为:1,02⎡⎤-⎢⎥⎣⎦【点睛】本题考查方程有解问题,可转化为函数的值域问题,是基础题. 17.下列五个命题:①终边在轴上的角的集合是; y π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z ∣②在同一坐标系中,函数的图象和函数的图象有三个公共点; sin y x =y x =③把函数的图象向右平移个单位长度得到的图象;π3sin 23y x ⎛⎫=+ ⎪⎝⎭π63sin2y x =④函数在上是单调递减的;πsin 2y x ⎛⎫=- ⎪⎝⎭[]0,π⑤函数的图象关于点成中心对称图形.πtan 23y x ⎛⎫=+ ⎪⎝⎭π,06⎛⎫- ⎪⎝⎭其中真命题的序号是__________. 【答案】③⑤【分析】①终边在y 轴上的角的集合为;②根据的大小关系判断;③ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z sin ,x x 根据三角函数的图象的平移变换规律判断;④根据正弦函数的单调性判断;⑤根据正切函数的对称性判断.【详解】①终边在y 轴上的角的集合为,故①错误;ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ②在同一直角坐标系中,函数的图象和函数的图象有一个公共点,为原点,当sin y x =y x =0x =时,;当时,;sin x x =1x ≥sin x x <当时,如图,在单位圆中,轴,,弧的长度为,则;所以01x <<PM Ox ⊥=sin PM x PA x sin x x <当时,.0x >sin x x <同理当时,,所以函数的图象和函数的图象有一个公共点,0x <sin x x >sin y x =y x =故②错误;③的图象向右平移得到的图象,故③正确;π3sin 23y x ⎛⎫=+ ⎪⎝⎭π6ππ3sin 23sin263y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦④,在上是增函数,故④错误;πsin cos 2y x x ⎛⎫=-=- ⎪⎝⎭()0,π⑤当时,代入函数中可得,,则可知是对称中心,π6x =-ππtan 2tan0063y ⎡⎤⎛⎫=⨯-+== ⎪⎢⎥⎝⎭⎣⎦π,06⎛⎫- ⎪⎝⎭故⑤正确. 故答案为:③⑤.18.函数的部分图象如图所示.若方程()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭有实数解,则的取值范围为__________.()π2cos 43f x x a ⎛⎫++= ⎪⎝⎭a【答案】94,4⎡⎤-⎢⎥⎣⎦【分析】根据图象求出函数的解析式为,求出()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,令()2ππππ2sin 22cos 42sin 2212sin 26366g x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=++-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,根据二次函数的性质,即可求出结果.[]πsin 2,1,16t x t ⎛⎫=+∈- ⎪⎝⎭【详解】解:由图可知,, 2A =2πππ2362T =-=所以,即,πT =2ππω=⇒2ω=当时,,可得,π6x =()2f x =πππ2sin 222π632k ϕϕ⎛⎫⨯+=⇒+=+ ⎪⎝⎭即,因为,所以,π2π,6k k ϕ=+∈Z π2ϕ<π6ϕ=所以函数的解析式为,()f x ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭设,()()π2cos 43g x f x x ⎛⎫=++ ⎪⎝⎭则,()ππ2sin 22cos 463g x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭2ππ2sin 2212sin 266x x ⎡⎤⎛⎫⎛⎫=++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,[]πsin 2,1,16t x t ⎛⎫=+∈- ⎪⎝⎭记,()2219422444h t t t t ⎛⎫=-++=--+ ⎪⎝⎭因为,所以,[]1,1t ∈-()94,4h t ⎡⎤∈-⎢⎥⎣⎦即,故,()94,4g x ⎡⎤∈-⎢⎥⎣⎦94,4a ⎡⎤∈-⎢⎥⎣⎦故的取值范围为.a 94,4⎡⎤-⎢⎥⎣⎦故答案为:.94,4⎡⎤-⎢⎥⎣⎦19.如图,四边形是平行四边形,点P 在上,判断下列各式是否正确(正确的在括号内ABCD CD 打“√",错误的打“×”)(1).() DA DP PA +=(2).() DA AB BP DP ++=(3).()AB BC CP PA ++=【答案】 × √ ×【解析】(1)由图形得;(2)、(3)利用向量加法几何意义;DA DP PA -=【详解】对(1),因为,故(1)错误;DA DP PA -=对(2),利用向量加法三角形首尾相接知,(2)正确;DA AB BP DP ++=对(3),,故(3)错误.AB BC CP AP ++= 故答案为:(1) ×;(2) √;(3) ×【点睛】本题考查平面向量加法的几何意义,考查数形结合思想,求解时注意三角形法则的运用.三、解答题20.已知函数. 2()cos cos f x x x x =-(1)求的最小正周期;()f x (2)当时,讨论的单调性并求其值域.ππ[,]62x ∈-()f x 【答案】(1)π(2)时,单调递增,时,单调递减,值域为ππ,63x ⎡⎤∈-⎢⎥⎣⎦()f x ππ,32x ⎡⎤∈⎢⎣⎦()f x 31,22⎡⎤-⎢⎥⎣⎦【分析】(1)对化简后得到,利用求最小正周期;(2)整体法()f x ()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭2πT ω=求解函数单调性及其值域.【详解】(1) 1cos 2ππ1π1()2sin 2cos cos 2sin sin 2266262x f x x x x x +⎛⎫=-=--=-- ⎪⎝⎭所以的最小正周期为. ()f x 2ππ2=(2)当时,.ππ,62x ⎡⎤∈-⎢⎥⎣⎦52,πππ626x ⎡⎤-∈-⎢⎥⎣⎦故当,即时,单调递增,πππ2262x --……ππ63x -……()f x 当,即时,单调递减. ππ5π2266x -……ππ32x ……()f x 当时,,52,πππ626x ⎡⎤-∈-⎢⎥⎣⎦π1sin 216x ⎛⎫-- ⎪⎝⎭……所以,即的值域为31()22f x -……()f x 31,22⎡⎤-⎢⎥⎣⎦21.设,是两个不共线的向量,已知,,. 1e 2e 1228AB e e =- 123CB e e =+ 122CD e e =-(1)求证:,,三点共线;A B D (2)若,且,求实数的值.123BF e ke =-u r u u u r u r //B B F Dk 【答案】(1)证明见解析 (2) 12【分析】(1)由题意证明向量与共线,再根据二者有公共点,证明三点共线;AB BDB (2)根据与共线,设由(1)的结论及题意代入整理,结合,是两BF BD() R BF BD λλ∈= 1e 2e 个不共线的向量,构造方程解实数的值.k【详解】(1)由已知得, 121212))(2(34BD CD CB e e e e e e =-+=-=--因为,所以,1228AB e e =- 2AB BD = 又与有公共点,所以,,三点共线;AB BDB A B D (2)由(1)知,若,且,124BD e e =- 123BF e ke =-u r u u u r u r //B B F D可设,() R BF BD λλ∈=所以,即,121234e ke e e λλ-=-12(3)(4)e k e λλ-=- 又,是两个不共线的向量,1e 2e所以解.3040k λλ-=⎧⎨-=⎩12k =22.已知函数,且的最小正周期为. 2()cos 2cos (0)f x x x x ωωωω=+>()f x π(1)求ω的值及函数f (x )的单调递减区间; (2)将函数f (x )的图象向右平移个单位长度后得到函数g (x )的图象,求当时,函数6π0,2x π⎡⎤∈⎢⎥⎣⎦g (x )的最大值.【答案】(1)ω=1,单调递减区间为;(2)3. 2[,],63k k k ππ+π+π∈Z 【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得,利用周()2sin(2)16f x x πω=++期公式即可解得的值,利用正弦函数的图象和性质,令,即可解得ω3222262k x k πππππ+++……的单调减区间.()f x (2)根据函数的图象变换可求,由的范围,可求sin()y A x ωϕ=+()2sin(2)16g x x π=-+x ,由正弦函数的图象和性质即可得解. 52666x πππ--……【详解】解:(1),()21cos 22sin(2)16f x x x x πωωω++=++,, 22T πππω=⇒=1ω∴=从而:,令, ()2sin(2)16f x x π=++3222262k x k πππππ+++……得, 263k x k ππππ++……的单调减区间为.()f x ∴2[,],63k k k ππ+π+π∈Z(2),()2sin[2()]12sin(21666g x x x πππ=-++=-+,, [0,2x π∈∴52666x πππ--……当,即时,. ∴226x ππ-=3x π=()2113max g x =⨯+=【点睛】本题主要考查了函数的图象变换,三角函数恒等变换的应用,正弦函数的sin()y A x ωϕ=+图象和性质,考查了转化思想和数形结合思想的应用,属于中档题.23.已知数的相邻两对称轴间的距离为. 2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪⎪⎝⎭⎝⎭2π(1)求的解析式; ()f x (2)将函数的图象向右平移个单位长度,再把各点的横坐标缩小为原来的(纵坐标不变),()f x 6π12得到函数的图象,当时,求函数的值域;()y g x =,126x ππ⎡⎤∈-⎢⎥⎣⎦()g x (3)对于第(2)问中的函数,记方程在上的根从小到大依次为()g x 4()3g x =4,63x ππ⎡⎤∈⎢⎥⎣⎦12,,nx x x ,若,试求与的值. m =1231222n n x x x x x -+++++ n m 【答案】(1) ()2sin 2f x x =(2) [-(3) 205,3n m π==【分析】(1)先整理化简得,利用周期求得,即可得到; ()2sin f x x ω=2ω=()2sin 2f x x =(2)利用图像变换得到,用换元法求出函数的值域;()sin()243g x x π=-()g x (3)由方程,得到,借助于正弦函数的图象,求出与的值.4()3g x =2sin(4)33x π-=sin y x =n m【详解】(1)由题意,函数21())2sin ()1626f x x x ππωω⎡⎤=+++-⎢⎥⎣⎦cos()2sin()2sin 6666x x x x ππππωωωω=+-+=+-=因为函数图象的相邻两对称轴间的距离为,所以,可得.()f x 2πT π=2ω=故()2sin 2f x x =(2)将函数的图象向右平移个单位长度,可得的图象.()f x 6π2sin(2)3y x π=-再把横坐标缩小为原来的,得到函数的图象.12()2sin(4)3y g x x π==-当时,,,126x ππ⎡⎤∈-⎢⎥⎣⎦24,333x πππ⎡⎤-∈-⎢⎣⎦当时,函数取得最小值,最小值为,432x ππ-=-()g x 2-当时,函数433x ππ-=()g x故函数的值域. ()g x ⎡-⎣(3)由方程,即,即,4()3g x =42sin(4)33x π-=2sin(4)33x π-=因为,可得,4,63x ππ⎡⎤∈⎢⎥⎣⎦4,533x πππ⎡⎤-∈⎢⎥⎣⎦设,其中,即,结合正弦函数的图象, 43x πθ=-,53πθπ⎡⎤∈⎢⎥⎣⎦2sin 3θ=sin y x =可得方程在区间有5个解,即, 2sin 3θ=,53ππ⎡⎤⎢⎥⎣⎦5n =其中, 122334453,5,7,9θθπθθπθθπθθπ+=+=+=+=即 12233445443,445,447,44933333333x x x x x x x x ππππππππππππ-+-=-+-=-+-=-+-=解得 1223344511172329,,,12121212x x x x x x x x ππππ+=+=+=+=所以. m =()()()()1212345233445223220x x x x x x x x x x x x x π=++++++++++++= 综上, 2053n m π==,【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或sin y x =cos y x =的性质解题;(2)求y =A sin(ωx +φ)+B 的值域通常用换元法;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一(下)考数学试卷
1.(填空题,3分)函数y=√9−x2+lg(2cos2x−1)的定义域是___ .
2.(填空题,3分)若sinx=1
3
,x∈(0,π),则x=___ .
3.(填空题,3分)函数y=tan(2x- π
4
)的最小正周期为___ ,对称中心为___ .
4.(填空题,3分)函数f(x)=|1+sin2x-cos2x|的最小正周期是___ .
5.(填空题,3分)已知arcsinx<arcsin(1-x),则x的取值范围为___ .
6.(填空题,3分)当x∈[−π
4,3π
4
]时,函数y=arcsin(cosx)的值域是___ .
7.(填空题,3分)函数y=sin(π
6−x)(π
6
≤x≤13π
6
)的单调减区间为___ .
8.(填空题,3分)函数f(x)=arcsinx+arctanx的值域是___ .
9.(填空题,3分)函数f(x)=lgx-cos2x的零点个数是___ .
10.(填空题,3分)函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,则f(1)+f(2)+f(3)+…+f(2020)=___ .
11.(填空题,3分)平移f(x)=sin(ωx+φ)(ω>0,- π
2<φ<π
2
),给出下列4个论断:
(1)图象关于x= π
12
对称;
(2)图象关于点(π
3
,0)对称;
(3)最小正周期是π;
(4)在[- π
6
,0]上是增函数;
以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:(1)___ .
(2)___ .
12.(填空题,3分)定义一种运算a⊗b={a a≤b
b a>b
,令f(x)=(cos2x+sinx)⊗5
4
,且
x∈[0,π
2],则函数f(x−π
2
)的值域是___ .
13.(单选题,3分)为了得到函数y=2sin(x
3+π
6
),x∈R的图象,只需把函数y=2sinx,
x∈R的图象上所有的点()
A.向右平移π
6
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
B.向左平移π
6
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
C.向右平移π
6个单位长度,再把所得各点的横坐标缩短到原来的1
3
(纵坐标不变)
D.向左平移π
6个单位长度,再把所得各点的横坐标缩短到原来的1
3
(纵坐标不变)
14.(单选题,3分)函数y=tanx+sinx-|tanx-sinx|在区间(π
2,3π
2
)内的图象是()
A. B. C. D.
15.(单选题,3分)已知函数f(x)=sinωx在[0,3π
4
]恰有4个零点,则正整数ω的值为()
A.2或3
B.3或4
C.4或5
D.5或6
16.(单选题,3分)下列命题:
① 若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π
4,π
2
),则f(sinθ)
>f(cosθ).
② 若锐角α、β满足cosα>sinβ,则α+β<π
2

③ 若f(x)=2cos2x
2
−1,则f(x+π)=f(x)对x∈R恒成立.
④ 要得到函数y=sin(x
2−π
4
)的图象,只需将y=sin x
2
的图象向右平移π
4
个单位.
其中真命题的个数有()A.1 B.2 C.3 D.4
17.(问答题,0分)请用五点法作出函数y=3sin(1
2x−π
4
)在长度为一个周期上的大致图象.
18.(问答题,0分)求函数y=arcsin(x2-3x+3)的定义域、单调区间、值域.
19.(问答题,0分)设函数f(x)=sinx,x∈R.
(Ⅰ)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;
(Ⅱ)求函数y=[f(x+ π
12)]2+[f(x+ π
4
)]2的值域.。

相关文档
最新文档