西安电子科技大学2018考研大纲:602高等数学.doc

合集下载

西安电子科技大学数学分析考研大纲 .doc

西安电子科技大学数学分析考研大纲 .doc

西安电子科技大学数学分析考研大纲一、考试总体要求与考试要点1.考试对象考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。

2.考试总体要求测试考生对数学分析的基本内容的理解、掌握和熟练程度。

要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。

3.考试内容和要点(一) 实数集与函数1、实数:实数的概念;实数的性质;绝对值不等式。

2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。

3、函数的几何特性:单调性;奇偶性;周期性。

要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。

(二) 数列极限1、数列极限的概念(N ε-定义)。

2、数列极限的性质:唯一性;有界性;保号性。

3、数列极限存在的条件:单调有界准则;两边夹法则。

要求:理解和掌握数列极限的概念,会使用N ε-语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。

(三) 函数极限1、函数极限的概念(εδ-定义、X ε-定义);单侧极限的概念。

2、函数极限的性质:唯一性;局部有界性;局部保号性。

3、函数极限存在的条件:海涅归结原则。

4、两个重要极限。

要求:理解和掌握函数极限的概念,会使用εδ-语言以及X ε-语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。

(四) 函数连续1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。

2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。

【精品】2018年硕士研究生招生考试大纲.doc(20200328132941)

【精品】2018年硕士研究生招生考试大纲.doc(20200328132941)

2018年硕士研究生招生考试大纲002 信息科学与工程学院目录初试考试大纲 1610高等数学 1638 量子力学 1953 声学基础 3806 普通物理 5807数据结构7808地理信息系统8810数字电子技术10341农业知识综合三11910高级程序设计12911软件工程14912数据结构和软件工程16930程序设计基础19940 计算机网络与安全 21946 信号与系统23954计算机基础综合24复试考试大纲28现代物理基础28科技英语(光学、凝聚态物理) 30现代光学基础31电子技术基础33科技英语(光学工程专业(学术型080300和专业型085202)34 电子技术 A 35通信原理36计算机系统结构38面向对象的程序设计40数据库系统41程序设计实践43保密概论45安全程序设计实践47农业信息化概论50数字信号处理52C++语言编程54科技英语(地图学与地理信息系统、测绘工程)56 光学电磁学57信号与系统59数字电子技术61科技英语(海洋探测技术、摄影测量与遥感)62同等学力加试科目考试大纲63数据结构63软件工程65初试考试大纲610高等数学一、考试性质高等数学是理、工科专业硕士研究生入学考试的专业基础课程。

高等数学入学考试是为招收理、工科专业硕士研究生而实施的具有选拔功能的水平考试,它的指导思想是既要为国家选拔具有较强分析问题与解决问题能力的高层次人才,又要有利于促进高等学校高等数学课程教学质量的提高。

二、考察目标要求考生能系统理解高等数学的基本概念和基本原理,掌握高等数学的基本思想与方法,具有较好的逻辑推理能力、空间想象能力、计算能力以及运用所学知识分析问题和解决问题的能力。

三、考试形式本考试为闭卷考试,满分为150分,考试时间为180分钟。

试卷结构:高等数据75%,线性代数25%。

四、考试内容(一)高等数学(75%)考试内容:函数的极限与连续,一元函数微积分及其应用,向量代数与空间解析几何,多元函数微积分及其应用,场论,含参变量积分,无穷级数,常微分方程及其应用。

#2018年考研数学一历年考试大纲(免费word版)24430

#2018年考研数学一历年考试大纲(免费word版)24430

2018年全国硕士研究生入学测试数学(一>测试大纲测试科目:数学高等数学、线性代数、概率论与数理统计试卷结构<一)题分及测试时间试卷满分为150分,测试时间为180分钟。

<二)内容比例高等教案约60%线性代数约20%概率论与数理统计约20%<三)题型比例填空题与选择题约40%解答题(包括证明题> 约60%一、函数、极限、连续测试内容函数的概念及表示法函数的有界性(有界和收敛的关系存在正数M使f(x><M恒成立则有界,不存在M则无界,注意与无穷大的区别-如振荡型函数>、单调性、周期性(注意周期函数的定积分性质>和奇偶性(奇偶性的前提是定义域关于原点对称> 复合函数(两个函数的定义域值域之间关系>、反函数(函数必须严格单调,则存在单调性相同的反函数且与其原函数关于y=x 对称>、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立(应用题>数列极限(转化为函数极限单调有界定积分夹逼定理>与函数极限(四则变换无穷小代换积分中值定理洛必塔法则泰勒公式-要齐次展开>的定义及其性质(局部保号性> 函数的左极限与右极限(注意正负号> 无穷小(以零为极限>和无穷大(大于任意正数>的概念及其关系无穷小的性质(和性质积性质>及无穷小的比较(求导定阶> 极限的四则运算(要在各自极限存在的条件下> 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限 :函数连续的概念(点极限存在且等于函数值> 函数间断点的类型(第一型(有定义>:可去型,跳跃型第二型(无定义>:无穷型,振荡型> 初等函数的连续性闭区间上连续函数的性质(零点定理介值定理>测试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念<含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质<有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学测试内容导数和微分的概念(点可导与域可导的关系> 导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数(数学归纳法赖布妮子公式法> 一阶微分形式的不变性微分中值定理(闭区间连续开区间可导ζ不是常数> 洛必达<L’Hospital)法则(注意使用条件洛必塔求解不存在时,原极限可能存在> 函数单调性的判别(利用导数> 函数的极值(极值的判定:定义一阶去心邻域可导且左右邻域导数异号二阶可导且该点一阶导为零> 函数图形的凹凸性(证明>、拐点及渐近线(求解步骤:垂直水平斜> 函数图形的描绘函数最大值和最小值弧微分曲率的概念(有绝对值注意参数方程公式> 曲率半径测试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分(后面要加上dx>.3.了解高阶导数的概念,会求简单函数的n阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理(典型函数的展开>,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.(洛必达法则受阻时:拆项积分中值中值定理>7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法(一阶导定点二阶导定性>,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学测试内容原函数和不定积分的概念(被积函数的要求连续只是原函数存在的充分条件> 不定积分的基本性质(线性和差与求导互逆> 基本积分公式定积分的概念(求极限的应用>和基本性质(注意上下限的位置线性分区间上限大于下限时比大小估值定理> 定积分中值定理用定积分表达和计算质心积分上限的函数及其导数牛顿一莱布尼茨<Newton-Leibniz)公式不定积分和定积分的换元积分法(换元要彻底,不要忘了dx 定积分换元要注意上下限也要换>与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分概定积分的应用测试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法(常见代换:倒代换三角换元万能代换不要跳步计算,以免出现毁灭性的低级失误>.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数(用处远非于此,常与罗尔定理结合解决零点问题>,掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分(用极限的观点>.6.掌握用定积分表达和计算一些几何量与物理量<平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.四、向量代数和空间解读几何测试内容向量的概念(自由移动> 向量的线性运算向量的数量积(是数可交换>和向量积(是向量交换后变号> 向量的混合积(交换的性质与行列式性质相同几何意义用于求异面直线的距离> 两向量垂直(数量积为零>、平行(向量积与零向量>的条件两向量的夹角(面面线线线面> 向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程(点法式截距式一般式平面束方程>、直线方程(对称式参数式一般式> 平面与平面、平面与直线、直线与直线的以及平行、垂直的条件(转化为向量之间的关系> 点到平面和点到直线的距离(利用平行四边形> 球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程测试要求1.理解空间直角坐标系,理解向量的概念及其表示。

西安电子科技大学2018考研大纲:601数学分析.doc

西安电子科技大学2018考研大纲:601数学分析.doc

西安电子科技大学2018考研大纲:601数学分出国留学考研网为大家提供西安电子科技大学2018考研大纲:601数学分析,更多考研资讯请关注我们网站的更新!西安电子科技大学2018考研大纲:601数学分析一、考试总体要求与考试要点1.考试对象考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。

2.考试总体要求测试考生对数学分析的基本内容的理解、掌握和熟练程度。

要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。

3.考试内容和要点(一)实数集与函数1、实数:实数的概念;实数的性质;绝对值不等式。

2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。

3、函数的几何特性:单调性;奇偶性;周期性。

要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。

(四)函数连续1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。

2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。

3、初等函数的连续性。

要求:理解与掌握函数连续性、一致连续性的定义以及它们的区别和联系,会证明具体函数的连续以及一致连续性;理解与掌握函数间断点的分类;能正确叙述并简单应用闭区间上连续函数的性质;了解反函数、复合函数以及初等函数的连续性。

(五)实数系六大基本定理及应用1、实数系六大基本定理:确界存在定理;单调有界定理;闭区间套定理;致密性定理;柯西收敛准则;有限覆盖定理。

2、闭区间上连续函数性质的证明:有界性定理的证明;最值性定理的证明;介值性定理的证明;一致连续性定理的证明。

要求:理解和掌握上、下确界的定义,会求具体数集的上、下确界;理解和掌握闭区间上连续函数性质及其证明;能正确叙述实数系六大基本定理的内容及其证明思想,会使用开覆盖以及二分法构造区间套进行简单证明。

2018年全国硕士研究生招生考试数学考试大纲数学一高数

2018年全国硕士研究生招生考试数学考试大纲数学一高数

2018年全国硕士研究生招生考试数学考试大纲(数学一)高数
2018考研数学大纲【9月15日】正式发布,文都名师团何凯文、蒋中挺、刘一男、汤家凤等多位名师将为大家带来一场直播盛宴。

届时,名师团将为考生带来详尽、精准的考研政治大纲解析内容。

考生可进入【文都教育2018考研大纲专题页】,了解更多实用有效的内容。

2018考研政治大纲已于9月15日正式发布,下面是文都考研整理的2018考研政治“思修”新旧大纲变动对比表(大纲解析版),请各位考生参考。

全国十万学子同步
神州百万学子分享
100家媒体支持
200座城市互动
何凯文、汤家凤、刘一男、蒋中挺、徐可风、任燕翔等多位名师带你走进大纲解析与百日备考攻略的精彩世界
【文都2018考研大纲直播入口点击进入】。

2018硕士研究生入学考试大纲

2018硕士研究生入学考试大纲

2018硕士研究生入学考试大纲考试科目名称:高等代数一、考试要求:1.一元多项式理论:①掌握多项式的整除理论;② 会求最大公因式与最小公倍式;③ 掌握复系数、实系数与有理系数多项式的因式分解理论。

2.行列式理论:①理解行列式的定义、熟悉行列式的性质;②掌握有特殊结构的n阶行列式的计算;③会用Laplace展开定理。

3.线性方程组理论:①会用Cramer法则进行方程组求解;②掌握向量的线性相关与线性无关的定义及判别;③掌握线性方程组有解的判别法;④掌握线性方程组解的结构。

4.矩阵理论:①熟悉矩阵的各种运算与运算律;②会求矩阵的逆;③理解矩阵分块与分块矩阵;④掌握初等矩阵的性质与基本用法;5. 二次型理论:①掌握二次型的化简与标准型;②掌握正定、半正定矩阵的定义与基本性质;③熟悉惯性定理。

6. 线性空间理论:①掌握线性空间的基底和维数的定义与性质;②掌握线性空间基变换与坐标变换;③掌握子空间以及它们的交与直和的性质;④理解线性空间的同构。

7. 线性变换理论:①掌握线性变换的运算及其矩阵表示;②会求线性变换与矩阵的特征值与特征向量;③掌握相似矩阵与某些矩阵的对角化;④掌握线性变换的值域与核及其性质;⑤理解不变子空间;8. 欧式空间理论:①掌握内积空间与欧式空间的定义与性质;②掌握正交变换与正交矩阵的性质;③理解对称变换;④掌握实对称矩阵及其对角化理论。

二、考试内容:1) 一元多项式理论a: 多项式的整除,b: 最大公因式与最小公倍式,c: 复系数、实系数与有理系数多项式的因式分解理论。

2) 行列式a: 行列式的定义、性质与计算,b: Laplace展开定理。

3) 线性方程组理论a: Cramer法则,b: 线性相关与线性无关,c: 线性方程组有解的判别,d: 线性方程组解的结构。

4) 矩阵a: 矩阵的各种运算与运算律,b: 矩阵的逆,c: 分块矩阵,d: 初等矩阵,5) 二次型a: 二次型的化简与标准型,b: 正定二次型与正定矩阵,半定阵。

2018年数学二考试大纲 .doc

2018年数学二考试大纲 .doc

2018年数学二考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学 约78%线性代数 约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(),a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''== 和 (,)y f y y '''=.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

独家2018年全国硕士研究生招生考试数学考试大纲(数学二)

独家2018年全国硕士研究生招生考试数学考试大纲(数学二)

2018年全国硕士研究生招生考试数学考试大纲(数学二)高等数学一、函数、极限、连续考试内容函数的概念及表示法、 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin 1lim 1,lim 11xx x x e x →→∞⎛⎫=+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.了解函数的有界性、单调性、周期性和奇偶性.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念、 导数的几何意义和物理意义、 函数的可导性与连续性之间的关系、 平面曲线的切线和法线、 导数和微分的四则运算、 基本初等函数的导数、 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、 高阶导数、 一阶微分形式的不变性、 微分中值定理 洛必达(L'Hospital )法则、 函数单调性的判别、 函数的极值、 函数图形的凹凸性、拐点及渐近线、 函数图形的描绘、 函数的最大值与最小值、 弧微分、 曲率的概念 、曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间()b a ,内,设函数()x f 具有二阶导数.当()0>''x f 时,()x f 的图形是凹的;当()0<''x f 时,()x f 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试内容原函数和不定积分的概念、 不定积分的基本性质、 基本积分公式、 定积分的概念和基本性质、 定积分中值定理、 积分上限的函数及其导数、 牛顿-莱布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法 、有理函数、三角函数的有理式和简单无理函数的积分 、反常(广义)积分、 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念、 二元函数的几何意义、 二元函数的极限与连续的概念、 有界闭区域上二元连续函数的性质、 多元函数的偏导数和全微分、 多元复合函数、隐函数的求导法、 二阶偏导数、 多元函数的极值和条件极值、最大值和最小值、 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念、 变量可分离的微分、 齐次微分方程、 一阶线性微分方程、 可降阶的高阶微分方程、 线性微分方程解的性质及解的结构定理、 二阶常系数齐次线性微分方程、 高于二阶的某些常系数齐次线性微分方程、 简单的二阶常系数非齐次线性微分方程、 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:()()()()y y f y y x f y x f y n '='''=''=,,,,和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数行列式考试内容行列式的概念和基本性质、行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念、矩阵的线性运算、 矩阵的乘法、 方阵的幂、 方阵乘积的行列式 、矩阵的转置、 逆矩阵的概念和性质、 矩阵可逆的充分必要条件 、伴随矩阵、 矩阵的初等变换、 初等矩阵、 矩阵的秩、 矩阵的等价、 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念、向量的线性组合和线性表示、 向量组的线性相关与线性无关 、向量组的极大线性无关组、 等价向量组、 向量组的秩、 向量组的秩与矩阵的秩之间的关系 、向量的内积、 线性无关向量组的的正交规范化方法考试要求理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解系和通解、非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念,性质、相似矩阵的概念及性质、矩阵可相似对角化的充分必要条件、相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示、合同变换与合同矩阵、二次型的秩、惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性考试要求了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.2018年全国硕士研究生招生考试数学考试大纲(数学三)微积分一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin 1lim 1,lim 11xx x x e x →→∞⎛⎫=+= ⎪⎝⎭ 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2.了解函数的有界性、单调性、周期性和奇偶性3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念4.掌握基本初等函数的性质及其图形,了解初等函数的概念5.了解数列极限和函数极限(包括左极限与右极限)的概念6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital )法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘 函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数3.了解高阶导数的概念,会求简单函数的高阶导数4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分5.理解罗尔(Rolle )定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor )定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用6.会用洛必达法则求极限7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用8.会用导数判断函数图形的凹凸性(注:在区间()b a ,内,设函数()x f 具有二阶导数.当()0>''x f 时,()x f 的图形是凹的;当()0<''x f 时,()x f 的图形是凸的),会求函数图形的拐点和渐近线9.会描述简单函数的图形三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz )公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题4.了解反常积分的概念,会计算反常积分四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散、收敛级数的和的概念2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法4.会求幂级数的收敛半径、收敛区间及收敛域5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6.了解x e ,x sin ,x cos ,()x +1ln 及()αx +1的麦克劳林(Maclaurin )展开式 六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法3.会解二阶常系数齐次线性微分方程4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程5.了解差分与差分方程及其通解与特解等概念6.了解一阶常系数线性差分方程的求解方法7.会用微分方程求解简单的经济应用问题线性代数行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质2.会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法5.了解分块矩阵的概念,掌握分块矩阵的运算法则三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组2.掌握非齐次线性方程组有解和无解的判定方法3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4.理解非齐次线性方程组解的结构及通解的概念5.掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法掌握实对称矩阵的特征值和特征向量的性质六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求。

2018年硕士研究生招生考试大纲 .doc

2018年硕士研究生招生考试大纲 .doc

2018年硕士研究生招生考试大纲002 信息科学与工程学院目录初试考试大纲 1610高等数学 1638 量子力学 1953 声学基础 3806 普通物理 5807数据结构7808地理信息系统8810数字电子技术10341农业知识综合三11910高级程序设计12911软件工程14912数据结构和软件工程16930程序设计基础19940 计算机网络与安全 21946 信号与系统23954计算机基础综合24复试考试大纲28现代物理基础28科技英语(光学、凝聚态物理) 30现代光学基础31电子技术基础33科技英语(光学工程专业(学术型080300和专业型085202)34 电子技术A 35通信原理36计算机系统结构38面向对象的程序设计40数据库系统41程序设计实践43保密概论45安全程序设计实践47农业信息化概论50数字信号处理52C++语言编程54科技英语(地图学与地理信息系统、测绘工程)56 光学电磁学57信号与系统59数字电子技术61科技英语(海洋探测技术、摄影测量与遥感)62同等学力加试科目考试大纲63数据结构63软件工程65初试考试大纲610高等数学一、考试性质高等数学是理、工科专业硕士研究生入学考试的专业基础课程。

高等数学入学考试是为招收理、工科专业硕士研究生而实施的具有选拔功能的水平考试,它的指导思想是既要为国家选拔具有较强分析问题与解决问题能力的高层次人才,又要有利于促进高等学校高等数学课程教学质量的提高。

二、考察目标要求考生能系统理解高等数学的基本概念和基本原理,掌握高等数学的基本思想与方法,具有较好的逻辑推理能力、空间想象能力、计算能力以及运用所学知识分析问题和解决问题的能力。

三、考试形式本考试为闭卷考试,满分为150分,考试时间为180分钟。

试卷结构:高等数据75%,线性代数25%。

四、考试内容(一)高等数学(75%)考试内容:函数的极限与连续,一元函数微积分及其应用,向量代数与空间解析几何,多元函数微积分及其应用,场论,含参变量积分,无穷级数,常微分方程及其应用。

2018年考研数学考试大纲(原文)

2018年考研数学考试大纲(原文)

2018年考研数学(二)考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。

三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性百度文库- 让每个人平等地提升自我考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.11。

西安电子科技大学数学分析考研大纲-西安电子科技大学研究生招生信息网

西安电子科技大学数学分析考研大纲-西安电子科技大学研究生招生信息网

西安电子科技大学数学分析考研大纲一、考试总体要求与考试要点1.考试对象考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。

2.考试总体要求测试考生对数学分析的基本内容的理解、掌握和熟练程度。

要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。

3.考试内容和要点(一) 实数集与函数1、实数:实数的概念;实数的性质;绝对值不等式。

2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。

3、函数的几何特性:单调性;奇偶性;周期性。

要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。

(二) 数列极限1、数列极限的概念(N ε-定义)。

2、数列极限的性质:唯一性;有界性;保号性。

3、数列极限存在的条件:单调有界准则;两边夹法则。

要求:理解和掌握数列极限的概念,会使用N ε-语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。

(三) 函数极限1、函数极限的概念(εδ-定义、X ε-定义);单侧极限的概念。

2、函数极限的性质:唯一性;局部有界性;局部保号性。

3、函数极限存在的条件:海涅归结原则。

4、两个重要极限。

要求:理解和掌握函数极限的概念,会使用εδ-语言以及X ε-语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。

(四) 函数连续1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。

2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。

602_数学分析

602_数学分析

附件2:602数学分析考试科目大纲一、考试性质数学分析是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。

本考试大纲的制定力求反映招生类型的特点,科学、公平、准确、规范地测评考生的相关基础知识掌握水平,考生分析问题和解决问题及综合知识运用能力。

应考人员应根据本大纲的内容和要求自行组织学习内容和掌握有关知识。

本大纲主要由一元函数微分学和积分学、无穷级数、多元函数微分学和积分学、实数理论等部分组成。

考生应掌握数学分析的基本概念,理解数学分析的基本理论,熟练掌握数学分析的各种运算,理解数学分析的基本思想和方法。

二、评价目标(1)要求考生理解和掌握数学分析的基本概念、基本理论和基本方法。

(2)要求考生具有较好的抽象思维能力、逻辑推理能力和运算能力。

(3)要求考生具有综合运用所学知识分析问题和解决问题的能力。

三、考试内容(一)函数、极限与连续1、考试范围实数及其性质,确界及确界原理,函数的概念及有界性、单调性、周期性和奇偶性;数列极限与函数极限的定义、性质及存在的条件,两个重要极限,无穷小量和无穷大量的概念及其关系,无穷小量阶的比较,曲线的渐近线;一元函数连续和一致连续的概念,函数间断点及其分类,连续函数的性质,初等函数的连续性。

2、基本要求(1)了解实数的概念,理解确界概念、确界原理;理解函数、复合函数、分段函数和初等函数的概念;了解有界函数、单调函数、奇(偶)函数、周期函数。

(2)理解数列极限概念,掌握收敛数列的性质及数列极限存在的条件。

(3)理解函数极限的概念,掌握函数极限的性质;熟练掌握函数极限的存在条件和两个重要极限;理解无穷小量的概念,熟练掌握等价无穷小量求极限的方法;了解曲线的渐近线。

(4)理解和掌握一元函数连续和一致连续的概念及其证明;熟练掌握函数间断点及其分类和闭区间上连续函数的性质;了解反函数的连续性,理解复合函数的连续性,初等函数的连续性。

(二)一元函数微分学1、考试范围导数和微分的概念,导数的几何意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线;导数和微分的四则运算,基本初等函数的导数,复合函数、反函数以及参数方程所确定的函数的微分法,高阶导数;微分中值定理,洛必达法则,泰勒公式,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数的最大值与最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安电子科技大学2018考研大纲:602高等

出国留学考研网为大家提供西安电子科技大学2018考研大纲:602高等数学,更多考研资讯请关注我们网站的更新!
西安电子科技大学2018考研大纲:602高等数学
602高等数学复习提纲
一、课程考试内容
1、函数与极限
数列的极限,函数的极限,极限存在准则,两个重要极限,函数的连续性与间断点,连续函数的运算与初等函数的连续性,闭区间上连续函数的性质。

2、导数与微分
导数概念,函数的四则运算求导法则,反函数的导数,复合函数求导法则,高阶导数,隐函数的导数,参数方程所确定的函数的导数,函数的微分。

3、中值定理与导数应用
四大中值定理,洛必达法则,函数单调性的判别,函数的极值和最值,曲线的凹凸与拐点。

4、不定积分
不定积分的概念与性质,换元积分法,分部积分法,几种特殊类型函数的积分。

5、定积分及其应用
定积分的概念,定积分的性质和积分中值定理,微积分基本公式,定积分的换元法,
定积分的分部积分法,广义积分;定积分的元素法,平面图形的面积和体积,平面曲线的弧长,功、水压力和引力。

6、空间解析几何与向量代数
空间直角坐标系,向量及其加减法,向量与数的乘法,数量积和向量积;曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程,二次曲面。

7、多元函数微分法及其应用
多元函数的基本概念,偏导数,全微分及其应用,多元复合函数的求导法则,隐函数的求导;微分法在几何上的应用,方向导数与梯度,多元函数的极值及其求法。

8、重积分
二重积分的概念与性质,二重积分的计算方法;三重积分的概念及其计算法,重积分的应用。

9、曲线积分与曲面积分
对弧长的曲线积分,
对坐标的曲线积分,
格林公式,平面上曲线积分与路径无关的条件,
二元函数的全微分求积;对面积的曲面积分,
对坐标的曲面积分,高斯公式,通量与散度,
斯托克斯公式,环流量与旋度。

10、无穷级数
常数项级数的概念和性质,
常数项级数的审敛法;
幂级数,
函数展开成幂级数,
傅里叶级数,
正弦级数和余弦级数,
周期为2l的周期函数的傅里叶级数。

11、微分方程
微分方程的基本概念,可分离变量的微分方程, 齐次方程,一阶线性微分方程,
全微分方程;可降阶的高阶微分方程,
高阶线性微分方程,二阶常系数线性微分方程。

二、考试形式与试题结构
1、试卷分值:150分
2、考试时间:180分钟
3、考试形式:闭卷
4、题型结构:填空题,计算题,证明题。

三、参考书目
1、同济大学数学教研室
《高等数学》(第五版)高等教育出版社
2、龚冬保
《高等数学典型题解法、技巧、注释》西安交通大学出版社。

相关文档
最新文档