遗传算法的PID控制器的设计毕业论文

合集下载

本科毕业论文PID温控系统的设计及仿真

本科毕业论文PID温控系统的设计及仿真

CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。

可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。

要对温度进行控制,有很多方案可选。

PID 控制简单且容易实现,在大多数情况下能满足性能要求。

模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。

研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。

本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。

仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。

由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。

参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。

因此本论文最终确定采用参数模糊自整定PID 控制方案。

本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。

关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。

基于遗传算法优化的直流伺服电机PID控制器设计

基于遗传算法优化的直流伺服电机PID控制器设计

摘要近年来,直流伺服控制系统己经在工业生产控制等多领域得到了广泛应用。

其中应用作为动力源的直流伺服电机显得尤其重要。

PID (Proportional、Integral、Derivative)即比例、积分、微分控制规律是工业过程控制中应用最为广泛的控制策略,它具有算法简单、鲁棒性好、可靠性高的优点。

若已知PID控制器的结构,则控制器的控制品质由比例、积分时间和微分时间系数这三个参数来决定。

其控制算法比较简单,但相比之下其参数整定优化显得复杂很多。

遗传算法是一种借鉴生物界自然选择和自然遗传学机理上的迭代自适应概率性搜索算法。

自20世纪60年代诞生以来在国际上一直备受关注,近年来遗传算法的理论发展和实际应用被看作成研究热点之一。

本文运用遗传算法来来对直流伺服电机PID控制器参数进行优化设计。

首先建立直流伺服电机的模型;其次,简要介绍PID控制器原理,并介绍了衡量PID 控制系统的四项主要指标。

再次,概要介绍了遗传算法并阐述其应用步骤。

然后,运用遗传算法对直流伺服电机PID控制器参数进行整定优化,对比使用MATLAB 里的Signal Constraint模块整定的曲线来分析,最后总结了论文所做的工作,表明了使用遗传算法对直流伺服电机模型的PID控制器参数整定优化具有良好的效果,并指出了使用遗传算法进行PlD参数整定优化还有待解决的问题。

关键词:遗传算法;直流伺服电机;PID控制器;参数优化;仿真AbstractIn recent years, DC servo control system has been in the field of industrial control, etc widely application. The application of DC servo motor as a power source is especially important. PID (Proportional, Integral, Derivative) is proportional, Integral and differential control law is the most widely used in industrial process control control strategy, it has simple algorithm, the advantages of good robustness, high reliability. If known the structure of the PID controller, the controller is the control of quality by the proportional, integral and differential time coefficient to determine the three parameters. Its control algorithm is simple, but compared with its parameter setting optimization much more complex. Genetic algorithm is a kind of biological natural selection and natural genetic mechanism for reference on the iterative adaptive probabilistic search algorithm. Since its birth in the 1960s has been in the world, much attention has been paid in recent years, the theory development and practical application of genetic algorithm is considered as one of the hot research topic.This paper uses genetic algorithm to the DC servo motor PID controller parameters optimization design. First of all establish DC servo motor model; Second, briefly introduced the principle of PID controller, and introduces the four main indicators of PID control system. Again, introduces the genetic algorithm and its application procedure. Then, using genetic algorithm PID controller parameter setting of the DC servo motor optimization, contrast to use MATLAB in Signal Constraint module setting curve to analyze, finally summarizes the dissertation work, shows that using the genetic algorithm of DC servo motor setting to optimize PID controller parameters in the model has good effect, and points out that using genetic algorithm to optimize PlD parameter setting remains to be solved problem.Key words: genetic algorithm; The DC servo motor; PID controller; Parameter optimization; simulation目录摘要 (Ⅰ)Abstract (Ⅱ)第1章绪言 (1)1.1课题背景 (1)1.2本课题研究意义和目的 (2)1.3国内外研究现状 (3)1.4本文的主要研究内容 (4)第2章直流伺服电机的模型建立 (6)2.1直流伺服电机的物理模型 (6)2.2 直流伺服电机的数学模型 (6)2.2.1 电机的基本方程组 (6)2.2.2 电机的传递函数 (7)第3章PID控制器 (8)3.1PID控制器基本原理 (8)3.2PID控制系统的主要性能指标 (9)第4章遗传算法 (10)4.1遗传算法概要 (10)4.1.1遗传算法的起源及发展 (10)4.1.2遗传算法的应用领域 (11)4.1.3遗传学基本概念 (13)4.2遗传算法的应用步骤 (14)4.3遗传算法的基本流程图 (16)第5章基于遗传算法的PID控制器参数整定优化设计及仿真 (17)5.1MATLAB及S IMULINK仿真环境简介 (17)5.2基于遗传算法的PID参数整定优化 (17)5.2.1基于遗传算法的PID参数整定优化原理 (17)5.2.2基于遗传算法的PID参数整定优化流程图 (19)5.2.3基于遗传算法的PID参数整定优化步骤 (19)5.2.4基于遗传算法的PID参数整定优化结构图 (20)5.3基于遗传算法的PID参数整定优化的仿真实验 (20)结论 (25)致谢 (26)参考文献 (27)附录(程序清单) (28)第1章绪言1.1 课题背景PID控制器是最早起源发展的控制策略之一,原因在于它所涉及的设计算法和控制结构都相对比较简单,同时也十分适用于实际中的工程应用,另外PID控制方案并不要求建立精确的控制对象的数学模型,且一般采用PID控制的控制效果令人比较满意,因此在工业实际应用过程中,PID控制器是应用最为广泛的控制策略,也是历史最悠久、生命力最顽强的基本控制方式之一。

基于遗传算法的PID参数优化毕业设计(论文)

基于遗传算法的PID参数优化毕业设计(论文)

本科生毕业设计(论文)论文题目:基于遗传算法的PID参数优化毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

基于遗传算法的PID控制器参数优化

基于遗传算法的PID控制器参数优化

基于遗传算法的PID控制器参数优化基于遗传算法的PID控制器参数优化是一种智能化调节方法,通过遗传算法的优化过程,可以自动得到最佳的PID参数组合,并实现对控制系统的自动调节。

以下将详细介绍基于遗传算法的PID控制器参数优化的原理、步骤和应用情况。

一、基于遗传算法的PID控制器参数优化原理遗传算法是一种模拟自然选择和遗传的数学模型,通过模拟生物进化的过程,利用优胜劣汰的原则逐步优化求解问题。

在PID控制器参数优化中,可以将PID参数看作个体(染色体),通过遗传算法的选择、交叉和变异等操作,不断优化个体的适应度,最终得到最佳的PID参数组合。

二、基于遗传算法的PID控制器参数优化步骤(1)初始化种群:随机生成一组PID参数作为初始种群,设置种群大小和迭代次数。

(2)适应度函数定义:根据所需控制效果,定义适应度函数来评估每个个体的优劣程度。

(3)选择操作:根据适应度函数的值选择优秀的个体,采用轮盘赌等选择策略,将优秀的个体复制并加入下一代种群中。

(4)交叉操作:从选择的个体中,选取两个个体进行交叉操作,通过交叉操作生成新的个体,并加入下一代种群中。

(5)变异操作:对下一代种群中的一些个体进行变异操作,改变其染色体的一些位,以保持种群的多样性。

(6)重复上述步骤:迭代执行选择、交叉和变异操作,直到达到预定的迭代次数或找到满意的PID参数组合。

(7)输出最佳解:最终输出具有最佳适应度的PID参数组合,作为优化后的参数。

三、基于遗传算法的PID控制器参数优化应用情况(1)机械控制系统:如电机驱动、自动化装配线等,通过优化PID 参数可以提高系统的控制精度和动态性能。

(2)能源系统:如电力系统、风力发电等,通过优化PID参数可以实现能源的高效利用和稳定运行。

(3)化工过程控制:如温度控制、压力控制等,通过优化PID参数可以提高产品质量和生产效率。

(4)交通管理系统:如城市交通信号控制、车辆行驶控制等,通过优化PID参数可以实现交通流畅和事故减少。

基于遗传算法的增量式PID算法优化设计

基于遗传算法的增量式PID算法优化设计

基于遗传算法的增量式PID算法优化设计[摘要]PID控制算法是经典的工业工程控制算法之一,增量式PID控制算法是对传统PID控制算法的优化,但其存在静态误差无法消除的影响,因此本文引入遗传算法对其进行进一步优化,并给出了优化步骤,同时给出了一个用遗传算法进行单环系统增量式PID控制器优化设计的仿真实例,并克服了其静态误差无法消除的问题。

[关键词]增量式PID控制器;遗传算法;算法优化1 引言PID( Proportional Integral Derivative)控制是最早发展起来的控制策略之一,是指按被控对象的实时数据采集的信息与给定值比较产生的误差的比例、积分和微分进行控制的控制系统。

由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业过程控制,尤其适用于可建立精确数学模型的确定性控制系统。

现代化工业过程控制中,一个大型的工业生产装置的PID控制回路可能多达上百个甚至更多,但由于PID参数复杂的整定过程一直困扰着工程技术人员,因此,研究PID控制参数自整定技术就具有了十分重大的工程实践意义。

2 增量式PID控制算法PID控制算法根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

从信号变换的角度而言,超前校正、滞后校正,滞后-超前校正可以总结为比例、积分、微分三种运算及其组合。

PID是比例(P)、积分(I)、微分(D)控制算法,但并不是必须同时具备这三种算法,也可以是PD、PI,甚至只有P算法控制。

PID算法的结构图如下:比例作用P与偏差成正比,积分作用I是偏差对时间的累积,微分作用D是偏差的变化率[1]。

输出U(t)是三个部分的求和,即为:(2.1)其中K P为比例参数,T I为积分时间,T D为微分时间,e(t)表示输出偏差。

由于采样偏差e(t)进行了必要的累加,且运算量太大,消耗很多资源,导致控制时间较长,所以需要引用增量式PID算法对其进行改进。

增量式PID算法以输出U(t)与U(t-1)的差值作为控制对象,即:(2.2)算式中不需要累加。

基于遗传算的PID参数优化及MATLAB实现

基于遗传算的PID参数优化及MATLAB实现

引言PID操纵器结构简单且鲁棒性强,在操纵领域一直被普遍应用。

运算机的进展为在线辩识提供了条件,从而也为在线整定PID参数提供了可能。

PID操纵是工业进程中应用最普遍的策略之一,因此PID 操纵器参数的优化成为人们关注的问题,它直接阻碍操纵成效的好坏,并和系统的平安、经济运行有着密不可分的关系。

目前PID参数的优化方式很多,如:间接寻优法,梯度法,登山法等,而在热工系统中单纯形法、专家整定法那么应用普遍。

尽管二者都具有良好的寻优特性,但却存在一些短处,单纯刑法对初值比较灵敏,容易陷入局部最优解,造成寻优失败。

专家整定法那么需要太多体会,不同的目标函数对应不同的体会,而整理知识库是一项长时刻的工程。

因此咱们选取遗传算法来进行参数寻优,该方式是一种不需要任何初始信息并能够寻求全局最优解的高效的优化组合方式。

第一章:遗传算法和PID操纵原理简介一遗传算法简介大体原理遗传算法是依照生物进化的模型提出的一种优化算法。

遗传算法是从代表问题可能潜在解集的一个群组(popuation)开始的,而一个种群那么由通过基因(gene)编码(coding)的必然数量的个体(individual)组成。

每一个个体事实上是染色体(chromosome)带有特点的实体。

染色体作为遗传物质的要紧载体,即多个基因组合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,咱们往往进行简化,如二进制编码。

初代种群产生以后,依照适者生存和优胜劣汰的原理,逐代(genetation)演化产生出愈来愈好的近似解。

在每一代,依照问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operator)进行组合交叉.(crossover)和变异(mutation),产生出代表新的解集的种群。

基于遗传算法的PID控制器参数优化与仿真研究

基于遗传算法的PID控制器参数优化与仿真研究
模拟PID控制系统的原理框图如下图所示。
分别介绍比例调节器、积分调节器、微分调节器的作用[3]
1)比例调节器:比例调节器对偏差是即时反应的,偏差一旦出现,调节器立即产生控制作用,使输出量朝减小偏差的方向变化,控制作用的强弱取决于比例系数Kp。比例调节器虽然简单快速,但是对系统的响应存在静差。可通过增大Kp值来减小稳定误差并提高系统的动态稳定速度,但是如果取值过大,将可能导致系统不稳定;太小会导致控制精度降低,响应速度减慢,系统的物理特性变坏。
2
PID控制器是一种线性调节器,这种调节器是将系统的给定值r与实际输出值y构成的控制偏差 的比例、积分、微分,通过线性组合构成控制量,所以简称PID控制器。
连续控制系统中的模拟PID控制规律为
(2-1)
式中Kp—比例系数
Ti—积分时间常数
TD—微分时间常数
将上面式子换成传递函数形式, 得:
(2-2)
KEY WORDS:PID control;Genetic algorithm;Parameter optimization;Matlab simulation
0 前言
PID控制是过程控制中广泛应用的一种控制方法。比例、积分、微分的组合决定了PID控制效果,决定了系统能否高效可靠地运行。PID参数整定方法随着PID的大量应用也不断更新。工程上经常使用工程整定法、反应曲线法等,在按照经验公式整定出参数后只需微调即可获得满意的控制性能。但是随着控制要求的不断提高,被控对象越来越复杂,使用常规PID整定方法整定PID参数难以取得令人满意效果,因此PID控制器参数的优化成为人们关注的问题, 它直接影响控制效果的好坏, 并和系统的安全、经济运行有着密不可分的关系。因此,有效的PID参数优化方法已成为迫切的需要。

基于遗传算法整定的PID控制 毕业论文

基于遗传算法整定的PID控制  毕业论文

2010届毕业生毕业论文题目: 基于遗传算法整定的PID控制院系名称:信息科学与工程学院专业班级:电子信息科学与技术学生姓名:学号:指导教师:教师职称:讲师2010年 6 月 2 日摘要PID控制器是在工业过程控制中常见的一种控制器,因此,PID参数整定与优化一直是自动控制领域研究的重要问题。

遗传算法是一种具有极高鲁棒性的全局优化方法,在自控领域得到广泛的应用。

针对传统PID参数整定的困难性,本文提出了把遗传算法运用于PID参数整定中。

本文首先对PID控制的原理和PID参数整定的方法做了简要的介绍。

其次介绍了遗传算法的原理、特点和应用。

再次,本文结合实例阐述了基于遗传算法的PID参数优化方法,采用误差绝对值时间积分性能指标作为参数选择的最小目标函数,利用遗传算法的全局搜索能力,使得在无须先验知识的情况下实现对全局最优解的寻优,以降低PID参数整定的难度,达到总体上提高系统的控制精度和鲁棒性的目的。

最后,本文针对遗传算法收敛速度慢、易早熟等缺点,将传统的赌盘选择法与最优保存策略结合起来,并采用改进的自适应交叉算子和自适应变异算子对PID参数进行迭代寻优整定。

采用MATLAB对上述算法进行仿真验证,仿真结果表明了遗传算法对PID 参数整定的有效性。

关键词:PID;参数控制;遗传算法;MATLABTitle Tuning of PID Parameters Based on Genetic AlgorithmAbstractPID controller is a kind of controller that is usual in industrial process control. Therefore, tuning and optimization of PID parameters are important researchable problems in the automatic control field, where Genetic algorithm is widely used because of the highly robust global optimization ability of it. Aiming at the difficulty of traditional tuning of PID parameter, this paper puts forward a method that genetic algorithm is applied to the tuning of PID parameters.Firstly, the principle of PID control and the methods of tuning of PID parameters are introduced briefly. Secondly, this paper introduces the principle, characteristics and application of genetic algorithm. Thirdly, this article expounds on the methods of tuning of PID parameters based on genetic algorithm with an example. In this paper, the performance index of time integral of absolute error serves as the minimum objective function in the tuning of PID parameters, and the global search ability of genetic algorithm is used, so the global optimal solution is obtained without prior knowledge, and the difficulty of tuning of PID parameter is reduced, so the goal is achieved which is improving the control accuracy and robustness of the system overall. Finally, aiming at the weakness of genetic algorithm, such as the slow convergence of prematurity and precocious, the traditional gambling site selection method and elitist model are united in this paper, and the paper also adopted adaptive crossover operator and adaptive mutation operator to optimize PID parameters iteratively.Use MATLAB to simulate these algorithms, and the simulation results show that PID controller tuning based on genetic algorithm is effective.Keywords: Genetic algorithm; PID control; optimum; MATLAB目次1 引言 (1)1.1 PID控制的发展与现状 (1)1.2 遗传算法的发展与现状 (1)1.3 课题研究背景和意义 (3)1.4 本文主要工作 (3)2 PID控制 (5)2.1 PID控制原理 (5)2.2 PID参数整定 (7)3 遗传算法 (9)3.1 遗传算法基本原理 (9)3.1.1 遗传算法概要 (9)3.1.2 遗传算法的应用步骤 (10)3.2 遗传算法的实现 (11)3.2.1 编码方法 (11)3.2.2 适应度函数 (12)3.2.3 选择算子 (12)3.2.4 交叉算子 (13)3.2.5 变异算子 (14)3.2.6 遗传算法控制参数选取 (14)3.3 遗传算法的仿真验证 (15)4 基于遗传算法的PID参数优化 (18)4.1 总体实现 (18)4.2 具体实现 (19)4.2.1 参数的确定及表示 (19)4.2.2 选取初始种群 (19)4.2.3 适应度函数的确定 (19)4.2.4 选择部分实现 (20)4.2.5 交叉部分实现 (20)4.2.6 变异部分实现 (21)4.3 编译及仿真 (22)4.3.1 编译环境选择 (22)4.3.2 仿真验证及结果分析 (22)5 基于改进遗传算法的PID参数优化 (24)5.1 遗传算法的改进 (24)5.1.1 选择算子的改进 (24)5.1.2 交叉与变异算子的改进 (24)5.2 仿真验证及结果分析 (25)结论 (26)致谢 (27)参考文献 (28)1 引言1.1 PID控制的发展与现状PID控制技术的发展可以分为两个阶段。

遗传算法对数字PID参数整定

遗传算法对数字PID参数整定

摘要本文使用的是遗传算法对PID控制器参数的整定,PID控制器是过程控制中应用最为广泛的控制方法,PID控制理论成熟、算法简单、鲁棒性好、可靠性高。

控制器参数的选择决定了控制的稳定性和快速性,关乎系统的可靠性。

因此,PID 控制器参数整定问题是自动控制领域研究的一个重要内容。

实际工业生产过程往往具有非线性、时变性,人工试凑的参数整定方法往往整定不良、性能不佳,对运行工况的适应性很差。

本文基于遗传算法对数字PID控制器进行参数整定,可以提高优化性能,缩短整定时间。

关键词:数字PID控制器;参数整定;遗传算法;二次性能指标1引言PID控制作为比较成熟的控制技术广泛应用于工业生产过程,目前绝大多数底层控制都采用PID控制器。

实际应用中控制器的参数往往采用实验试凑的方法人工整定,该方法往往整定不良、性能不佳,而且对运行工况的适应性很差。

近年来随着计算机技术的广泛应用,人工智能算法PID整定策略发展迅速,如模糊PID、专家PID、神经元网络PID以及遗传算法等。

这些算法能够实现提高优化性能,缩短整定时间,实际应用方便的控制目标。

2PID控制器PID控制器是将偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对被控对象进行控制的。

模拟PID控制的系统原理图如图1所示。

图1. 模拟PID 控制的系统原理图模拟PID 控制规律为位置式:()()()()01=++tp DI de t u t k e t e t dt T T dt ⎡⎤⎢⎥⎣⎦⎰(1) 当系统采样周期为T 时,对上式离散化处理,可得到离散位置式PID 控制表达式:()()()()()=1--1=++kp i dj e k e k u k k e k k e j T k T ∑(2) 式中=/i p I k k T ,=d p D k k T 。

增量式PID 控制表达式可以表示为:()()()=-1+u k u k u k ∆(3)()()()()()()()()()=--1++-2-1+-2p i d u k k e k e k k e k k e k e k e k ∆(4)3 遗传算法遗传算法(Genetic Algorithm )是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,将达尔文生物进化理论引入参数寻优之中,适应度高的个体越容易被保留,经过若干代数遗传操作,种群各个体的适应度不断提高,直至满足一定的极限条件,获得优化问题最优解。

基于遗传算法的PID整定与优化

基于遗传算法的PID整定与优化
Pr o= 0 . 0 . 0 5。
G1 ( s ) =
=V・ C×3 5 4 . 5 / 1 0 0 0
副回路采用 P I控制 ,按标准 I T A E准 则 [ ቤተ መጻሕፍቲ ባይዱ 】 ,其控制规律为:
Gc 2 =5
整定并优化主回路中的主控制器 P I D 参 数。 采样周期为 1 s ,群体基因数为 5 O ,交叉 概率为 0 . 9 O ,变异 概 率为 0 . 0 0 1 , 采 用 单 位 阶 跃 信 号 作 为 系 统 主 给 定 信 号 ,迭 代 终 止 条 件 : 迭 代次数为 1 0 0次;同时迭代 中两次的最小适 度值差小于 4 0 0 。
引 言
由于 P I D 控制 规律具有算法简单、鲁棒 性好和 可靠 性高等优 点,因此过程控 制中采 用最多的依然是 P I D方式 。 P I D参数整定与优 化 的方 法 有 很 多 , 工 程 上 整 定 方 法 有 衰 减 曲 线 法 、Z - N法, I S T E最 优 设定 方 法 、快 速 整 定 和继 电法等 ,在参数优 化过程 中多采 用梯度 法,单纯形法和智能方法。 衰减 曲线法、z —N法和快速 整定法是经 验 的总结不是最优 解,继 电法会使 被控系统 振 荡,而优化 中的梯度法需要对 目标函数微 分,同时梯度 法与单纯形法会 陷入局部最优 点,而 I S T E最优设定方法和智能方法是针对 类 特定被控对象 的。本文采用 遗传算法进 行 P I D 参数整定与优化 ,这是一种寻 求全局 最优 的优化方法 ,无需对 目标函数微分。 1 、 遗 传算 法 遗传 算 法 简称 GA ( Ge n e t i c A l g o r i t h ms ) 是1 9 6 2年 由美国 Mi c h i g a n大 学的 Ho l l a n d教 授提 出的模拟 自然界遗传机制 和生物进化论 而成 的一种 并行 随机搜索寻优方法【 1 ] 。它将 “ 优胜劣汰 ,适者生存 ”的生物进化 原理引 入优化参数 形成的编码 串联群体 中,按 所选 择 的适应值 函数并通过遗 传中的复制 、交叉 及变异对个 体进行筛选 ,使适应值 高的个体 被保 留下来,组成新 的的群体 ,新 的群体既 继承 了上 一代的信息 ,又优于上一代 。这样 周而 复始,群体 中个体 适应度不断提 高,直 到满足 一定的条件 。其 算法简单 ,可 并行处 理 ,能 得 到 全 局 最 优解 。 GA 寻优 的 一些 遗 传 操 作 : 1 、染色体 ( 基因组、个体) 染 色体即 问题解答 的二进制 串或十进制 串表 示 ,对 应 地 有 二进 制编 码 和 实数 编 码 。 二进制 编码 :把变 量或参数用 二进制 串 表示 ,串长 由要求的计算精度决定。 实数编码 :直接 用原始变量 或参数构成 染色 体 。 把 表示几个参数 ( 变量 )的子 串拼成一 条染 色 体 。 2 、产生初始种群 计 算机产生参数 或变量可 能取 值范围 内 的 随机 数 ,N 个 个 体 随机 组成 初 始 种 群 。 3 、计算各个个体的适应值 f i 适 应 值 函 数 依 问 题 而 定 , 可 以 是 商 业 利 润,对于成败 ,神经网络 的期 望输 出与实 际 输 出的均方差 ,或其他 目标函数表 示。 4 、判 断进 化 可 否 结 束 GA 的收敛判据常用由两种方 法:1 、是 从解 的质量考虑 ,若连续若干代 得到 的最好 解不 变 , 则认为收敛 ,停止进化 :2 、是进化了足 够代数之后认 为收敛 ,以其最 后最优结果 为 所求解 。否则继续进行进化。 5 、选 择 ( S e l e c t i o n ) :根 据 各 个 个 体 的适 应 度 , 按 照 一 定 的 规 则 或 方 法 ,从 第 t代 群 体 P ( t ) 中选 择 出一些优 良的个体遗 传到 下~代 P ( 什1 ) 中。 6 、交叉( C r o s s o v e r ) : 将群体 P f t ) 内的各 个

基于遗传算法的PID控制器参数优化研究

基于遗传算法的PID控制器参数优化研究

基于遗传算法的PID控制器参数优化研究谭顺学【摘要】In different application system, PID controlling parameters needto be dynamically adjusted by PID controller. So PID adaptive parameter optimization scheme based on genetic algorithm is presented. It makesthe errors of PID controller as objective function, using genetic algorithmto automatically adjust PID controller parameters. To improve the optimization efficiency of parameters, the assay improved the performance of PID controller by the adaptive processing of crossover operator and mutation operator. The experimental tests indicate that the efficiency of PID parameter optimization is 14.7% above that of general genetic algorithm parameters optimization.% 针对PID控制器在不同的应用系统,需要动态调整PID控制参数的问题,提出了基于遗传算法的PID自适应参数优化方案。

该方案通过将PID控制器产生的误差作为目标函数,利用遗传算法实现对PID控制器参数的自动调整。

为了提高参数的优化效率,文章通过对交叉算子和变异算子的自适应处理,提高了PID控制器的性能。

免疫遗传算法及在PID控制器设计中的应用

免疫遗传算法及在PID控制器设计中的应用

在免疫系统中,外来的细菌、病毒等“非己”物质称为
抗原,负责识别和清除抗原的是抗体。抗体与抗原的匹配程 度用亲合力(affinity)表示。当亲合力超过某一阈值时,即 表示抗体与抗原匹配成功,免疫应答(immune response)过 程被启动。
此时,与外来抗原匹配的免疫细胞(B细胞)被激活 (activation),并大量增生(proliferation),分泌出抗体, 这些抗体与抗原相结合而将抗原消灭。那些能够参与免疫应 答的细胞,会被记忆下来而长期保存在免疫系统中。
在进行克隆操作时,在遗传算法中,个体的选择概率 仅与适应度有关;而在免疫遗传算法中,个体的选择概率 则既与适应度也与浓度有关。与遗传算法相比,免疫遗传 算法具有更好的群体多样性保持能力和学习能力,其收敛 性也更好[7]。 下面,我们首先对免疫遗传算法中几个重要的物理量 给出新的定义方法和计算公式,然后对遗传算法中的“精 英保留”策略进行介绍,以此为基础提出一种新的、改进 的免疫遗传算法。
两者在相似度指标
中的相对重要性进行调整。
这种调整,对免疫遗传算法在进化过程中同时兼顾群体
的多样性和收敛速度以保证快速获得高质量的解是非常重要
的。
例如,如果希望抗体的结构相似更重要,那么我们可 以选取较大的 值 ( 1)。此时,由于欧氏距离受到更大 限制,实际上也就是降低了抗体的浓度水平,使群体的多 样性增加。在这种情况下,虽然算法的收敛速度可能会减
以及一些进化算法,如:
遗传算法
[21] (Genetic Algorithm ) [22] [23]
模拟退火算法 微分进化算法 蚁群算法
(Simulated Annealing) ( Differential Evolution)

遗传算法的PID控制器的设计毕业论文

遗传算法的PID控制器的设计毕业论文
(2)PID参数优化。PID参数优化是指依据一定的控制目标和给定的生产过程的模型通过理论计算得到最优的PID参数,PID参数优化在PID控制应用之初人们就开始作了大量研究工作,已经提出了许多种方法,如粒子群优化算法,免疫算法,单纯形法,差分进化算法,神经网络算法,遗传算法等。
本文就是应用遗传算法对柴油机调速体统的PID参数进行优化,使系统具有更好的性能 绪论
1.1 课题背景
PID调节器是最早发展起来的控制策略之一,因为它所涉及的设计算法和控制结构都是简单的,并且十分适用于工程应用背景,此外PID控制方案并不要求精确的受控对象的数学模型,且采用PID控制的控制效果一般是比较令人满意的,所以在工业实际应用中,PID调节器是应用最为广泛的一种控制策略,也是历史最久、生命力最强的基本控制方式。调查结果表明在当今使用的控制方式中,PID型占84.5%,优化PID型占6.8%,现代控制型占有1.5%,手动控制型6.6%,人工智能(AI)型占0. 6%。如果把PID型和优化PID型二者加起来则占90%以上,这说明PID控制方式占绝大多数,如果把手动控制型再与上述两种加在一起,则占97. 5%,这说明古典控制占绝大多数。就连科学技术高度发达的日本,PID控制的使用率也高达84.%。这是由于理论分析及实际运行经验已经证明了PID调节器对于相当多的工业过程能够起到较为满足的控制效果。它结构简单、适用面广、鲁棒性强、参数易于调整、在实际中容易被理解和实现、在长期应用中已积累了丰富的经验。特别在工业过程中,由于控制对象的精确数学模型难以建立,系统的参数又经常发生变化,运用现代控制理论分析综合要耗费很大的代价进行模型辨识,但往往不能达到预期的效果,所以不论常规调节仪表还是数字智能仪表都广泛采用这种调节方式。正是由于PID控制算法具有以上多种优点,所以这种算法仍将在现场控制中居于主导地位

基于遗传算法的改进PID控制器设计及应用

基于遗传算法的改进PID控制器设计及应用

Science &Technology Vision科技视界基于遗传算法的改进PID 控制器设计及应用Design and Application of Improved PID Controller Based on Genetic Algorithm丁浩浩胡士成(温州大学,浙江温州325000)【摘要】提出了一种基于遗传算法优化改进的单神经元自适应PID 控制算法,避免一些参数及权系数的在线修正参考实验经验的问题。

该算法有两部分构成。

第一部分就是改进的单神经元自适应PID 控制D 、P 、I 的值,第二部分结合遗传算法在改进的单神经元自适应PID 控制的同时寻求合适的学习效率以及比例系数。

通过柴油机调速中电磁执行器仿真实例表明,该方法取得了很好的效果。

【关键词】遗传算法;单神经元;电磁执行器;仿真【Abstract 】An improved single neuron adaptive PID control algorithm based on genetic algorithm is proposed to avoid the on-line correction of some parameters and weights.The algorithm consists of two parts.The first part is the improved single neuron adaptive PID control D,P,I value,the second part of the combination of genetic algorithm and the improved single neuron adaptive PID control for learning efficiency and proportion coefficient.The simulation example of electromagnetic actuator in diesel engine speed regulation shows that this method can achieve good results.【Key words 】Genetic algorithm;Single neuron;Eelectromagnetic actuator ;Simulation※基金项目:2016年校级创新创业训练计划基于多视成像的瓯柑品质无损检测研究(JWDC2016052);2016年校级创新创业训练计划基于特征变量筛选的糖度近红外预测模型的优化(JWDC2016058)。

遗传算法优化PID控制

遗传算法优化PID控制
K y od: nt a ot Pr e r mz i P cnoe CC f ae ew rs G ec r m a m t ot itn I otlr aZ c e il i g h a e p ao i D rl u n r
0 引言
PD控制是连续系统控制理论中技术成熟、 I 应用 广泛的一种控制方式。其控制效果的好坏取决于参数 的整定和优化。自PD控制被提出以来, I 控制器参数
数进行了优化, 设计出一种应用于电石炉系统的最优 PD控制器, I 使其能达到良好的动静态性能。
1 基于遗传算法的 PD参数优化 I
11 参数的确定及编码 . 离散的 P D控制器可表示为: I
k 二
的 整定方法就一直是人们研究的 热点问题之一。1 2 4 4
年Zgr io 方 ; 提出, 得到了 泛的 il-c l 法‘ eeN h。 被 并 广 应用
定值 。
0.5 0.7
乏 招 阁 琢 血
式中:为当前遗传代数; t ; G为最大遗传代数。
变异是模仿生物的 基因突变, 很小的变率尸 以 。
将新个体进行变异, 避免使进化过程在早期就陷人局 部解而进人终止过程, 以提高遗传算法的搜索效率和
06 0.5 0.4 0.3 0.2 0.1

、 !


2 仿真算例
() 2
21 控制模型 .
式中:。t, 分别为电石炉输出电流的超调量、 二I t ', . 。 上 升时间和调节时间的给定最大值;, 2 分别为其 W、 ,3 w W 权系数, 要求w + w 二 。在这三个性能指标中, , + 1 w 3 2
较重要的是超调量, 其次是上升时间和调节时间, 所以
和改进。这种方法是根据系统的频域或时域响应曲 线, 测得相关参数, 进而通过经验公式计算得到P I D控 制器参数, 适用于参数的离线调整。该方法属于经验 公式法, 具有一定的鲁棒性。但只能适用于满足经验 公式条件的对象, 整定出的结果往往不是最优值, 只是 利用了较少的系统动态特性信息, 所以得到的控制器 性能具有局限性。 遗传算法是一种基于自然选择和基因遗传学原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
随着现代控制理论的建立和不断发展完善,对过程控制提出了新的方法和思路,同时也由于生产工艺不断地改进提高,对过程控制也提出了高要求。科研人员在不断探索新方法的同时,也对传统的PID控制的改进做了大量的研究。因为PID控制有其固有的优点,使得PID控制在今后仍会大量使用,如何进一步提高PID控制算法的能力或者依据新的现代控制理论来设计PID控制算法是一个非常吸引人的课题。科研人员在这一领域做的工作主要有以下两方面。
遗传算法的PID控制器的设计毕业论文
第1章 绪论
1.1 课背景
PID调节器是最早发展起来的控制策略之一,因为它所涉及的设计算法和控制结构都是简单的,并且十分适用于工程应用背景,此外PID控制方案并不要求精确的受控对象的数学模型,且采用PID控制的控制效果一般是比较令人满意的,所以在工业实际应用中,PID调节器是应用最为广泛的一种控制策略,也是历史最久、生命力最强的基本控制方式。调查结果表明在当今使用的控制方式中,PID型占84.5%,优化PID型占6.8%,现代控制型占有1.5%,手动控制型6.6%,人工智能(AI)型占0. 6%。如果把PID型和优化PID型二者加起来则占90%以上,这说明PID控制方式占绝大多数,如果把手动控制型再与上述两种加在一起,则占97. 5%,这说明古典控制占绝大多数。就连科学技术高度发达的日本,PID控制的使用率也高达84.%。这是由于理论分析及实际运行经验已经证明了PID调节器对于相当多的工业过程能够起到较为满足的控制效果。它结构简单、适用面广、鲁棒性强、参数易于调整、在实际中容易被理解和实现、在长期应用中已积累了丰富的经验。特别在工业过程中,由于控制对象的精确数学模型难以建立,系统的参数又经常发生变化,运用现代控制理论分析综合要耗费很大的代价进行模型辨识,但往往不能达到预期的效果,所以不论常规调节仪表还是数字智能仪表都广泛采用这种调节方式。正是由于PID控制算法具有以上多种优点,所以这种算法仍将在现场控制中居于主导地位
2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
2004年,宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
(1)PID参数自整定。由于受控对象存在着大量不可知因素,如随机扰动、系统时变、敏感误差等,这些不可知因素的作用常会导致受控对象参数的改变。在一个PID反馈控制回路中,受控对象参数的变化就会造成原来的PID参数控制性能的降低,为了克服这个问题人们提出了PID参数自整定,也就是随着受控对象的变化PID调节器自我调整和重新设定PID参数,科研人员根据古典控制理论和现代控制理论提出了许多种PID参数的在线自整定的方法。至今仍有人在这方面继续作研究。PID参数在线自整定方法比较典型的有改进型Ziegler-Nichols临界比例度法、基于过程模型辨识的参数自整定、基于经验的专家法参数自整定、模糊型PID调节器等。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
1.3 当前研究存在的问题
(1)遗传算法在适应度函数选择不当的情况下有可能收敛于局部最优,而不能达到全局最优。
(2)对于动态数据,用遗传算法求最优解比较困难,因为染色体种群很可能过早地收敛,而对以后变化了的数据不再产生变化。对于这个问题,研究者提出了一些方法增加基因的多样性,从而防止过早的收敛。其中一种是所谓触发式超级变异,就是当染色体群体的质量下降(彼此的区别减少)时增加变异概率;另一种叫随机外来染色体,是偶尔加入一些全新的随机生成的染色体个体,从而增加染色体多样性。
(2)PID参数优化。PID参数优化是指依据一定的控制目标和给定的生产过程的模型通过理论计算得到最优的PID参数,PID参数优化在PID控制应用之初人们就开始作了大量研究工作,已经提出了许多种方法,如粒子群优化算法,免疫算法,单纯形法,差分进化算法,神经网络算法,遗传算法等。
本文就是应用遗传算法对柴油机调速体统的PID参数进行优化,使系统具有更好的性能。
H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
1.2国外研究现状及成果
进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
相关文档
最新文档