化工原理实验要求
化工原理实验注意事项
化工原理实验注意事项一、实验室安全注意事项1. 实验室内禁止吸烟、饮食,不得随意进食或饮水。
2. 进入实验室前,必须穿戴好实验室安全防护用具,如实验服、安全眼镜、手套等。
3. 实验室内必须保持整洁,不得堆放杂物,避免摆放易燃、易爆、有毒有害物品。
4. 实验室内应保持良好的通风环境,定期清洁排污设施,确保实验室内无毒气泄漏。
5. 实验室内严禁私自调整实验仪器设备,如有需要,请向实验室管理员或老师寻求帮助。
二、实验前准备工作1. 仔细阅读实验指导书,了解实验目的、原理、步骤和安全注意事项。
2. 检查实验仪器设备是否完好,如有损坏或缺失应及时报告。
3. 准备所需实验药品和试剂,确保其纯度和数量符合实验要求。
4. 检查实验室内的应急设备是否齐全,如灭火器、急救箱等。
三、实验操作注意事项1. 实验过程中应遵循操作规程,按照实验指导书的要求进行操作。
2. 注意实验过程中的时间、温度、压力等关键参数的控制,确保实验结果的准确性。
3. 实验中应注意个人防护,避免直接接触有毒有害物质,如有必要,应佩戴好相应的防护装备。
4. 实验结束后,及时清理实验台面和仪器设备,保持实验室的整洁和安全。
5. 实验废液和废弃物应按照规定进行分类和处理,不得随意倾倒或排放。
四、实验事故应急处理1. 发生火灾时,立即关闭气源和电源,并使用灭火器进行灭火,如无法控制火势,请及时报警并撤离实验室。
2. 发生化学品泄漏时,应立即采取措施进行封堵,并通知实验室管理员或老师进行处理。
3. 发生人员受伤时,应立即进行急救,并及时报告实验室管理员或老师。
以上是化工原理实验的注意事项,希望能对您的实验工作有所帮助。
在进行实验前,请务必确保自己已经充分了解实验内容和安全要求,并严格按照操作规程进行操作。
实验过程中如有任何疑问或意外情况,请及时向实验室管理员或老师寻求帮助。
祝您实验顺利!。
化工原理实验注意事项
化工原理实验注意事项化工原理实验是化学工程专业学生进行实践操作的重要环节,为了保证实验的安全性和准确性,学生需要遵守一系列的实验注意事项。
本文将详细介绍化工原理实验的注意事项,包括实验前的准备工作、实验操作中的安全措施以及实验后的清理工作。
一、实验前的准备工作1. 实验室环境检查:在进行化工原理实验之前,首先需要检查实验室的环境是否符合实验要求。
确保实验室通风良好,没有明火或其他危险物品,实验台面整洁无杂物。
2. 实验设备检查:检查实验所需的设备是否完好,如试剂瓶是否密封良好,仪器是否正常工作等。
如发现损坏或异常情况,应及时报告实验指导老师。
3. 实验材料准备:根据实验要求,准备好所需的试剂、溶剂、玻璃仪器等材料。
注意检查试剂的标签,确保所用试剂的纯度和浓度符合实验要求。
4. 实验操作流程熟悉:在进行实验操作之前,应仔细阅读实验操作手册或实验指导书,熟悉实验操作流程和步骤,了解实验原理和目的。
二、实验操作中的安全措施1. 穿戴个人防护用品:在进行化工原理实验时,必须穿戴个人防护用品,包括实验服、实验手套、护目镜等。
确保实验过程中身体和眼睛的安全。
2. 注意试剂的安全使用:使用试剂时,应注意其毒性、腐蚀性和易燃性等特性。
遵循正确的操作方法,避免接触皮肤和吸入有害气体。
3. 控制实验条件:在进行化工原理实验时,应严格控制实验条件,如温度、压力、pH值等。
遵循实验要求,确保实验结果的准确性。
4. 注意实验器材的使用:使用实验器材时,应注意其用途和使用方法。
避免不当使用导致事故发生,如玻璃器皿的轻拿轻放,避免碰撞和摔落。
5. 实验过程中的安全操作:在进行化工原理实验时,应注意实验过程中的安全操作,如避免过度搅拌、加热时避免过高温度等。
遵循实验要求,确保实验操作的安全性。
三、实验后的清理工作1. 废弃物的处理:实验结束后,应将废弃物按照规定的分类进行处理。
有机废弃物、化学废液等应放置在指定的容器中,避免对环境造成污染。
化工原理含实验报告(3篇)
第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。
2. 通过实验验证理论知识,提高实验技能。
3. 熟悉化工原理实验装置的操作方法,培养动手能力。
4. 学会运用实验数据进行分析,提高数据处理能力。
二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。
1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。
阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。
实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。
实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。
2. 将水从高位水槽引入粗糙管,调节流量,记录压差。
3. 改变流量,重复步骤1和2,得到一系列数据。
4. 根据数据计算摩擦系数和局部阻力系数。
实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。
2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2. 了解板式塔的结构,观察塔板上汽-液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。
精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。
实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。
2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。
3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。
4. 绘制浓度分布曲线。
实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。
化工原理实验
实验一 雷诺试验一、实验目的与要求1、观察流体流动轨迹随流速的变化情况,通过转子流量计改变流量观察流体的流动型态,并对层流和湍流的现象进行比较;2、计算雷诺数并比较雷诺数值与流动型态的关系,确定临界雷诺准数。
二、实验原理雷诺实验揭示了重要的流体流动机理,当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动,这种流动形态称层流或滞流。
流体流速增大至一定程度后,流体质点除流动方向(沿管轴方向)上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则的脉动,流体质点彼此混合并有旋涡生成,这种流动形态称湍流或紊流。
层流与湍流是两种完全不同的流动型态。
除流速u 外,管径d ,流体粘度μ和密度ρ,对流动形态也有影响,雷诺将这些影响流体流动形态的因素用雷诺准数(或雷诺数) Re 表示。
即:μρdu =Re一般情况下: Re<2000 层流区 2000<Re<4000 过渡区 Re>4000 湍流区三、实验装置1.示踪剂瓶;2.稳压溢流水槽;3.试验导管;4.转子流量计;5.示踪剂调节阀;6.水流量调节阀;7.上水调节阀;8.放风阀图1 雷诺实验装置四、实验方法实验前准备工作:1.实验前,先用自来水充满稳压溢流水槽。
将适量示踪剂(红墨水)加入贮瓶内备用,并排尽贮瓶与针头之间管路内的空气。
2.实验前,先对转子流量计进行标定,作好流量标定曲线。
3.用温度计测定水温。
实验操作步骤:(一)、先做演示实验,观察滞流与湍流时流速分布曲线形态。
1、在玻璃管中流体为静止状态下迅速加入墨水,让墨水将指针附近2-3厘米的水层染上颜色,然后停止加入墨水。
2、慢慢打开水流量阀,并逐渐加大流量至一定的值后,观察墨水随流体流动形成的流速分布曲线形态。
(二)、确定不同流动形态下的临界雷诺准数。
1、打开水源上水阀使高位槽保持少量的溢流,维持高位槽液面稳定,以保证实验具有稳定的压头。
化工原理——传热实验NP
一、实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求:1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W -----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)δ TT W t Wt图4-1间壁式传热过程示意图当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
化工原理实验操作说明书
实验装置由循环泵、转子流量计、有机玻璃管路、循环水池和实验面板组成。
管路上装有进出口阀门和测压玻璃管。
管路中安装了23个测压点。
在φ40管的突扩和突缩处设置有两个排气点,在φ40管下设置有放净口。
四、实验方法与现象观察:循环水槽内无杂物,尽量灌满水。
全开回路阀,全关进口阀和出口阀,启动泵;全开出口阀,全开进口阀,逐渐关小回路阀到全关,使管内水流量达到最大。
此时可反复调节出口阀,观察系统内空气是否排出。
若最后粗管内剩余气泡可采用放气孔排出。
排净气体后全开出口阀。
此阶段为排气阶段;逐渐开大回路阀,调节水流量。
当调到合适水流量时,可进行现象观察;建议,本实验可进行大流量和小流量两种情况演示。
大流量以第1实验测压管内液面接近最大,小流量则以最后1个实验测压管内液面接近最低。
除注意由于位能,动能(扩大或缩小)、动能转化为静压能、摩擦损失引起的静压示值变化外,还可注意由于引射,局部速度分布异常而引起的示值异常,了解测压点的布置,以及相对压力示值的可能影响。
同一流速下现象观察分析:1、由上向下流动现象(1-2点);2、水平流动现象(3-4-5-6点);3、突然扩大旋涡区压力分布情况(6-7-8-9-10-11-12-13-15点);4、毕托管工作原理(13-14点);5、突然缩小的缩脉流区压力分布情况(16-17-18-19-20点);6、由下向上流动情况(22-23点);7、直管阻力测定原理(1-2点,4-5-6点,18-19点,22-23点等);8、局部阻力测定原理(2-4点和21-22点的弯头测定原理,6-12点突扩和16-19点的突缩测定原理)。
阀门调节现象观察:1、分别关小进、出口阀观察各点静压强的变化情况;2、关小进口阀并开大出口阀(或关小出口阀并开大进口阀)维持流量与阀门改变前后相同,观察各点静压强的变化情况;转子流量计现象观察:结构、原理、安装注意操作时的补充说明1、排气操作:当溢流管有溢流时,关出口阀,完全开大进口阀(让水从各测压点流出);然后开出口阀排主管气(可以关小,开大,反复进行,直到排完为止),然后调节出口阀到合适位置;再关小进口阀到合适位置。
化工原理实验讲义(应化)
化⼯原理实验讲义(应化)实验⼀雷诺实验⼀、⽬的与要求1、通过实验了解圆管内流体流动情况,建⽴流型概念。
2、通过流量的测定、雷诺数的计算和圆管内流线的特征,判断流体的流动型态,并测定临界雷诺数。
3、测定流体在圆形直管中层流、湍流的速度分布图。
⼆、实验原理流体作稳态流动时,其流动型态基本分为滞流(层流)、湍流两种,这两种流型的过渡状态称为过渡流。
流体流动的型态与流体的密度、粘度及流道的直径有关。
这可⽤雷诺准数来判断,⼀般为:Re≤2000为滞流Re≥4000为湍流2000三、实验主要仪器及主要技术数据实验主要仪器:雷诺仪、秒表、量筒实验主要数据:实验管道有效长度L=600mm外径d =30mm内径d i=26mm四、实验⽅法1、准备⼯作(1)向墨⽔储瓶中加⼊适量的⽤⽔稀释过的墨⽔。
(2)调整墨⽔细管出⼝的位置,使它位于实验管道的中⼼线上。
(3)轻轻打开墨⽔流量调节夹,使墨⽔从墨⽔咀流出,排出墨⽔管内空⽓,关闭调节夹。
2、雷诺实验过程(1)关闭流量出⼝调节阀,打开储⽔槽进⽔阀,使⾃来⽔充满⽔槽,并使槽内溢流堰具有⼀定的溢流量。
(2)轻轻打开管道出⽔阀门,使流体缓慢流过实验管道,排出管内⽓体。
(3)调节储⽔槽下部的出⽔阀开度,调节储⽔槽液位,使其保持恒定。
(4)缓慢地适当打开墨⽔流量调节夹,墨⽔⾃墨⽔咀流出,待墨线稳定后,即可看出当前⽔流量下实验管道中墨⽔的流线。
根据流线判断流型,并⽤秒表、量筒测定流体流量。
(5)适当的增⼤管道出⽔阀开度,通过调节储⽔槽下部的出⽔阀和进⽔阀控制储⽔槽液位,并维持⼀定的⽔槽溢流板溢流量。
适当调整墨⽔流量,使墨线清晰,稳定后,测定较⼤流量下实验管内的流动状况。
如此反复,可测得⼀系列不同流量下的流型,并判断临界流型。
3、速度分布图的测定与上述雷诺数测定相似,通过流量调节及墨线线形的判断,分别判定流型为层流、湍流时对应的管道出⽔阀的开度范围。
⾸先使储⽔槽液位恒定(此时,可通过调节储⽔槽的进⼝阀和出⼝阀使液位稳定),瞬时开关墨⽔流量调节夹,在墨⽔咀出⼝处形成⼀个墨团,观察墨团端⾯特征,打开管道出⽔阀(使出⽔阀开度在所测定流型的开度范围),观察墨团端⾯随流体流动时的变化,记下管道末端墨团端⾯的形态后,通过调节储⽔槽的进⼝阀和出⼝阀调节储槽液位,使其恒定。
化工原理实验报告
实验一 伯努利实验一、实验目的1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解;2、观察各项能量或压头随流速的变化规律;二、实验原理1、不可压缩流体在管内作稳定流动时,由于管路条件如位置高低、管径大小等的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换;对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的机械能守恒定律;2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失;故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失;3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头;当测压直管中的小孔即测压孔与水流方向垂直时,测压管内液柱高度位压头则为静压头与动压头之和;任意两截面间位压头、静压头、动压头总和的差值,则为损失压头;4、柏努利方程式式中:1Z 、2Z ——各截面间距基准面的距离 m1u 、2u ——各截面中心点处的平均速度可通过流量与其截面积求得m/s1P 、2p ——各截面中心点处的静压力可由U 型压差计的液位差可知Pa对于没有能量损失且无外加功的理想流体,上式可简化为ρρ2222121122p u gz p u gz ++=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头;三、实验流程图泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm;四、实验操作步骤与注意事项1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系;2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平开关几次;3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况;4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h1…△h4;要注意其变化情况;继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h1…△h4;5、实验完毕停泵,将原始数据整理;实验二离心泵性能曲线测定一、实验目的1.了解离心泵的构造和操作方法2.学习和掌握离心泵特性曲线的测定方法二、实验原理离心泵的主要性能参数有流量Q也叫送液能力、扬程H也叫压头、轴功率 N和效率η;离心泵的特性曲线是Q-H、Q-N及Q-η之间的关系曲线;泵的扬程用下式计算:He=H压力表+H真空表+H+u出2-u入2/2g式中:H压力表——泵出口处压力H真空表——泵入口处真空度H——压力表和真空表测压口之间的垂直距离泵的总效率为:其中,Ne为泵的有效功率:Ne=ρ●g●Q●He 式中:ρ——液体密度g——重力加速度常数Q——泵的流量Na为输入离心泵的功率:Na=K●N电●η电●η转式中:K——用标准功率表校正功率表的校正系数,一般取1 N电——电机的输入功率η电——电机的效率η转——传动装置的传动效率三、实验设备及流程:设备参数:泵的转速:2900转/分额定扬程:20m水温:25℃泵进口管内径:41mm泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m四、实验操作1.灌泵因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵;2.开泵注意:在启动离心泵时,主调节阀应关闭,如果主调节阀全开,会导致泵启动时功率过大,从而可能引发烧泵事故;3.建立流动4.读取数据等涡轮流量计的示数稳定后,即可读数;注意:务必要等到流量稳定时再读数,否则会引起数据不准;五、作业以一组数据计算实验三过滤实验一、实验目的1.了解板框过滤机的构造和操作方法;2.掌握恒压过滤常数的测定方法测定恒压过滤常数;虚拟滤液体积;虚拟过滤时间;二、基本原理对于不可压缩滤渣,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:V+Ve2=KS2t+te上式也可写成:q+qe 2=Kt+te微分后得到:dt / dq= 2q / K+2qe/ K该微分式为一直线方程,其斜率为2/K,截距为2qe/K;实验中△t/△q代替dt/dq,通过实验测定一系列的△t与△q值,用作图的方法,求出直线的斜率、截距,进而求出恒压过滤常数K,虚拟滤液体积qe;只考虑介质阻力时:qe2=Kte将qe 代入上式可求出虚拟过滤时间te;三、实验设备板框过滤机的过滤面积为0.12m2;由空压机提供压力,并恒压可调;以碳酸钙和水混合成悬浮液,可完成过滤常数的测定实验;孔板孔口径:8mm,文丘里管喉径:8mm,φ20×2不锈钢管;四、实验步骤1、先将板框过滤机的紧固手柄全部松开,将板、框清洗干净;2、将干净滤布安放在滤板两侧,注意必须将滤布四角的圆孔与滤板四角的圆孔中心对正,以保证滤液和清洗液流道的畅通;3、安装时应从左至右进行,装好一块,用手压紧一块;请特别注意板框的顺序和方向,所有板框有圆点的一侧均应面向安装者,板框过滤机共有4块板带奇数点,3块框带偶数点,以确保流道的畅通;4、装完以后即可紧固手柄至人力转不动为止;5、松开混合釜上加料口的紧固螺栓,打开加料口,加水至视镜的水平中心线,打开控制屏上的电源,启动搅拌机,再加入碳酸钙3kg,任其自行搅拌;6、约5min后,检查所有阀门看是否已关紧确保全部关紧后,同时注意在搅拌过程中混合釜的压力,控制混合釜压力表的指示值在~范围,并一直维持在恒压条件下操作,如果压力过大也可通过混合釜右侧的放空阀调节;(1)、打开过滤机的出料阀,并准备好秒表,做好过滤实验的读数和记录准备,再打开控制屏上板框过滤机的进料阀,开始过滤操作;2、注意看看板框是否泄漏大量液体冲出,少量漏液无妨确认正常后,观察滤液情况,一般开始出来的比较浑浊,待滤液变清后,立即开始读取计量槽的数据,并同时开始计时和记录相关实验数据;3、装置的计量槽分左右计量筒计量,左侧计滤液量,右侧计洗水量左右两筒有过滤液孔连通,需要时两筒可串联使用,以便连续实验需要;读取5组以上的实验数据后,即可关闭进料阀和出料阀结束过滤实验;(4)、如果需要做滤饼洗涤实验,则在结束过滤实验之后,关闭混合釜的进气阀;然后关闭进水阀,打开进气阀,恒压在~范围,按过滤实验相同的方法操作,完成实验后,关闭进水阀和出水阀结束滤饼洗涤实验;(5)、如果改变操作压力,还可进行过滤速率方程压缩指数的测定实验;实验四传热实验一、实验目的测定对流传热系数的准数关联式;二、实验原理对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关联式的一般形式为:对于强制湍流而言,Gr准数可以忽略,故用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归;本实验简化上式,即取n=流体被加热;这样,上式即变为单变量方程,再两边取对数,即得到直线方程:在双对数坐标中作图,找出直线斜率,即为方程的指数m;在直线上任取一点的函数值代入方程中,则可得到系数A,即:对于方程的关联,首先要有Nu、Re、Pr的数据组;其准数定义式分别为:牛顿冷却定律:传热量Q可由下式求得:三、实验设备流程设备参数:孔板流量计:流量计算关联式:V=●O式中:R——孔板压差,mmH2V——水流量,m3 /h换热套管:套管外管为玻璃管,内管为黄铜管;套管有效长度:1.25m,内管内径:0.022m四、实验操作1.启动水泵2.打开进水阀3.打开蒸汽发生器4.打开放汽阀5.读取水的流量6.读取温度7.实验结束后,先停蒸汽发生器,再关进水阀;实验五精馏实验一、试验目的1.掌握精馏塔的结构2.测定精馏塔的理论板数及塔效率二、实验原理1.理论板2.作图法求理论板数3.精馏塔的全塔效率Et为理论塔板数与实际塔板数N之比,即:E t =Nt/ N精馏塔的单板效率Em可以根据气相或液相通过测定塔板的浓度变化进行计算; 若以液相浓度变化计算,则为:Eml =Xn-1-Xn/ Xn-1- Xn若以气相浓度变化计算,则为:Emv =Yn-Yn+1/ Yn-Yn+1式中:Xn-1-----第n-1块板下降的液体组成,摩尔分率;Xn-------第n块板下降的液体组成,摩尔分率;Xn ------第n块板上与升蒸汽Yn相平衡的液相组成,摩尔分率;Yn+1-----第n+1块板上升蒸汽组成,摩尔分率;Yn-------第n块板上升蒸汽组成,摩尔分率;Yn ------第n块板上与下降液体Xn相平衡的气相组成,摩尔分率;三、实验设备及流程简介本实验进料的溶液为乙醇—水体系,其中乙醇占20%摩尔百分比;精馏塔:采用筛板结构,塔身用直径Φ57X3.5mm的不锈钢管制成,设有两个进料口,共15块塔板,塔板用厚度1mm的不锈钢板,板间距为10cm;板上开孔率为4%,孔径是2mm,孔数为21;孔按正三角形排列;降液管为Φ14X2mm的不锈钢管;堰高是10mm;四、实验步骤1.全回流进料打开泵开关,再打开进料的管线;2.塔釜加热升温全回流进料完成后,开始加热;3.建立全回流注意恒压,回流开始以后就不能再打开衡压排气阀,否则会影响结果;4.读取全回流数据5.逐步进料,开始部分回流逐渐打开塔中部的进料阀和塔底的排液阀以及产品采出阀,注意维持塔的物料平衡、塔釜液位和回流比;6.记录部分回流数据五、作业写出精馏段操作线方程、提馏段操作线方程、加料线方程;实验六、吸收实验一、实验原理本实验是用水吸收空气-氨混合气体中的氨;混合气体中氨的浓度很低;吸收所得的溶液浓度也不高;气液两相的平衡关系可以认为服从亨利定律即平衡线在x-y 坐标系为直线;故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为: 所以 )/(m p A a Y Y V G K ∆•= 其中 式中G A —单位时间内氨的吸收量kmol/h; K Ya —总体积传质系数kmol/m 3·h ; V p —填料层体积m 3;△Y m —气相对数平均浓度差; Y 1—气体进塔时的摩尔比;Y e1—与出塔液体相平衡的气相摩尔比; Y 2—气体出塔时的摩尔比;Y e2—与进塔液体相平衡的气相摩尔比; 3、计算方法、公式:1氨液相浓度小于5%时气液两相的平衡关系:温度 ℃:***********亨利系数Eatm :2总体积传质系数K Ya 及气相总传质单元高度H og 整理步骤 a 、标准状态下的空气流量V 0:21210010T T PP P T V V ••••= m 3/h 式中:V 1——空气转子流量计示值 m 3/hT 0、P 0——标准状态下的空气的温度和压强 T 1、P 1——标定状态下的空气的温度和压强 T 2、P 2——使用状态下的空气的温度和压强b 、标准状态下的氨气流量V 0’210221010010''T T P P P T V V ••••••=ρρ m 3/h 式中:V 1’——氨气转子流量计示值 m 3 / h ρ01——标准状态下氨气的密度 kg / m 3 ρ02——标定状态下氨气的密度 kg / m 3如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’’为:V 0’’=●V 0’c 、惰性气体的摩尔流量G :G=V 0 /d 、单位时间氨的吸收量G A :G A =G ●Y 1-Y 2e 、进气浓度Y 1:f 、尾气浓度Y 2:式中:Ns——加入分析盒中的硫酸当量浓度 NVs——加入分析盒中的硫酸溶液体积 mlV——湿式气体流量计所测得的空气体积 mlT——标准状态下的空气温度 KT——空气流经湿式气体流量计时的温度 Kg、对数平均浓度差ΔYm:Ye2=0Ye1=mx1P=大气压+塔顶表压+填料层压差/2m=E / Px1=GA/ Ls式中:E——亨利常数Ls——单位时间喷淋水量 kmol / hP——系统总压强h、气相总传质单元高度:式中:G’——混合体气通过塔截面的摩尔流速二、实验设备及流程设备参数:基本数据:塔径Φ0.10m,填料层高0.75m填料参数:12×12×mm瓷拉西环,a1—403m-1,ε—,a1/ε3—903m-1尾气分析所用硫酸体积:1ml,浓度:上图是吸收实验装置界面,氨气钢瓶来的氨气经缓冲罐,转子流量计与从风机来经缓冲罐、转子流量计的空气汇合,进入吸收塔的底部,吸收剂水从吸收塔的上部进入,二者在吸收塔内逆向流动进行传质;从塔顶出来的尾气进到分析装置进行分析,分析装置由稳压瓶、吸收盒及湿式气体流量计组成;稳压瓶是防止压力过高的装置,吸收盒内放置一定体积的稀硫酸作为吸收液,用甲基红作为指示剂,当吸收液到达终点时,指示剂由红色变为黄色;三、实验步骤建议的实验条件:水流量:80 l/h 空气流量:20 m3/h 氨气流量:0.5 m3/h 注意气量和水量不要太大,氨气浓度不要过高,否则引起数据严重偏离;1、通入氨气打开钢瓶阀门,氨气流量计前有压差计和温度计,用氨气调节阀调节氨气流量实验建议流量: 0.5 m3/h;2、进行尾气分析通入氨气后,让尾气流过吸收盒,同时湿式气体流量计开始计量体积;当吸收盒内的指示剂由红色变成黄色时,立即关闭考克,记下湿式气体流量计转过的体积和气体的温度;3、读取数据实验七干燥实验一、实验目的1.了解气流干燥设备基本流程和工作原理2.测定物料在一定干燥条件下的干燥速率曲线及传质系数二、实验原理1.干燥特性曲线干燥过程分为三个阶段:物料预热阶段、恒速干燥阶段和降速干燥阶段; 式中:x平—某干燥速率下湿物料的平均含水量 kgGsi ,Gsi+1—分别为△τ时间间隔内开始和终了时湿物料重量 kg;Gc—湿物料中绝对干物料的重量 kg;2.传质系数恒速阶段:恒速阶段的干燥速率u仅由外部干燥条件决定,物料表面温度近于空气湿球温度tw;在恒定的干燥条件下,物料表面与空气之间的传热和传质速率分别用于下面式子表示:降速阶段:降速干燥阶段中干燥速率曲线的形状随物料内部结构以及所含水分性质不同而异,因而干燥曲线只能通过实验得到,降速阶段干燥时间的计算可以根据速率曲线数据图解求得,当降速阶段的干燥速率近似看作与物料的自由含水量x-x成正比时干燥速率曲线可简化为直线;即为:u=kxx-xkx=u / x-x式中:kx—以含水量差△x为推动力的比例系数 kg/m2·s·△x;u—物料含水量为x时的干燥速率 kg/m2·s;x—在τ时的物料含水量 kg/kg绝干物料;x—物料的平衡含水量 kg/kg绝干物料;三、实验装置及流程简介主要设备规格:孔板流量计:管径D=106mm,孔径d=68.46mm孔流系数 C=干燥室尺寸:m×m四、实验步骤1.启动风机注意:禁止在启动风机以前加热,这样会烧坏加热器;2.开始加热3.进行干燥实验。
化工原理实验
化工原理实验化工原理实验是化学工程专业的一门重要课程,通过实验操作,学生可以更深入地理解化工原理的基本概念和实际应用。
本文将介绍化工原理实验的基本内容和实验操作流程,希望能够对学生们有所帮助。
首先,化工原理实验包括物质平衡实验、能量平衡实验、传质操作实验等内容。
在物质平衡实验中,学生需要掌握原料、中间产品和产品的质量平衡关系,通过实验操作和数据处理,验证质量平衡原理的正确性。
在能量平衡实验中,学生需要了解热力学基本原理,掌握热平衡方程和热平衡实验的操作方法,验证能量平衡原理的正确性。
在传质操作实验中,学生需要学习气体、液体的传质基本原理,掌握传质操作的实验装置和操作流程,验证传质原理的正确性。
其次,化工原理实验的操作流程包括实验准备、实验操作和数据处理三个步骤。
在实验准备阶段,学生需要认真阅读实验指导书,了解实验原理和操作要点,准备实验所需的仪器、试剂和其他材料。
在实验操作阶段,学生需要按照实验指导书的要求,正确使用实验设备,进行实验操作,并及时记录实验数据。
在数据处理阶段,学生需要对实验数据进行整理和分析,计算实验结果,并撰写实验报告。
最后,化工原理实验需要注意实验安全和环境保护。
在实验操作过程中,学生需要严格遵守实验室安全规定,正确使用实验设备,注意个人防护,防止发生意外事故。
在废液处理和废物处理方面,学生需要按照实验室的环保要求,正确处理废液和废物,做到资源化利用和无害化处理。
总之,化工原理实验是化学工程专业的重要实践环节,通过实验操作,学生可以更深入地理解化工原理的基本概念和实际应用。
希望学生们能够认真对待化工原理实验,提高实验操作能力,加深对化工原理的理解,为将来的工程实践打下坚实的基础。
化工原理实验报告吸收实验要点
化工原理实验报告吸收实验要点————————————————————————————————作者:————————————————————————————————日期:ﻩ一、 实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数K Y a.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速o u [m/s]为横坐标,单位填料层压降ZP∆[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量L 0=0时,可知ZP∆~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,ZP∆~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。
每条折线分为三个区段,ZP∆值较小时为恒持液区,Z P ∆~o u 关系曲线斜率与干塔的相同。
Z P ∆值为中间时叫截液区,ZP∆~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A。
Z P ∆值较大时叫液泛区,ZP∆~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。
在液泛区塔已无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
吸收实验图2-2-7-1 填料塔层的ZP∆~o u 关系图图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示:m Ya A Y H K N ∆⋅⋅Ω⋅=(1)式中:N A ——被吸收的氨量[kmolN H3/h];Ω——塔的截面积[m 2]H ——填料层高度[m ]∆Y m ——气相对数平均推动力KY a ——气相体积吸收系数[k molN H3/m 3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):)()(2121X X L Y Y V N A -=-=(2)式中:V ——空气的流量[kmol 空气/h]L——吸收剂(水)的流量[kmol H20/h] Y 1——塔底气相浓度[kmolNH 3/kmol 空气] Y 2——塔顶气相浓度[kmolNH 3/km ol空气]X 1,X 2——分别为塔底、塔顶液相浓度[kmo lNH 3/kmolH 20]由式(1)和式(2)联解得:mYa Y H Y Y V K ∆⋅⋅Ω-=)(21(3)为求得KYa 必须先求出Y 1、Y 2和∆Y m 之值。
化工原理实验指导书
《化工原理》实验指导书冯治宇编沈阳大学生物与环境工程学院目录实验一:雷诺实验实验二:流体沿程阻力损失的测定实验三:流体局部阻力损失的测定实验四:孔板流量计流量系数的测定实验五:离心泵特性曲线的测定课程编号:1414341课程类别:学科必修课程适用层次:本科适用专业:环境工程课程总学时:64 适用学期:第四学期实验学时:10 开设实验项目数:5撰写人:冯治宇审核人:王英刚教学院长:马德顺实验一:雷诺实验一、实验目的与要求观察层流和紊流的物理现象以及相互转换的特征,了解雷诺数的测定和计算。
实验前认真预习;实验中严格按照规定操作;实验后认真总结。
二、实验类型验证型。
三、实验原理及说明在管流动的问题中,流体的流动常受到压力、重力、粘滞力、弹性力和表面张力等各种力的影响,其中与流体关系最大的是粘滞力,即由真实流体所具有的粘性而产生的力,使得流体的流动呈现两种差异性较大的流态—层流和紊流,这两种流动现象的区别可由惯性力与粘滞力的比值体现出来。
实验中可发现,当玻璃管内流体的流动速度较小时,可以看到颜色水呈明显的直线形状(层流);当节流阀逐渐开大颜色水开始抖动,断断续续,最后染色线扩散到整个玻璃管中。
染色线开始扩散时的流体平均速度,称为临界速度。
当流体速度超过临界速度时,流体分子的动量增加,使惯性力大于粘滞力,流体分子发生上下左右不规则的混合,这种流动称为紊流。
雷诺数计算公式:式中l为特征尺寸(m);u为流体的平均速度(m/s);ρ为流体密度(kg/m3);μ为流体动力粘度(Pa﹒s);q v为流量(m3/s);A为管路截面积(m2)。
流态稳定性的根据雷诺数判定:R e < 2000, 层流;2000<R e < 4000, 过渡流;R e > 4000紊流。
图1 实验原理示意图当流速小时,染料自始自终均呈一直线,且不向周围扩散,称为层流;而当速度很大时,管内染料则将整支管子染色,且向周围扩散,称为紊流。
精馏实验(化工原理实验)
精馏实验一、实验目的1、了解筛板式精馏塔及其附属设备的基本结构,掌握精馏操作的基本方法;2、掌握精馏过程全回流和部分回流的操作方法;3、掌握测定板式塔全塔效率。
二、实验原理1、全塔效率E T全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即-1=T T P N E N (1)式中:T N -完成一定分离任务所需的理论塔板数,包括塔釜;P N -完成一定分离任务所需的实际塔板数。
全塔效率简单地反映了整个塔内塔板的平均效率,表明塔板结构、物性系数、操作状况等因素对塔板分离效果的影响。
对于双组分体系,塔内所需理论塔板数N T ,可通过实验测得塔顶组成x D 、塔釜组成x W 、进料组成x F 及进料热状况q 、回流比R等有关参数,利用相平衡关系和操作线用图解法或逐板计算法求得。
图1塔板气液流向示意图2、单板效率ME 单板效率又称莫弗里板效率,如图1所示,是指气相或液相经过一层实际塔板前后的组成变化值与经过一层理论塔板前后的组成变化值之比。
按气相组成变化表示的单板效率为1*1y =n n MV n n y E y y ++--(2)按液相组成变化表示的单板效率为1*1n n ML n n x x E x x ---=-(3)式中:y n 、1n y +-分别为离开第n 、n+1块塔板的气相组成,摩尔分数;1n x -、n x -分别为离开第n-1、n 块塔板的液相组成,摩尔分数;*ny -与x n 成平衡的气相组成,摩尔分数;*nx -与y n 成平衡的液相组成,摩尔分数。
3、图解法求理论塔板数N T图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T 法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x 图上直观地表示出来。
对于恒摩尔流体系,精馏段的操作线方程为:111D n n x R y x R R +=+++(4)式中:1n y +-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;n x -精馏段第n 块塔板下流的液体组成,摩尔分数;D x -塔顶溜出液的液体组成,摩尔分数;R -回流比。
化工原理实验数据处理要求
实验一.单向流动阻力测定
实验数据处理要求
1. 计算不同流量下的流速,雷诺数,直管摩擦阻力系数
2. 在双对数坐标上关联λ和Re 之间的关系
3. 对实验结果进行分析讨论,讨论λ和Re 之间的关系,根据所标绘的曲线引伸推测一下管路
的粗糙程度,根据实验结果从中得到了那些结论
4. 对数据进行必要的误差分析,评价一下数据和结果的误差,并分析其原因
实验二.离心泵性能测定实验
数据处理要求
1. 计算整理数据后, 在普通坐标纸上画出泵的特性曲线,标出适宜操作区
2. 在可能的情况下,找出曲线的数学经验式
3. 绘出管路特性曲线
4. 对实验进行必要的误差分析,评价数据与结果,并分析原因
实验三 气-汽对流传热综合实验装置
实验数据处理
1. 在双对数坐标上绘出4.0/N r u P ~e R 关系图
2.用线性回归法求出流体在光滑管和强化管内流动时4.0/N r u P ~e R 的关联式
3.计算不同流量下换热器的传热平均温度差,总传热面积,传热速率及换热器总传热系数
实验四. 雷诺实验
计算雷诺准数,根据观察现象找出雷诺准数与流型之间的关系
实验五 能量转换实验
根据实验结果比较各截面的静压头、动压头和位压头之间的变化,能得到什么样的结论?
实验六 干燥实验
绘制含水率—时间的干燥曲线图及干燥速率—含水率的干燥速率曲线图。
化工原理实验
实验三 吸收实验一、实验目的1.了解填料塔吸收装置的基本结构及流程;2.测定液泛速度点,绘制干填料与湿填料的压降曲线图; 3.掌握总体积传质系数的测定方法; 4.了解气相色谱仪和六通阀的使用方法。
二、基本原理气体吸收是典型的传质过程之一。
由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。
本实验采用水吸收空气中的CO 2组分。
一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。
因此,本实验主要测定K xa 和H OL 。
i. 计算公式 填料层高度Z 为OL OL x xxaZN H xx dx K L dZ z ⋅=-==⎰⎰*12式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s);K xa 以△X 为推动力的液相总体积传质系数,kmol / (m 3·s); H OL 液相总传质单元高度,m ; N OL 液相总传质单元数,无因次。
令:吸收因数A=L/mG])1ln[(111121A mx y mx y A A N OL +----=ii. 测定方法(1)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(2)测定填料层高度Z 和塔径D ;(3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。
本实验的平衡关系可写成y = mx式中: m 相平衡常数,m=E/P ; E 亨利系数,E =f(t),Pa ,根据液相温度由附录查得; P 总压,Pa ,取1atm 。
对清水而言,x 2=0,由全塔物料衡算)()(2121x x L y y G -=- 可得x 1 。
三、实验装置与流程1.实验设备流程图见图3-1所示空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,•经过氨瓶总阀8进入氨气转子流量计9计量,•氨气通过转子流量计处温度由实验时大气温度代替。
化工原理实验指导书
化工原理实验指导书实验目的本实验旨在通过实验操作,加深对化工原理的理解,掌握化工实验的基本操作技能,培养实验分析和数据处理能力。
实验原理化工原理实验主要涉及到以下几个方面的内容: 1. 反应平衡和化学动力学 2. 热力学计算 3. 流体力学和传质过程 4. 反应器与过程控制 5. 传热过程实验器材和试剂1.实验器材:反应器、加热器、冷却器、分离仪器、计量仪器等。
2.试剂:根据实验要求使用不同的化学试剂。
实验步骤实验一:反应平衡和化学动力学1.准备反应器和试剂。
2.将试剂按照给定的比例加入反应器中。
3.根据实验要求设置反应温度。
4.开始反应,并记录实验过程中的温度、压力等数据。
5.根据实验结果分析反应平衡和化学动力学。
实验二:热力学计算1.准备热力学计算所需的实验数据。
2.计算化学反应的焓变、熵变和自由能变化。
3.根据计算结果分析反应的热力学性质。
实验三:流体力学和传质过程1.准备流体力学和传质实验所需的设备和试剂。
2.将试剂按照给定的比例注入传质设备中。
3.通过设备控制流体的流速和压力,并记录实验过程中的数据。
4.根据实验结果分析流体力学和传质过程的特性。
实验四:反应器与过程控制1.准备反应器与过程控制实验所需的设备和试剂。
2.将试剂按照给定的比例加入反应器中。
3.通过过程控制设备调节反应的温度、压力、流速等参数。
4.记录实验过程中的数据,并根据数据分析反应过程的控制效果。
实验五:传热过程1.准备传热实验所需的设备和试剂。
2.将试剂加热并通过设备控制传热过程的温度和压力。
3.记录实验过程中的数据,并根据数据分析传热过程的特性。
数据处理和实验分析在实验过程中,要认真记录实验数据,并根据数据进行分析和处理。
对于实验中的问题,要及时进行实验探讨和解决,并得出实验结论。
安全注意事项1.在实验操作过程中,要注意个人安全,避免直接接触危险试剂。
2.注意实验室卫生,保持实验环境整洁。
3.遵守实验室的操作规程,正确使用实验器材和试剂。
化工原理实验教学大纲
化工原理实验教学大纲前言化工原理实验是化工专业学生在学习化工原理理论知识的基础上,通过实际操作和观察实验现象,加深对化工原理的理解和掌握实验操作技能的课程。
本实验教学大纲旨在明确化工原理实验的目的、内容和要求,指导教师和学生开展实验教学活动,促进学生的实践能力和创新能力的培养。
一、实验目的通过化工原理实验的学习,培养学生的以下能力: 1. 理解和掌握化工原理的基本原理和基本实验方法; 2. 培养实验操作能力,掌握化工实验常用仪器的使用和实验操作技巧; 3. 学会观察实验现象、记录实验数据和进行实验结果的分析和判断; 4. 培养实验设计和实验报告撰写的能力; 5. 培养团队合作和沟通能力。
二、实验内容1.基本实验操作技能的训练;2.化工原理的基本实验方法的学习与实践;3.化工原理实验的基本仪器的使用;4.化工原理实验的常见实验操作步骤的讲解和实践;5.化工原理实验的常见实验现象观察和数据记录。
三、实验要求1.学生应具备化工原理的基本理论知识;2.学生应具备实验操作的基本技能,能够正确使用实验仪器和设备;3.学生应遵守实验室的规章制度和安全操作规程,保证实验室的安全;4.学生应认真观察实验现象,准确记录实验数据,并能进行合理的分析和判断;5.学生应按要求完成实验报告,包括实验目的、实验原理、实验步骤、实验结果和实验分析。
四、实验安排1.实验名称:化工原理实验一——密度测定–实验目的:学习密度的测定方法,掌握测量密度的实验操作技能;–实验内容:使用比重瓶测量不同液体的密度,记录实验数据;–实验要求:准确使用实验仪器,认真观察实验现象,记录实验数据,并进行数据处理和分析;–实验时间:2小时2.实验名称:化工原理实验二——蒸馏实验–实验目的:学习蒸馏的原理和方法,掌握蒸馏实验的基本操作步骤;–实验内容:进行简单蒸馏实验,观察和记录蒸馏过程中的变化;–实验要求:熟练操作实验仪器,掌握蒸馏的操作技巧,准确记录实验数据;–实验时间:3小时3.实验名称:化工原理实验三——浓度测定–实验目的:学习浓度的测定方法,掌握测量浓度的实验操作技能;–实验内容:使用比色法测定某溶液的浓度,记录实验数据;–实验要求:准确使用实验仪器,掌握比色法的操作步骤,认真观察实验现象,并进行数据分析;–实验时间:2小时4.实验名称:化工原理实验四——反应速率测定–实验目的:学习反应速率的测定方法,掌握测量反应速率的实验操作技能;–实验内容:通过观察反应过程中物质的消耗或生成,测定反应速率;–实验要求:准确操作实验仪器,认真观察实验现象,记录实验数据,并进行数据处理和分析;–实验时间:4小时五、实验评分1.实验操作技能(40%)2.实验数据处理和分析(30%)3.实验报告和实验总结(30%)六、实验安全注意事项1.实验室内严禁吸烟和饮食;2.使用化学试剂时,注意戴防护眼镜和手套,避免直接接触皮肤和吸入有害气体;3.操作实验仪器时,要注意正确使用,避免误操作导致安全事故;4.实验结束后,要及时清理实验台面和实验仪器,保持实验室的整洁。
化工原理实验教案
实验一 雷诺实验 一、实验目的1. 了解管内流体质点的运动方式,认识不同流动形态的特点,掌握判别流型的准则。
2. 观察圆直管内流体作层流、过渡流、湍流的流动型态。
观察流体层流流动的速度分布。
二、实验内容1. 以红墨水为示踪剂,观察圆直玻璃管内水为工作流体时,流体作层流、过渡流、湍流时的各种流动型态。
2. 观察流体在圆直玻璃管内作层流流动的速度分布。
3. 观察孔板前后压差与流量的关系,计算不同雷诺准数时的孔板系数C 0原理: 以秒表和1000mL 量筒测体积流量,计算雷诺准数,观察相应的流型;记录孔板前后压差,计算孔板系数C 0 ;改变流量,重复操作。
计算公式如下:q v = uA = u 0A 0 , Re =μρ⋅⋅u d ,R :孔板前后液柱差。
要求:从层流到湍流测8组数据。
三、实验装置实验装置流程如图7-1所示。
图7-1 雷诺实验装置1 溢流管;2 墨水瓶;3 进水阀;4示踪剂注入管5水箱;6 水平玻璃管;7 流量调节阀实验管道有效长度: L =600 mm 外径: Do =30 mm 内径: Di =24.5 mm孔板流量计孔板内径: do =9.0 mm00u c =四、实验步骤1. 实验前的准备工作(1) 实验前应仔细调整示踪剂注入管4的位置,使其处于实验管道6的中心线上。
(2) 向红墨水储瓶 2 中加入适量稀释过的红墨水,作为实验用的示踪剂。
(3) 关闭流量调节阀7,打开进水阀3,使水充满水槽并有一定的溢流,以保证水槽内的液位恒定。
(4) 排除红墨水注入管4中的气泡,使红墨水全部充满细管道中。
2. 雷诺实验过程(1) 调节进水阀,维持尽可能小的溢流量。
轻轻打开阀门7,让水缓慢流过实验管道。
(2) 缓慢且适量地打开红墨水流量调节阀,即可看到当前水流量下实验管内水的流动状况(层流流动如图7-2所示)。
用体积法(秒表计量时间、量筒测量出水体积)可测得水的流量并计算出雷诺准数。
因进水和溢流造成的震动,有时会使实验管道中的红墨水流束偏离管的中心线或发生不同程度的摆动;此时, 可暂时关闭进水阀3,过一会儿,即可看到红墨水流束会重新回到实验管道的中心线。
化工原理实验(教案)
《化工原理实验》讲稿王承敏二0一二年九月1. 能量转换(伯努利)实验—、实验目的1.演示流体在管内流动时静压能、动能、位能相互之间的转换关系,加深对伯努利方程的理解。
2.通过能量之间变化了解流体在管内流动时其流体阻力的表现形式。
3.可直接观测到当流体经过扩大、收缩管段时,各截面上静压头的变化过程,形象直观,说服力强。
二、实验内容1.测量几种情况下的压头,并作分析比较。
2.测定管中水的平均流速和点C 、D 处的点流速,并做比较。
三、实验原理在实验管路中沿管内水流方向取n 个过水断面。
运用不可压缩流体的定常流动的总流Bernoulli 方程,可以列出进口附近断面(1)至另一缓变流断面(i )的伯努利方程:i w i i ii h gv p z gv p z -+++=++122111122αγαγ其中i=2,3,4……,n ; 取121====n ααα 。
选好基准面,从断面处已设置的静压测管中读出测管水头γpz +的值;通过测量管路的流量,计算出各断面的平均流速v 和gv 22α的值,最后即可得到各断面的总水头gv pz 22αγ++的值。
四、实验装置基本情况1.实验设备流程图(如图一、图二所示):图一 能量转换实验流程示意图图二实验测试导管管路图2.实验设备主要技术参数表一设备主要技术参数1.将水箱灌入一定量的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀、排气阀、排水阀,打开回水阀和循环水阀后启动离心泵。
2.逐步开大离心泵出口上水阀,当高位槽溢流管有液体溢流后,利用流量调节阀调节出水流量。
稳定一段时间。
3.待流体稳定后读取并记录各点数据。
4.逐步关小流量调节阀,重复以上步骤继续测定多组数据。
5.分析讨论流体流过不同位置处的能量转换关系并得出结论。
6.关闭离心泵,结束实验。
六、实验注意事项1.离心泵出口上水阀不要开得过大,以免水流冲击到高位槽外面,导致高位槽液面不稳定。
2.调节水流量时,注意观察高位槽内水面是否稳定,随时补充水量保持稳定。
精细化工原理实验报告
一、实验目的1. 了解精细化工的基本原理和实验方法;2. 掌握精细化工实验的基本操作技能;3. 通过实验,加深对精细化工理论知识的理解和应用;4. 培养实验者的观察能力、分析问题和解决问题的能力。
二、实验内容1. 精细化工实验基本操作技能培训(1)实验基本操作规范;(2)实验安全知识;(3)实验仪器设备的使用与维护;(4)实验数据记录与分析。
2. 精细化工实验项目(1)精细化工原料的提纯与分离;(2)精细化工产品的合成与制备;(3)精细化工产品的性能测试与分析。
三、实验原理1. 精细化工原料的提纯与分离实验原理:利用物质的物理、化学性质差异,采用适当的分离方法,将混合物中的各组分分离出来。
实验方法:蒸馏、萃取、结晶、离子交换等。
2. 精细化工产品的合成与制备实验原理:根据化学反应原理,通过合适的反应条件和实验操作,合成所需精细化工产品。
实验方法:加成反应、消除反应、缩合反应、聚合反应等。
3. 精细化工产品的性能测试与分析实验原理:根据精细化工产品的特性,采用相应的测试方法,对其性能进行评价和分析。
实验方法:物理性能测试、化学性能测试、生物活性测试等。
四、实验步骤1. 精细化工原料的提纯与分离(1)根据实验要求,选择合适的分离方法;(2)配制混合物,进行实验操作;(3)观察实验现象,记录实验数据;(4)分析实验结果,得出结论。
2. 精细化工产品的合成与制备(1)根据实验要求,选择合适的反应条件和实验操作;(2)进行反应,观察实验现象;(3)分析反应结果,确定合成产物;(4)对产物进行性能测试和分析。
3. 精细化工产品的性能测试与分析(1)根据实验要求,选择合适的测试方法;(2)进行性能测试,观察实验现象;(3)分析测试结果,评价产品性能;(4)总结实验经验,提高实验技能。
五、实验结果与分析1. 精细化工原料的提纯与分离实验结果:通过蒸馏、萃取、结晶等方法,成功分离出所需纯度较高的原料。
实验分析:实验过程中,根据实验要求选择合适的分离方法,严格控制实验条件,确保实验结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 上册 100分(与流体力学与传热同时考) • 下册 100分(与传质与分离工程同时考) • 期末考试卷面占50%,平时50%
• 所有的实验报告均为书写, • 不许交打印稿
化工原理实验要求
1、准备实验
⑴ 阅读实验知道书,弄清本实验的目的与要求,写预习报告。
⑵ 根据本次实验的具体任务,研究实验的做法及其 理论根据,分析应该测取哪些数据,并估计实验数 据的变化规律。 ⑶ 了解主要设备的构造、仪表种类的安装位置, 启动和使用方法
(3) 实验时一定要在现象稳定后 才开始读数据,
(4) 同一条件下至少要读取两次数据,而且只有当 两次读数相接近时才能改变操作条件,。
⑸ 数据记录必须真实地反映仪表的精确度,一般要 记录至仪表最小分度以下一位数。
⑹ 记录数据要以当时的实际读数为准。 ⑺ 实验中如果出现不正常情况,以及数据有明显误
差时,应在备注栏中加以注明。 (8) 实验数据表格旁需要老师签字。
3,实验报告的要求
1、 实验目的
• 2、 实验任务
预
• 3、 实验原理
习
• 4、 实验设备流程(自己画)报
• 5、 实验操作步骤
告
• 6、 数据记录及结果
• 7、 计算示例
• 8、 结果分析
• 9、 思考题
严禁抄袭,发现相同的实验报告取消本次报告成绩
(4) 拟订实验方案,决定先做什么,后做什么, 弄清操作条件、设备的启动程作
每个组员都应各有专责(包括操作、读取
数据及现象观察等)
3、测取实验数据
(1)事先必须拟好记录表格,在表格中应记下各项物理量的名 称、表示符号和单位。
(2) 凡是影响实验结果或在数据整理过程中所必须的数据 都要测取,包括大气条件、设备有关尺寸、物料性质以及操作 数据