七年级上册几何图形初步单元检测(基础+提高,Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.
【答案】(1)25°
(2)解:∠BOC=65°,OC平分∠MOB
∠MOB=2∠BOC=130°
∠BON=∠MOB-∠MON=130°-90°=40°
∠CON=∠COB-∠BON=65°-40°=25°
(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°
∠AOC=∠AOB-∠BOC=180°-65°=115°
∠MON=90°
∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°
4∠NOC+∠NOC=25°
∠NOC=5°
∠NOB=∠NOC+∠BOC=70°
【解析】【解答】解:(1)∠MON=90,∠BOC=65°
∠MOC=∠MON-∠BOC=90°-65°=25°
【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度
数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.
2.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.
(1)求证:∠EHC+∠GFE=180°.
(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.
(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG
∴FG∥EH,
∴∠GFE+∠HEF=180°,
∵AB∥CD
∴∠BEH=∠CHE
∴∠EHC+∠GFE=180°
(2)解:设∠EHM=x,
∵HG⊥HE,
∴∠GHK=90°-x,
∵MH平分∠CHG,
∴∠EHC=90°-2x,
∵AB∥CD
∴∠HMB=90°-x,
∴∠HMB=∠MHG=90°-x,
∵AB∥CD,
∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,
∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,
∴∠GHD=2∠EHM;
(3)解:延长FG,GK,交CD于R,交HE于S,如图,
∵AB∥CD,∠BFG=50°
∴∠HRG=50°
∵FG⊥HG,
∴∠GHR=40°,
∵HG⊥HE,
∴∠EHG=90°,
∴∠CHE=180°-90°-40°=50°,
∵AB∥CD,
∴∠FEH=∠CHE=50°,
∵EP是∠HEF的平分线,
∴∠SEP= ∠FEH=25°,
∵GH平分∠HGF,
∴∠HGS= ∠HGF=45°,
∴∠HSG=45°,
∵∠SEP+∠SPE=∠HSP=45°,
∴∠EPS=20°,即∠NPK=20°.
【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.
3.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE
(1)若∠COF=20°,则∠BOE=________°
(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系
(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.
【答案】(1)40
(2)解:∵
∴
∴
(3)解:存在.理由如下:
∵
设
∴
∵
∴
∴
∴
∴
【解析】【解答】⑴
∴
∵OF平分∠AOE,
∴
∴
∴
故答案为:40。
【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠AOB−∠AOE=120°−80°=40°.
(2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠AOE=120°−∠BOE=2(60°−∠COF) , 整理得∠BOE=2∠COF;
(3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF.
4.综合题
(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;
(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;
(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=________.(用含α与β的代数式表示)
【答案】(1)解:∵CO⊥AB,
∴∠AOC=∠BOC=90°,
∵OE平分∠AOC,
∴∠EOC= ∠AOC= ×90°=45°,
∵OF平分∠BOC,