天线原理与设计—第十二章新型和特殊功能天线

合集下载

完整版天线基本原理

完整版天线基本原理

完整版天线基本原理天线是一种将电磁场能量转换成电信号或者将电信号转换成电磁场能量的无线通信线路组件。

它是无线通信系统的重要组成部分,通过接收和发射电磁波,将信息传递至接收器或者环境中。

1.天线的基本原理天线的基本原理是根据远离电流源的点的法向辐射电场的方向来确定。

当电流通过导线时,会在其周围产生电磁场。

这个电磁场包含自电场和磁场两部分。

2.天线的结构天线的常见结构包括金属导线、金属片和金属网格等。

导线型天线广泛应用于各种通信系统中,如普通天线、微带天线、螺旋天线等。

导线型天线通常由金属材料制造,包括铜、铝和银等。

导线的长度和形状会影响天线的工作频率和辐射模式。

3.天线的工作原理天线的工作原理可以简单描述为接收和发射电磁场能量。

当电磁波到达天线时,它们会在导线上引起电磁感应现象,导致电子在导线中运动,进而形成感应电流和电磁场。

接收天线将电磁波转化为电信号,通过连接到接收器或接收电路的导线将信号传递给接收器,然后接收器将其转化为有用的信息。

发射天线接收到电信号后,将其转化为电磁波,并通过导线发射出去。

4.天线的工作频率和辐射模式天线的工作频率是天线接收和发射电磁信号的频率范围。

不同类型的天线对应不同的工作频率范围。

天线的长度和形状会影响天线的共振频率。

天线的辐射模式是指天线在不同方向上的辐射能力,它受到天线的结构和工作频率的影响。

辐射模式通常用辐射图来表示,辐射图描述了天线在各个方向上的辐射能力。

5.天线的增益和效率天线的增益是指天线在一些方向上辐射能量的能力,与参考天线(理想天线)相比较。

增益越大,则天线在特定方向上的辐射能力越好。

天线的效率是指天线将输入能量转换为输出能量的比率。

天线的效率受到天线材料、结构和工作频率的影响。

提高天线效率的方法包括减少导线损耗、减少表面反射损耗等。

6.天线的常见类型常见的天线类型包括偶极子天线、螺旋天线、微带天线、天线阵列等。

偶极子天线是最常见和最简单的天线,它由两个导线构成,用于发射和接收电磁波。

天线功能与工作原理

天线功能与工作原理

天线功能与工作原理(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--中国联通江苏分公司技术交流材料江苏靖江亚信电子科技有限公司二00三年六月十一日目录一、天线功能与工作原理 (3)二、天线的分类 (6)三、性能指标与检测方法 (9)四、天线结构和质量保证 (14)五、天线选型原则 (20)一、天线功能与工作原理用来进行无线通讯的手机和基站,在空中是通过无线电波来传递信息的,需要有无线电波的辐射和接收。

在无线电技术设备中,用来辐射和接收无线电波的装置称为天线。

天线的功能首先在于辐射和接收无线电波,但是能辐射或接收电磁波的装置并不一定都能用来作为天线,任何高频电路,只要不被完全屏蔽,都可以向周围空间辐射电磁波,或者从周围空间接收电磁波,但是并非任何高频电路都能用作天线,因为辐射或接收效率有高有低,为了有效地辐射或接收电磁波,天线的结构形式应该满足一定的要求。

例如,像平行双导线传输线这样的封闭结构就不能用作天线,因为双导线传输线在周围空间激发的电磁场很微弱,终端开路的平行双导线传输线上的电流呈驻波分布。

在两根互相平行的导线上,电流方向相反,线间距离远小于波长,所激发的电磁场在两线外部大部分空间中,由于相位相反而相互抵消。

如果把两根导线的末端逐渐张开,辐射就会逐渐增强,当两根线完全张开时,张开的两臂短于半波长,上面电流的方向相同,在周围空中激发的电磁场在某些方向由于相位关系而互相抵消,在大部分方向则互相叠加,或者部分叠加、部分抵消,使辐射显着增强,这样的结构称为开放式结构,由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线。

作为基站天线,常常要求天线在水平面内向所有方向(一圈360o)均匀地辐射(或对所有方向具有同等的接收能力),具有这种特性的天线,叫做全向天线。

而对某些基站天线,只要求能覆盖含有一定角度的一个扇区,这种天线叫做定向天线,对这种天线要求只向待定的扇形区域辐射(或只接收来自特定扇形区域的无线电波),在其它方向不辐射或辐射很弱(不能接收或接收能力很弱)。

天线原理与设计

天线原理与设计

天线原理与设计天线是无线通信系统中的重要组成部分,它的设计和原理对于无线通信系统的性能和覆盖范围起着至关重要的作用。

本文将对天线的原理和设计进行详细的介绍,希望能够帮助读者更好地理解和应用天线技术。

首先,天线的原理是基于电磁波的辐射和接收。

在无线通信系统中,发射天线将射频信号转换成电磁波进行传输,而接收天线则将接收到的电磁波转换成射频信号进行解调。

因此,天线的设计需要考虑到频段、增益、方向性、极化等因素,以实现最佳的通信性能。

其次,天线的设计需要根据具体的应用场景和需求来进行。

不同的应用场景需要不同类型的天线,比如室内分布式系统需要采用室内覆盖天线,而室外覆盖系统则需要采用室外定向天线。

此外,天线的设计还需要考虑到信号的覆盖范围、干扰抑制、多径效应等因素,以确保通信系统的稳定性和可靠性。

在天线设计中,还需要考虑到天线的匹配和阻抗匹配问题。

天线的输入阻抗与信号源或接收机的输出阻抗需要匹配,以确保最大的信号传输效率。

因此,天线设计中需要考虑到天线的阻抗特性和匹配网络的设计,以实现最佳的匹配效果。

此外,天线的材料和结构也对其性能产生重要影响。

天线的材料选择和结构设计需要考虑到频段、环境适应性、制造成本等因素,以实现最佳的性能和成本效益。

综上所述,天线的原理和设计涉及到电磁波辐射和接收、应用场景和需求、匹配和阻抗匹配、材料和结构等多个方面。

在实际应用中,需要综合考虑这些因素,进行合理的天线设计,以实现最佳的通信性能和覆盖范围。

希望本文能够对天线的原理和设计有所帮助,也希望读者能够在实际应用中充分理解和应用天线技术,为无线通信系统的性能和覆盖范围提供有效的支持。

天线原理与设计

天线原理与设计

天线原理与设计天线是无线通信系统中的重要组成部分,它的设计和原理对于无线通信的性能和覆盖范围起着至关重要的作用。

本文将介绍天线的基本原理和设计方法,帮助读者更好地理解和应用天线技术。

首先,天线的基本原理是什么呢?天线是将电磁波转换为电信号或者将电信号转换为电磁波的装置。

在接收模式下,天线接收到的电磁波会转换成电信号,而在发送模式下,电信号会被天线转换成电磁波进行传输。

因此,天线的设计需要考虑到频率范围、辐射效率、方向性等因素,以确保其在特定的应用场景下能够实现高效的信号传输。

其次,天线的设计方法有哪些呢?天线的设计需要根据具体的应用需求来确定。

一般来说,天线的设计包括结构设计、材料选择、匹配网络设计等方面。

在结构设计方面,需要考虑天线的形状、尺寸、辐射器的布局等因素,以确保天线能够实现所需的辐射特性。

在材料选择方面,需要选择合适的材料来制作天线,以确保天线具有足够的机械强度和耐候性。

在匹配网络设计方面,需要设计合适的匹配网络来确保天线与传输线的匹配,以提高天线的辐射效率。

最后,天线的设计需要注意哪些问题呢?在天线设计过程中,需要注意考虑以下几个问题。

首先,需要考虑天线的频率范围,以确保天线能够在所需的频段内正常工作。

其次,需要考虑天线的辐射效率,以确保天线能够实现高效的信号传输。

此外,还需要考虑天线的方向性,以确保天线能够实现所需的辐射方向。

最后,还需要考虑天线的机械强度和耐候性,以确保天线能够在各种环境条件下正常工作。

综上所述,天线是无线通信系统中的重要组成部分,其设计和原理对于无线通信的性能和覆盖范围起着至关重要的作用。

天线的设计需要考虑频率范围、辐射效率、方向性等因素,以确保其能够在特定的应用场景下实现高效的信号传输。

希望本文能够帮助读者更好地理解和应用天线技术。

天线基本原理及常用天线介绍ppt课件

天线基本原理及常用天线介绍ppt课件
.
3、天线的工作频率范围(带宽)
无论是发射天线还是接收天线,它们总是在一定的 频率范围内工作的,通常,工作在中心频率时天线所能 输送的功率最大,偏离中心频率时它所输送的功率都将 减小,据此可定义天线的频率带宽。
有几种不同的定义: 一种是指天线增益下降三分贝时的频带宽度; 一种是指在规定的驻波比下天线的工作频带宽度。
.
806~960MHz的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高. 了产品性能,又在很大程度上降低了天线的生产成本
3G(1710~2170MHz)频段的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高了. 产品性能,又在很大程度上降低了天线的生产成本
峰值 - 3dB点
Peak - 3dB
10dB 波束宽度 - 10dB点
120° (eg)
峰值
- 10dB点
Peak - 10dB
15° (eg)
Peak
32° (eg)
Peak
Peak - 3dB
俯仰面即. 垂直面方向图
Peak - 10dB
方向图旁瓣显示
上旁瓣抑制 下旁瓣抑制
.
8、方向图在移动组网中的应用
方向图可用来说明天线在空间各个方向上所具有的 发射或接收电磁波的能力。
.
天线的主要技术指标
天线匹配指标
驻波比 隔离度
天线辐射特性指标
与国际接轨的 天性辐射特性
增益
主瓣波束宽度
第一副瓣抑制
前后比
交叉极化比
轴向 ±30
波束效率
3dB 10dB
杂散因子
3dB 10dB
.
≤1.4

天线原理及应用概要

天线原理及应用概要

天线原理及应用概要天线是一种用于接收和发送无线电波的装置,它在无线通信和电磁波传播中起着至关重要的作用。

本文将详细介绍天线的原理和应用。

一、天线原理1. 电磁波基础知识电磁波是由电场和磁场相互作用而产生的能量传播形式。

电磁波的特性由频率、波长、振幅和极化方式等参数决定。

2. 天线的基本原理天线的基本原理是利用电磁波的辐射和接收特性来实现无线通信。

天线可以将电信号转换为电磁波辐射出去,也可以将接收到的电磁波转换为电信号。

3. 天线的辐射模式天线的辐射模式决定了它在空间中辐射能量的分布。

常见的辐射模式包括全向辐射、定向辐射和扇形辐射等。

4. 天线的增益和方向性天线的增益是指相对于理想全向辐射天线,在某个方向上辐射功率的增加倍数。

方向性天线具有较高的增益,可以集中辐射功率到特定方向。

二、天线的应用1. 通信领域天线在通信领域中广泛应用,如无线电广播、挪移通信、卫星通信等。

不同频段和应用场景需要不同类型的天线,如全向天线、定向天线和扇形天线等。

2. 遥感与导航天线在遥感和导航领域中起着关键作用。

卫星遥感利用天线接收地面反射的电磁波,获取地球表面的信息。

导航系统中的GPS天线用于接收卫星发射的导航信号。

3. 无线能量传输天线可以用于无线能量传输,如无线充电技术。

通过将电能转换为电磁波,然后通过天线进行传输,实现对电子设备的无线充电。

4. 科学研究天线在科学研究中也有广泛应用,如天文学中的射电望远镜和雷达系统。

这些天线用于接收宇宙中的微弱信号,匡助科学家研究宇宙的起源和结构。

5. 安全与军事天线在安全与军事领域中扮演重要角色。

无线通信和雷达系统都需要天线来实现信号的传输和接收,用于情报采集、通信和导航等任务。

三、天线的发展趋势1. 小型化和集成化随着科技的发展,天线正朝着小型化和集成化方向发展。

微型天线、贴片天线和天线阵列等新型天线技术的浮现,使天线更加紧凑和便于集成到各种设备中。

2. 多频段和宽带化天线需要适应不同频段和宽带信号的传输,因此多频段和宽带天线的研究得到了广泛关注。

天线原理与设计(王建)1PDF版

天线原理与设计(王建)1PDF版
返回
可见,天线方向图是在远区球面上的场强分布。
●归一化方向图
f (θ ,ϕ ) F (θ ,ϕ ) = f (θ m ,ϕ m )
(0.3)
式中,(θm ,φm)为天线最大辐射方向;
f (θm ,φm)为方向图函数的最大值。
由归一化方向图函数绘制出的方向图称为归 一化方向图。由式(0.1)和(0.2)可以看出,天线远 区辐射电场和磁场的方向图函数是相同的,因 此,由方向图函数和归一化方向图函数表示的方 向图统称为天线的辐射场方向图。
为便于分析和研究天线性能出发,天线可以分为如下 几大类:
(1~6)章 (1) 线天线(Wire Antennas) —— ——(1
(8~10章) (2) 口径天线(Aperture Antennas) —— ——(8
(3) 阵列天线(Array Antennas) —(1章部分,5章)
(4) 透镜天线(Lens Antennas) —(10章部分)
六十和七十年代是天线发展的鼎盛时期。这 个时期在天线理论方法方面以及各项技术的应用 方面都在突飞猛进的发展。
(1)在天线理论方法方面
■几何绕射理论 ■平面波谱展开法 ■时域有限差分法 ■天线近场测量理论 ■矩量法 ■有限元法 ■时域积分方程法 ■阵列分析与综合理论
这些理论方法为天线的工程设计奠定了坚实的基础, 随着计算机技术的发展大都形成了计算机仿真的电子自动 化设计软件。
■ HFSS软件 ■ CST软件 ■ FEKO软件
■ IE3D软件 ■ FIDELITY软件
(2)在天线技术应用方面
卫星通信技术发展推动了卫星天线和大型地面站天线 的发展,出现了大型平面阵、卡塞格仑天线及各种反射面 天线馈源。 雷达制导、搜索、跟踪、预警技术的应用推动了单脉 冲雷达天线、相控阵天线,多波束天线的发展。 半导体技术的发展使无线电技术向毫米波、亚毫米波 甚至更高频率发展,对天线提出了小型化、集成化、宽带 化等一系列要求,出现了有源天线、微带天线和印刷天线、 印制板开槽天线、表面波天线、共形阵列天线等。 微带天线和印刷天线由于其具有小型化、低剖面、便 于集成,成本低、天线图案千变万化,所以至今仍在发 展,其方向包括阵列、极化、宽带、高效率、双频和多频 谐振等。

天线原理与设计总结

天线原理与设计总结

在无线电设备中,天线就是用来辐射和接收无线电波的装置,是一种电与磁的能量转换器。

按方向性分类,天线分为全向天线和定向天线两种。

全向天线将能量信号平均辐射到所有方向上,由于能量被分散了,传输距离也较短。

而定向天线则将能量信号辐射到特定的方向上,由于能量更集中,因此在该方向上传输距离会更远。

图1 定向天线和全向天线图1 定向天线和全向天线按材质或结构,天线又可以分为许多种类,常见的是:PCB天线(板载天线)、陶瓷天线、棒状天线等。

致远电子推出的ZLG52810蓝牙模块,使用的就是PCB天线,这类天线集成在产品内部,可以大大减小对客户产品尺寸的要求。

那么,要如何评估一款天线性能的优劣?下面介绍天线的几个主要参数:1. 工作频率工作频率是天线最基本的参数,代表该天线能够辐射或接收的信号频率。

天线的工作频率一般是某个范围,这个范围称为天线的带宽。

例如某个天线的带宽是2.3GHz~2.5GHz,则它能够将该频段内的信号有效辐射出去或接收进来,而该频段外的信号例如2GHz,则无法通过该天线辐射或接收。

不同技术的产品,需要选择相应工作频段的天线,才能正常工作,例如:● 蓝牙是2.402~2.480GHz;● Wi-Fi是2.412~2.472GHz;● Lora是470~510MHz。

图2 Wi-Fi天线的工作频率测试图2 Wi-Fi天线的工作频率测试2. 增益天线是无源器件,它并不会增大信号强度。

和PA的增益不同,天线的增益通常指最大辐射方向的功率增益值,可以理解为天线在特定方向上的辐射能力,增益越大,天线辐射的能量也越集中,在相应方向上辐射能力越强,信号传输距离越远。

广州致远电子推出的ZM602系列Wi-Fi模块所设计的PCB天线增益达到了3.3dBi,空旷环境下最远通讯距离达到了450m,传输距离优于市场上绝大部分的Wi-Fi产品。

3. 电压驻波比电压驻波比(VSWR)是表征端口阻抗匹配程度的一个量,它是衡量射频功率从功率源通过传输线到负载(天线)的效率,是驻波中最大电压与最小电压之比。

天线原理与设计讲稿第十二章双反射面天线12.1引言为了改善

天线原理与设计讲稿第十二章双反射面天线12.1引言为了改善

第十二章双反射面天线12.1 引言为了改善卫星跟踪与通信应用的大型地面微波反射面天线的性能,多采用双反射面天线系统。

我们已经知道,反射面的方向图形状(波束指向、主瓣宽度、副瓣电平)决定于天线口径上的场(或电流)分布。

而口径场分布又由馈源的方向图和反射面的形状确定。

改变反射面的形状,即采用长焦距的反射面来得到较均匀的口径场分布。

但是,焦距变长之后,天线纵向尺寸变大,这不仅使结构上不便,而且馈线变长会增加损耗,对远距离通讯来说增加噪声,降低效率。

另外,要获得低副瓣(如-40dB),口径场振幅分布还不能是均匀的,应满足一定分布规律。

这由单反射面和一个馈源来调整是困难的。

采用双反射面天线,可方便地控制口径场分布。

既可以使反射面的焦距较短,又可保证得到所需的天线方向图,而且使设计增加了灵活性。

双反射面天线系统的设计起源于卡塞格伦光学望远镜。

这种光学望远镜以其发明人卡塞格伦Cassegrain命名。

这一章主要介绍作为双反射面天线基础的并已普遍采用的标准卡塞格伦天线,介绍其工作原理,结构组成、几何参数、分析方法、增益和效率等。

为了提高增益效率,将简单介绍赋形卡塞格伦天线和高效率馈源相结合的高效卡塞格伦天线。

12.2 卡赛格伦天线的工作原理12.2.1标准卡塞格伦天线的组成一副10m地面站卡塞格伦天线如图12-1所示。

图12-2 10m地面站卡塞格伦天线标准卡塞格伦天线由主反射面、副反射面和馈源组成。

为了获得聚焦特性,主反射面必须是旋转抛物面,副反射面是旋转双曲面,馈源可以是各种形式,但一般用喇叭作馈源,安装在主、副反射面之间,其相位中心应置于旋转双曲面的焦点上,双曲面的安装应使双曲面的虚焦点与抛物面的焦点重合,如图12-2所示。

卡塞格伦天线整个就是一个轴对称结构。

副反射面通常置于喇叭馈源的远区。

如果喇叭辐射的球面波方向图是旋转对称的,侧卡式天线就具有轴对称性能。

12.2.2卡塞格伦天线的工作原理卡式天线的工作原理与抛物面天线的相似,抛物面天线利用抛物面的反射特性,使得由其焦点处的馈源发出的球面波前,径抛物面反射后转变为在抛物面口径上的平面波前,从而使抛物面天线具有锐波束、高增益的性能。

(完整word版)天线基本原理

(完整word版)天线基本原理

(完整word版)天线基本原理第⼀讲天线基本原理⼀、天线的基本概念1.天线的作⽤在任何⽆线电通信设备中,总存在⼀个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。

天线的作⽤就是将调制到射频频率的数字信号或模拟信号发射到空间⽆线信道,或从空间⽆线信道接收调制在射频频率上的数字或模拟信号。

2.天线问题的实质从电磁场理论出发,天线问题实质上就是研究天线所产⽣的空间电磁场分布,以及由空间电磁场分布所决定的电特性。

空间任何⼀点的电磁场满⾜电磁场⽅程——麦克斯韦⽅程及其边界条件。

因此,天线问题是时变电磁场问题的⼀种特殊形式。

从信号系统的⾓度出发,天线问题可以理解为考察由⼀个电磁波激励源产⽣的电磁响应特性。

从通信系统的⾓度出发,天线可以理解为信号发射和接收器,收发天线之间的⽆线电信号强度满⾜通道传输⽅程和多径衰落特性。

3.对天线结构的概念理解采⽤不同的模型,对天线可以有不同的理解。

典型的模型⽐如:●开放的电容[思考] 野外电台或电视发射塔,⽆线电视或电台接收机,为什么能构成⼀个天线,其电流回路在什么地⽅?●开放的传输线从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。

●TM mn型波导将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励⾼次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构波的形成都需要波源和传输媒质。

在⼀盆⽔中形成机械波纹,可以使⽤点激励源产⽣波,并在⽔⾯上传播。

波的传播特性只与媒质特性有关⽽与波源⽆关。

将⼀个⾁包⼦扔出去,这个⾁包⼦可能产⽣不同的结果,或者被狗吃了,或者掉在什么地⽅了,都与扔包⼦的⼈不再有任何关系。

⽽对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。

不过电磁波的传输媒质可以是真空。

[思考] 电磁波具有波粒⼆象性。

频率越低,波动性越强;频率越⾼,粒⼦性越强。

所以光波主要表现出粒⼦性,⽽长波表现出波动性。

天线的基本原理

天线的基本原理

天线的基本原理
天线是一种可以接收或发送无线电波的装置,其基本原理是利用电磁感应和辐射原理。

当电流通过天线中的导体时,会产生一个电磁场,这个电磁场随着电流的变化而变化。

当无线电波经过天线时,这个变化的电场和磁场会相互结合并沿着空间传播。

天线的设计和结构会影响其工作频率和辐射特性。

传统的天线通常由一个或多个导体构成,其中最常见的是直线型、对数螺旋型和偶极子型。

这些导体的长度通常是针对所需的工作频率进行优化的。

对于接收天线而言,当无线电波通过天线时,导体中的电流会产生辐射磁场,这个磁场会引起导体中的电荷移动,最终形成接收电流。

接收天线的性能受到很多因素的影响,包括频率、极化、天线的方向性以及环境的影响。

对于发送天线而言,当电流通过天线时,会在周围产生电磁场,并将电能转化为无线电波的形式辐射出去。

发送天线的效率与输入功率、天线损耗以及电磁场的辐射效果有关。

总的来说,天线的基本原理就是利用电磁感应和辐射原理,通过导体中的电流产生电磁场,并将电能转化为无线电波进行传输或接收。

这种原理被广泛应用于通讯、广播、雷达、卫星和无线电技术等领域。

天线的基本原理

天线的基本原理

天线的基本原理
天线是一种用于发送或接收无线电波的装置,它的基本原理是通过电流的变化产生电磁场或者利用电磁场诱导电流。

以下是天线的基本工作原理:
发射天线原理:
电流产生电磁场:当通过天线的导线或电路施加交流电流时,电流在导线上流动会产生电磁场。

辐射电磁波:电磁场的变化引起电磁波的辐射,这些辐射的电磁波可以是无线电波、微波、红外线、可见光或其他频率的电磁辐射。

天线设计:天线的设计要考虑产生和辐射特定频率的电磁波的最佳方式,包括天线的尺寸、形状和材料选择。

接收天线原理:
感应电流:当电磁波穿过天线时,它会诱导电磁感应,产生感应电流。

感应电流转化为电信号:感应电流通过天线的导线传递到接收设备(如收音机、电视或无线通信设备),并被转化为电信号进行处理和解码。

天线的性能和效果受到多种因素影响,包括天线的长度、形状、方向性、频率选择性以及与环境的相互作用等。

不同类型的天线具有不同的工作原理和应用,如偶极天线、方向性天线、螺旋天线、波导天线等。

天线原理与设计

天线原理与设计

天线原理与设计绪论0.1 天线在无线电工程中的作用天线已随处可见,它已与我们的日常生活密切相关。

例如,收听无线电广播的收音机需要天线,电视机需要天线,手机也需要天线。

在一些建筑物、汽车、轮船、飞机上等都可以看见各种形式的天线。

收音机、电视机使用的天线一般是接收天线,广播电视台的天线则为发射天线。

而手机天线则收发共用,但须经过移动通信基站天线转收和转发。

实际上,一切无线电设备(包括无线电通讯、广播、电视、雷达、导航等系统)都是利用无线电波来进行工作的,而从几MHz的超长波到四十多GHz的毫米波段电磁波的发射和接收都要通过天线来实现。

天线是这样一个部件,作发射时,它将电路中的高频电流或馈电传输线上的导行波有效地转换成某种极化的空间电磁波,向规定的方向发射出去;作接收时,则将来自空间特定方向的某种极化的电磁波有效地转换为电路中的高频电流或传输线上的导行波。

综上所述,天线的作用主要有四点:(1) 能量转换对于发射天线,天线应将电路中的高频电流能量或传输线上的导行波能量尽可能多地转换为空间的电磁波能量辐射出去。

对于接收天线,天线应将接收的电磁波能量最大限度地转换为电路中的高频电流能量输送到接收机。

这就要求天线与发射机源或与接收机负载尽可能好的匹配。

一副好的天线,就是一个好的能量转换器。

(2) 定向辐射或接收对于发射天线,辐射的电磁波能量应尽可能集中在指定的方向上,而在其它方向不辐射或辐射很弱。

对于接收天线,只接收来自指定方向上的的电磁波,在其它方向接收能力很弱或不接收。

例如,就雷达而言,它的任务是搜索和跟踪特定的目标。

如果雷达天线不具有尖锐的方向性,就无法辨别和测定目标的位置。

而且如果天线没有方向性,或方向性弱,则对发射天线来说,它所辐射的能量中只有一少部分到达指定方向,大部分能量浪费在不需要的方向上。

对接收天线来说,在接收到所需要信号的同时,还将接收到来自其它方向的干扰信号或噪声信号,致使所需信号完全淹没在干扰和噪声中。

天线原理与设计讲义.ppt

天线原理与设计讲义.ppt

简言之:天线的功能主要有两点: (1)能量转换 (2)定向辐射或接收 无线电通讯线路中的辐射和接收天线示意:
发射系统等效电路:
天线等效电路中最主要的一个参数——辐射电阻Rr。 可以认为天线辐射的电磁波能量全部由Rr吸收。
发射天线空间辐射方向图。
●典型的空间三维方向图
●典型的二维方向图
各种各样的方向图是由各种各样的天线实现的。
■ IE3D软件 ■ FIDELITY软件
(2)在天线技术应用方面
卫星通信技术发展推动了卫星天线和大型地面站天 线的发展,出现了大型平面阵、卡塞格仑天线及各种反 射面天线馈源。
雷达制导、搜索、跟踪、预警技术的应用推动了单 脉冲雷达天线、相控阵天线,多波束天线的发展。
半导体技术的发展使无线电技术向毫米波、亚毫米 波甚至更高频率发展,对天线提出了小型化、集成化、 宽带化等一系列要求,出现了有源天线、微带天线和印 刷天线、印制板开槽天线、表面波天线、共形阵列天线 等。
另外,还有八木天线,对数周期天线、阵列天线。阵 列天线又有直线阵天线、平面阵天线、附在某些载体表 面的共形阵列天线等。
为便于分析和研究天线性能出发,天线可以分为如下 几大类:
(1) 线天线(Wire Antennas) ——(1~6)章
(2) 口径天线(Aperture Antennas) ——(8~10章)
(1)在天线理论方法方面
■几何绕射理论 ■平面波谱展开法 ■时域有限差分法 ■天线近场测量理论
■矩量法 ■有限元法 ■时域积分方程法 ■阵列分析与综合理论
这些理论方法为天线的工程设计奠定了坚实的基础,
随着计算机技术的发展大都形成了计算机仿真的电子自 动化设计软件。
■ HFSS软件 ■ CST软件 ■ FEKO软件

天线设计原理

天线设计原理

天线设计原理
天线设计原理是无线通信系统中非常重要的组成部分。

它的主要目的是将电磁能量转换为无线电波,并且能够高效地辐射出去或接收来自外部的无线电波。

天线的设计原理基于电磁学理论,其中最基本的原理是安培环路定理和法拉第电磁感应定律。

安培环路定理指出,通过闭合导线的总电流等于穿过该闭合导线的磁场总通量的变化率。

而法拉第电磁感应定律则表明,当导体中的磁通量发生变化时,会在导体两端产生感应电动势。

根据这些原理,天线的设计首先要选择合适的材料和结构,以实现高效的无线信号辐射或接收。

常见的天线材料包括金属和介质,其选择取决于天线的工作频率和应用环境。

例如,金属天线适用于高频段的工作,而介质天线适用于低频段的工作。

天线的结构也多种多样,常见的有全向天线、定向天线和半定向天线等。

全向天线能够均匀地辐射信号到周围的各个方向,适用于无线通信中的广播和接收。

定向天线则可以将信号主要辐射到特定的方向,适用于点对点通信或者长距离通信。

半定向天线则介于全向天线和定向天线之间,既能实现宽带辐射,又能够在一定范围内集中辐射信号。

此外,天线的大小和形状也会对其性能产生影响。

较大的天线能够实现更高的增益和辐射效率,但同时也会增加系统的复杂性和成本。

因此,天线设计师需要在性能、成本和空间限制之间进行权衡。

总之,天线设计原理是基于电磁学理论的,通过选择合适的材料、结构和形状,实现高效的无线信号辐射或接收。

这些原理为天线优化设计提供了理论基础,确保了无线通信系统的可靠性和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本结构
1)实现信号空间采样的天线阵; 2)对各阵元输出进行加权合并的波束成型网络; 3)更新合并权值的控制部分。
12.3 智能天线
智能天线类型
1)波束转换智能天线 2)自适应阵列智能天线
(switched beam antenna) (adaptive array antenna)
12.3 智能天线
智能天线优势
1)增加覆盖范围
2)抗衰落 3)抗干扰 4)增加频谱效率和信 道容量
5)增加传输效率
6)动态信道分配 7)实现移动台定位 8)提高通信的安全性
12.4 可重构天线
可重构天线:
是指通过通过其电流或口径场的再分布,来求得天 线电性能的改变。可分为频率可重构、极化可重构 和方向图可重构。
组成原理:
12.4 可重构天线
辐射结构:
线形:载电流导线、开在平面屏上或波导管壁上的 窄缝隙、沿某折线分布的辐射器系统。
12.4 可重构天线 面形:
12.5 超材料天线
超材料(又称人工电磁材料):
超材料是通过在材料关键物理尺度上的结构有序 设计,突破某些表观自然规律的限制,获得超出 自然界原有普通物理特性超常材料的技术
机载SAR: P~Ku波段 2)除了电性能,重量、热稳定性、效率和成本等因 素同等重要。 3)主要天线类型:反射面天线、平面波导缝隙天线 和平面微带天线
12.1 合成孔径雷达
反射面天线
特点:为降低天线的体积、重量、功耗和成本,反 射面天线不失为一个好的选择
12.1 合成孔径雷达
微带天线阵
特点:具有剖面低、体积小、重量轻、便于与有源 器件集成的优势。
12.1 合成孔径雷达
工作原理:
在距离向(垂直于雷达运动方 向)通过脉冲压缩技术实现空 间分辨率,而在方位向(平行 于雷达运动方向)利用多普勒 效应,通过多个发射脉冲回波 信号的相干处理,在不依靠长 孔径天线的情况下获得高的分 辨率
12.1 合成孔径雷达
合成孔径雷达的天线技术
1)考虑频率
星载SAR: L~X波段
12.3 智能天线
智能天线最初用于雷达、声纳及军事通信
1)DSP技术的发展,智能天线技术开Байду номын сангаас在移动通信 中应用; 2)移动通信的发展要求蜂窝小区在大容量下仍有高 的话音质量。智能天线可以满足服务质量和扩充 容量的需要。
12.3 智能天线
基本原理
利用数字信号处理技术,判断用户信号到达方向(DOA估计), 通过选择恰当的合并权值,将天线主波束对准期望用户,低 增益旁瓣或零陷对准干扰信号,达到充分高效利用移动用户 信号并删除或抑制干扰信号的目的。发射时,使期望用户的 接收信号功率最大,同时使非期望用户受到的干扰最小,甚 至为零。
4)数字波束形成(DBF)技术
12.2 相控阵雷达
相控阵雷达基本原理
控制阵列天线中的各单元的相位 来得到所需的天线方向图和波束 指向,是波束在一定空域中按预 定规律进行扫描。

载有源相控阵--21世纪机载雷达的革命
12.2 相控阵雷达
,最大扫描角为90°~120°。
优势特点:
1)波束可控性强
技术难点:
1)扫描范围有限
2)T/R组件
3)高密度电源 4)冷却问题 5)数据处理的能力
2)系统反应速度快
3)具有多波束能力 4)干扰模式灵活 5)有效辐射功率大 6)具有低可观测性
7)可靠性高
8)故障弱化的优势
12.2 相控阵雷达
相控阵雷达分为有源和无源两类。
无源相控阵雷达仅有一个中央发射机和一个接收机, 发射机产生的高频能量经计算机自动分配给天线阵 的各个辐射器,目标反射信号经接收机统一放大。 有源相控阵雷达的每个辐射器都配装有一个发射/接 收组件,每一个组件都能自己产生、接收电磁波, 在频宽、信号处理和冗度设计上都比无源相控阵雷 达具有较大的优势。也使得有源相控阵雷达的造价 昂贵,工程化难度加大。但有源相控阵雷达在功能 上有独特优点,大有取代无源相控阵雷达的趋势。
12.5 超材料天线
应用实例
1. 零相位环形天线
12.5 超材料天线 2. 零折射率结构加 载的高增益渐开缝 隙天线
12.5 超材料天线 3. 宽带低高度平面偶极子天线
12.5 超材料天线 4. 宽带低高度平面蘑菇天线
谢 谢!
十二. 新型和特殊功能天线
12.1 合成孔径雷达
合成孔径雷达(SAR)是一种主动式微波遥感 传感器,优点:
1)对地观测不受光照和气候条件的影响,实现全天 候和全天候对地观测。 2)穿透地表和植被获取地表下信息。 广泛应用于测绘、气象、国土资源勘察、灾害监测 和环境保护、国防、能源、交通、工程等诸多领域。
12.1 合成孔径雷达 传统图像的分辨率由角分辨率乘以传感器至目标 的距离来决定。随着雷达平台高度的增加,其分 辨率下降,对于微波波段,传统方法很难实现。
1951年美国人Carl Wiley第一次提出利用载体的 移动在相位上通过重新组合所有回波从而等效于 形成一副大尺度的天线。 70年代起得到了广泛关注,进入90年代,发展迅 猛。
12.1 合成孔径雷达
波导缝隙天线阵
特点:虽然体积、重量和带宽处与劣势,但其非常 低的线阵馈电损耗使之在较高的频段,特别是X波 段甚至更高频段的SAR中,具有明显优势。
12.1合成孔径雷达
合成孔径雷达天线的发展趋势
1)多波段多极化共孔径天线技术 2)超轻型可展开天线技术 3)多通道多相位天线技术
相关文档
最新文档