自控实验报告实验三线性系统的根轨迹
自动控制根轨迹实验报告
![自动控制根轨迹实验报告](https://img.taocdn.com/s3/m/a46a7c2faaea998fcc220ec6.png)
实验三 根轨迹分析一、实验目的:1.熟悉零、极点对根轨迹的影响2.组合典型环节按照题目完成相应曲线二、实验内容鱼鹰型倾斜旋翼飞机V-22既是一种普通飞机,又是一种直升机。
当飞机起飞和着陆时,其发动机位置可以使V-22像直升机那样垂直起降,而在起飞后,它又可以将发动机旋转90度,切换到水平位置,像普通飞机一样飞行。
在直升机模式下,飞机的高度控制系统如图所示。
要求:(1) 概略绘出当控制器增益K1变化时的系统根轨迹图,确定使系统稳定的K1值范围; (2) 当取K1=280时,求系统对单位阶跃输入r(t)=l(t)的实际输出h(t),并确定系统的超调量和调节时间(Δ=2%);(3) 当K1=280,r(t)=0时,求系统对单位阶跃扰动N (s )=1/s 的输出h n (t); (4) 若在R (s )和第一个比较点之间增加一个前置滤波器 G p (s)=5.05.15.02++s sMatlab 指令如下 fenzi=[1 1.5 0.5]; fenmu=[1 0];G1=tf(fenzi,fenmu) fenzi=[1];fenmu=conv(conv([20 1],[10 1]),[0.5 1]); G2=tf(fenzi,fenmu) sys1=series(G1,G2) rlocus(sys1)sys2=feedback(280*sys1,1) step(sys2)sys3=feedback(G2,280*G1) step(sys3)G3=tf([0.5],[1 1.5 0.5]) sys4=series(G3,sys2) step(sys4)(1)(3)(2)(4)三、结果分析1.根在左半平面,系统稳定;根在虚轴上临界稳定;根在右半平面系统不稳定。
2.当k>1时,特征方程为一对共轭复根,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,振荡幅度或超调量随k值的增加而增大,但调整时间不会有显著变化。
自控实验报告实验三线性系统的根轨迹
![自控实验报告实验三线性系统的根轨迹](https://img.taocdn.com/s3/m/e7ef4b0115791711cc7931b765ce050877327544.png)
实验三 线性系统的根轨迹一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、实验报告1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。
2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。
3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。
4.写出实验的心得与体会。
三、实验内容请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
一、 )136)(22()(22++++=s s s s s Ks G1、程序代码:G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G)G_c=feedback(G,1); step(G_c)2、实验结果:-8-6-4-22468Root LocusReal AxisI m a g i n a r y A x i sselected_point = -8.8815 + 9.4658i k =1.8560e+04 r =-10.2089 + 8.3108i -10.2089 - 8.3108i 6.2089 + 8.2888i6.2089 - 8.2888iTime (seconds)A m p l i t u d eselected_point =-9.5640 - 7.6273i k =1.3262e+04 r =-9.5400 + 7.6518i -9.5400 - 7.6518i 5.5400 + 7.6258i5.5400 - 7.6258iTime (seconds)A m p l i t u d eTime (seconds)A m p l i t u d eselected_point =-0.0095 + 2.1118i k =73.9872 r =-3.9617 + 2.4724i -3.9617 - 2.4724i -0.0383 + 2.1409i -0.0383 -2.1409iTime (seconds)A m p l i t u d e3、结果分析:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。
根轨迹控制实验报告(3篇)
![根轨迹控制实验报告(3篇)](https://img.taocdn.com/s3/m/2df793a9db38376baf1ffc4ffe4733687e21fcad.png)
第1篇一、实验目的1. 理解并掌握根轨迹的概念及其在控制系统中的应用。
2. 学习使用MATLAB软件绘制系统的根轨迹。
3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。
4. 熟悉根轨迹法在控制系统设计中的应用,如稳定性分析、参数整定等。
二、实验原理根轨迹是指系统的某一参数(如开环增益K)从零变到无穷大时,系统闭环特征根在复平面上变化轨迹。
通过根轨迹,可以直观地分析系统的稳定性、过渡过程和稳态误差等性能指标。
三、实验设备1. 计算机:安装MATLAB软件。
2. 控制系统实验箱。
四、实验步骤1. 建立系统模型根据实验要求,建立系统的传递函数模型。
例如,对于一个二阶系统,其传递函数可以表示为:$$G(s) = \frac{K}{(s+a)(s+b)}$$其中,a和b为系统的时间常数,K为开环增益。
2. 绘制根轨迹使用MATLAB软件中的rlocus函数绘制系统的根轨迹。
rlocus函数的调用格式如下:```matlabrlocus(num, den)```其中,num和den分别为系统的分子和分母多项式系数。
3. 分析根轨迹(1)观察根轨迹的起始点和终止点,判断系统的稳定性。
(2)分析根轨迹的形状,了解系统参数变化对系统性能的影响。
(3)确定系统临界增益和临界阻尼比。
4. 验证实验结果通过改变系统参数,观察根轨迹的变化,验证实验结果。
五、实验结果与分析1. 绘制根轨迹使用MATLAB软件绘制了给定二阶系统的根轨迹,如图1所示。
![图1 系统根轨迹](https:///5Q6z8Qk.png)从图中可以看出,随着开环增益K的增加,系统闭环极点逐渐向左移动,系统稳定性提高。
2. 分析根轨迹(1)起始点和终止点:根轨迹的起始点为系统的开环极点,终止点为系统的开环零点。
(2)根轨迹形状:根轨迹呈对称形状,随着开环增益K的增加,根轨迹逐渐向左移动。
(3)临界增益和临界阻尼比:通过观察根轨迹,可以确定系统的临界增益和临界阻尼比。
线性系统的根轨迹分析 自控实验报告
![线性系统的根轨迹分析 自控实验报告](https://img.taocdn.com/s3/m/a59f926204a1b0717ed5dd15.png)
装订线信息科学与工程学院本科生实验报告线性系统的根轨迹分实验名称析预定时间实验时间姓名学号授课教师实验台号19专业班级装一、目的要求订线1.根据对象的开环传函,做出根轨迹图。
2.掌握用根轨迹法分析系统的稳定性。
3.通过实际实验,来验证根轨迹方法。
二、原理简述绘制根轨迹(1)由开环传递函数分母多项式S(S+1)(0.5S+1)中最高阶次n=3,故根轨迹分支数为3。
开环有三个极点:p1=0,p2=-1,p3=-2。
实轴上的根轨迹:(2)①起始于0、-1、-2,其中- 2 终止于无穷远处。
②起始于0 和- 1 的两条根轨迹在实轴上相遇后分离,分离点为显然S2 不在根轨迹上,所以S1 为系统的分离点,将S1=-0.422 代入特征方程S(S+1)(0.5S+1)+K 中,得K=0.193(3)根轨迹与虚轴的交点:代入特征方程可得将S = j W1装订线根据以上计算,将这些数值标注S平面上,并连成光滑的粗实线,如下图所示图上的粗实线就称为该系统的根轨迹。
其箭头表示随K值的增加,根轨迹的变化趋势,而标注的数值则代表与特征根位臵相应的开环增益K 的数值。
根据根轨迹图分析系统的稳定性根据图2.1 -3 所示根轨迹图,当开环增益K 由零变化到无穷大时,可以获得系统的下述性能:R=500/K(1)当K=3;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振荡,临界稳定。
(2)当K > 3;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。
(3)当0 < K < 3;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。
三、仪器设备PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。
2装订线四、线路示图实验对象的结构框图:模拟电路构成:五、内容步骤1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性能做出理论上的判断。
并确定各种状态下系统开环增益K 的取值及相应的电阻值R。
根轨迹实验报告
![根轨迹实验报告](https://img.taocdn.com/s3/m/d3047e29ae1ffc4ffe4733687e21af45b307fe2f.png)
根轨迹实验报告根轨迹实验报告引言:根轨迹是控制系统理论中的一个重要概念,它描述了系统在参数变化下的稳定性和响应特性。
本实验旨在通过实际操作和数据分析,深入理解根轨迹的原理和应用。
通过对比不同系统的根轨迹,可以更好地理解系统的稳定性和控制性能。
一、实验目的本实验的目的是通过实际操作和数据分析,加深对根轨迹的理解,掌握根轨迹的绘制方法和分析技巧。
同时,通过对比不同系统的根轨迹,分析系统参数对根轨迹的影响,进一步认识系统的稳定性和控制性能。
二、实验装置与方法实验所需的装置包括控制系统实验台、计算机和相应的控制软件。
实验过程中,首先将系统接入实验台,通过控制软件设置系统参数,然后进行数据采集和分析。
根据实验要求,可以改变系统参数、增加干扰等,观察根轨迹的变化。
三、实验结果与分析在实验过程中,我们分别绘制了不同系统的根轨迹,并进行了数据分析。
通过观察根轨迹的形状和位置,我们可以判断系统的稳定性和响应特性。
以一个简单的一阶系统为例,我们改变了系统的比例增益和时间常数,绘制了对应的根轨迹。
通过观察根轨迹的位置和形状,我们可以发现以下规律:当比例增益增大时,根轨迹向左移动,系统的稳定性增强;当时间常数增大时,根轨迹变得更加平缓,系统的响应速度变慢。
在另一个二阶系统的实验中,我们改变了系统的阻尼比和自然频率,绘制了对应的根轨迹。
通过观察根轨迹的形状和分布,我们可以得出以下结论:当阻尼比增大时,根轨迹变得更加收敛,系统的稳定性提高;当自然频率增大时,根轨迹变得更加散布,系统的响应速度增加。
通过对比不同系统的根轨迹,我们可以进一步分析系统的稳定性和控制性能。
例如,当两个系统的根轨迹重合或者相似,可以认为它们具有相似的稳定性和响应特性;而当根轨迹相交或者离散较大时,可能存在系统不稳定或者不良的控制性能。
四、实验总结通过本次实验,我们深入了解了根轨迹的原理和应用。
通过实际操作和数据分析,我们掌握了根轨迹的绘制方法和分析技巧。
线性系统的根轨迹-自动控制原理实验报告
![线性系统的根轨迹-自动控制原理实验报告](https://img.taocdn.com/s3/m/7a6193230066f5335a8121c0.png)
自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。
自控仿真实验报告根轨迹
![自控仿真实验报告根轨迹](https://img.taocdn.com/s3/m/5c87e5cd51e2524de518964bcf84b9d528ea2ce1.png)
自控仿真实验报告根轨迹《自动控制原理》MATLAB分析与设计仿真实验报告《自动控制原理》MATLAB分析与设计仿真实验任务书(2010)一.仿真实验内容及要求:1.MATLAB软件要求学生通过课余时间自学掌握MATLAB软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB仿真集成环境Simulink的使用。
2.各章节实验内容及要求1)第三章线性系统的时域分析法? 对教材P136.3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;? 对教材P136.3-9系统的动态性能及稳态性能通过的仿真进行分析,说明不同控制器的作用;在MATLAB环境下完成英文讲义P153.E3.3。
,在Ka?100时,试采? 对英文讲义中的循序渐进实例“Disk Drive Read System”用微分反馈使系统的性能满足给定的设计指标。
2)第四章线性系统的根轨迹法在MATLAB环境下完成英文讲义P157.E4.5;;? 利用MATLAB绘制教材P181.4-5-(3)? 在MATLAB环境下选择完成教材第四章习题4-10或4-18,并对结果进行分析。
3)第五章线性系统的频域分析法利用MATLAB绘制本章作业中任意2个习题的频域特性曲线; 4)第六章线性系统的校正利用MATLAB选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能。
5)第七章线性离散系统的分析与校正利用MATLAB完成教材P383.7-20的最小拍系统设计及验证。
利用MATLAB完成教材P385.7-25的控制器的设计及验证。
二.仿真实验时间安排及相关事宜1.依据课程教学大纲要求,仿真实验共6学时,教师可随课程进度安排上机时间,学生须在实验之前做好相应的准备,以确保在有限的机时内完成仿真实验要求的内容;2.实验完成后按规定完成相关的仿真实验报告;3.仿真实验报告请参照有关样本制作并打印装订;4.仿真实验报告必须在本学期第15学周结束之前上交授课教师。
自动控制原理Matlab实验3(系统根轨迹分析)
![自动控制原理Matlab实验3(系统根轨迹分析)](https://img.taocdn.com/s3/m/2ba68564a0116c175e0e4860.png)
《自动控制原理》课程实验报告实验名称系统根轨迹分析专业班级 ********************学号姓名**指导教师李离学院名称电气信息学院2012 年 12 月 15 日一、实验目的1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB 仿真软件(版本6.5或以上)三、实验内容和步骤 1.根轨迹的绘制利用Matlab 绘制跟轨迹的步骤如下:1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。
2) 调用函数 r locus 生成根轨迹。
关于函数 rlocus 的说明见图 3.1。
不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。
图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。
图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序图 3.4 函数 rlocfind 的使用方法注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。
当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。
对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。
根轨迹实验报告
![根轨迹实验报告](https://img.taocdn.com/s3/m/a58b3f160b4e767f5acfcec3.png)
自动控制原理实验报告实验三 控制系统根轨迹实验即课后习题4-221.G *=)()1(2a s s K s ++, 当系统具有一个、两个或没有分离点时,作出系统跟轨迹。
解:由d 1+d 1+a d +1=11+d 得 2d 2+(3+a )d+2a=0; 当△=a 2-10a+9>0,即a>9或a<1时有两个分离点。
当△=a 2-10a+9=0,即a=9或a=1时有一个分离点。
当△=a 2-10a+9<0,即1<a<9时没有分离点。
当a 分别取9、1、5、20。
代码如下,根轨迹如下图a1=9;a2=1;a3=5a4=20;G1=zpk([-1],[0 0 -a1],1)G2=zpk([-1],[0 0 -a2],1)G3=zpk([-1],[0 0 -a3],1)G4=zpk([-1],[0 0 -a4],1)subplot(141)rlocus(G1)title('a=9')subplot(142)rlocus(G2)title('a=1')subplot(143)rlocus(G3)title('a=5')subplot(144)rlocus(G4)title('a=20')从上图可以看出a=9时,有一个分离点,与计算出的分离点-3相符。
a=1时,有一个分离点,与计算出的分离点-1相符。
a=5时,没有分离点。
a=20时,有2个分离点,与计算出的分离点-8.9221、-2.5779相符。
2.G =)3)(1)(1(++-s s s K ,增加零点分别为:-2,-0.5,作出不同情况下的根轨迹。
解:代码和根轨迹如下:a1=2;a2=0.5;G1=zpk([],[1 -1 -3],1)G2=zpk([-a1],[1 -1 -3],1)G3=zpk([-a2],[1 -1 -3],1)subplot(141)rlocus(G1)title('原图')axis([-5 5 -6 6])subplot(142)rlocus(G2)title('增加-2零点')axis([-5 5 -6 6])subplot(143)rlocus(G3)title('增加-0.5零点')axis([-5 5 -6 6])通过根轨迹图可以清楚的发现增加负零点,根轨迹左移,零点与虚轴越近,作用越显著。
自动控制原理实验报告--控制系统的根轨迹和频域特性分析
![自动控制原理实验报告--控制系统的根轨迹和频域特性分析](https://img.taocdn.com/s3/m/55ccbee9f8c75fbfc77db2dd.png)
本科实验报告课程名称:自动控制原理实验项目:控制系统的根轨迹和频域特性分析实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 绘制系统的根轨迹,并对系统进行分析; 2.学会利用MATLAB 对系统进行频域特性分析。
二、实验内容和原理:1.基于MATLAB 的控制系统根轨迹分析 1)利用MATLAB 绘制系统的根轨迹利用rlocus( )函数可绘制出当根轨迹增益k 由0至+∝变化时,闭环系统的特征根在s 平面变化的轨迹,该函数的调用格式为[r,k]=rlocus(num,den) 或 [r,k]=rlocus(num,den,k)其中,返回值r 为系统的闭环极点,k 为相应的增益。
rlocus( )函数既适用于连续系统,也适用于离散系统。
rlocus(num,den)绘制系统根轨迹时,增益k 是自动选取的,rlocus(num,den, k)可利用指定的增益k 来绘制系统的根轨迹。
在不带输出变量引用函数时,rolcus( )可在当前图形窗口中绘制出系统的根轨迹图。
当带有输出变量引用函数时,可得到根轨迹的位置列向量r 及相应的增益k 列向量,再利用plot(r,‘x’)可绘制出根轨迹。
2)利用MATLAB 获得系统的根轨迹增益 在系统分析中,常常希望确定根轨迹上某一点处的增益值k ,这时可利用MATLAB 中的rlocfind( )函数,在使用此函数前要首先得到系统的根轨迹,然后再执行如下命令[k,poles]=rlocfind(num,den) 或 [k,poles]=rlocfind(num,den,p)其中,num 和den 分别为系统开环传递函数的分子和分母多项式的系数按降幂排列构成的系数向量;poles 为所求系统的闭环极点;k 为相应的根轨迹增益;p 为系统给定的闭环极点。
例3-1 已知某反馈系统的开环传递函数为)2)(1()()(++=s s s ks H s G试绘制该系统根轨迹,并利用根轨迹分析系统稳定的k 值范围。
中南大学自动控制原理实验报告
![中南大学自动控制原理实验报告](https://img.taocdn.com/s3/m/48cb63e53186bceb19e8bb47.png)
中南大学自动控制原理实验报告--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________信息科学与工程学院本科生实验报告实验名称自动控制原理实验预定时间实验时间姓名学号授课教师实验台号专业班级实验一 1.1典型环节的时域分析实验目的:1.熟悉并掌握 TD-ACC+(或 TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
实验设备:PC 机一台, TD-ACC+(或 TD-ACS)实验系统一套。
模拟电路图如下:实验结果:当R0=200K;R1=100K。
输出电压约为输入电压的1/2,误差范围内满足理论波形,当R0 = 200K; R1 = 200K。
积分环节模拟电路图:当R0=200K;C=1uF。
实验结果:当R0 = 200K; C = 2uF。
比例积分环节 (PI)模拟电路图:取 R0 = R1 = 200K; C = 1uF。
实验结果取 R0=R1=200K; C=2uF。
惯性环节(T)模拟电路图:取 R0=R1=200K; C=1uF。
取 R0=R1=200K; C=2uF。
比例微分环节(PD)模拟电路图:取 R0 = R2 = 100K, R3 = 10K, C = 1uF; R1 = 100K。
取 R0=R2=100K, R3=10K, C=1uF; R1=200K。
比例积分微分环节(PID)模拟电路图:取 R2 = R3 = 10K, R0 = 100K, C1 = C2 = 1uF; R1 = 100K。
自动控制实验三
![自动控制实验三](https://img.taocdn.com/s3/m/8637b6fd0242a8956bece41a.png)
姓名评分实验报告课程名称:控制理论基础实验名称:控制系统的根轨迹图专业:信息与计算科学小组成员:指导教师:完成日期: 2011年12月 8日一、实验名称控制系统的根轨迹图二、 实验目的1. 利用计算机完成控制系统的根轨迹作图;2. 了解控制系统根轨迹图的一般规律;3. 利用根轨迹进行系统分析。
三、 实验内容给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。
1.()()()112go k G s s s s =++要求:(1)准确记录根轨迹的起点.终点与根轨迹的条数 (2)确定根轨迹的分离点与相应的根轨迹增益 (3)确定临界稳定时的根轨迹增益。
2.()()()()2211416g O k s G s s s s s +=-++要求: 确定根轨迹与虚轴交点并确定系统稳定的根轨迹增益g k 范围。
3.()()()332g o k s G s s s +=+要求:(1)确定系统具有最大超调量,max p M 时的根轨迹增益,作时域仿真验证。
(2)确定系统阶跃响应无超调量时的根轨迹增益取值范围,并作时域仿真验证。
4.已知系统结构图如图10所示。
(选做)图10系统结构图分别令 ()()()1233 2.51,,55c c c s s G s G s G s s s ++===++ 要求:(1)作根轨迹图并将曲线保持(hold on )进行比较。
(2)选定闭环极点的虚部为[]Im s =k 和闭环根r ,分析动态性能。
稳态性能的差别,并作时域仿真验证。
四、 实验步骤1.在Windows 界面上用鼠标双击matlab 图标,即可打开MATLAB 命令平台。
2.练习相关M 函数根轨迹作图函数: rlocus(sys) rlocus(sys,k) r=rlocus(sys) [r,k]=rlocus(sys)函数功能:绘制系统根轨迹图或者计算绘图变量。
3. ()()()112go k G s s s s =++实验程序如下: >> k=1; >> z=[];>> p=[0,-1,-2]; >> sys=zpk(z,p,k); >> rlocus(sys)(1)准确记录根轨迹的起点.终点与根轨迹的条数从图中可以看出,三条不同颜色的线代表三条不同的根轨迹,起点分别为-2,-1,0 (2)确定根轨迹的分离点与相应的根轨迹增益如图所示,可看出分离点为-0.421,增益为0.388 (3)确定临界稳定时的根轨迹增益。
实验三线性控制系统的根轨迹与频域分析
![实验三线性控制系统的根轨迹与频域分析](https://img.taocdn.com/s3/m/01f5b9b40129bd64783e0912a216147917117e6c.png)
实验三线性控制系统的根轨迹与频域分析实验三线性控制系统的根轨迹分析与频域分析1. 实验⽬的1) 能够利⽤MATLAB 仿真软件得到任何传递函数所对应的根轨迹图,并能利⽤根轨迹图对控制系统性能进⾏分析。
2) 能够利⽤MATLAB绘制任何传递函数所对应伯徳图和乃奎斯特图,并对控制系统性能进⾏分析。
2. 实验仪器PC计算机⼀台,MATLAB软件1套3. 相关函数说明1)绘制根轨迹函数rlocus(G)或rlocus(num,den) 其中G为系统的开环传递函数,num, den 分别为G系统传递函数的分⼦和分母多项式系数向量。
在绘制出的根轨迹上,如果⽤⿏标单击某个点,将显⽰该点相关信息,包括该点对应的增益值,所在根轨迹分⽀对应的系统特征根的值,该特征根对应的阻尼⽐、超调量等。
在s平⾯中绘制根轨迹的同时,可⽤sgrid函数绘制等阻尼⽐线和等⾃然振荡⾓频率线,有助于系统分析。
2)绘制伯徳图函数 bode(G)或 bode(num,den)当该命令不带左端变量时,MATLAB⾃动在图形窗⼝中绘制系统频率特性的伯德图。
当该命令包含左端变量时,即[ mag, phase, ω]=bode (num, den),该命令把系统的频率特性转变成mag,phase 和ω矩阵,这时在屏幕上不显⽰频率特性图。
矩阵mag 和phase 保存系统频率特性的幅值和相⾓⽤户需⾃⼰指明频率范围ω,需调⽤命令logspace (d1, d2)或logspace(d1, d2, n)。
logspace (d1, d2)在两个⼗进制数10d1和10d2之间产⽣⼀个由50 个点组成的⽮量,这50 个点彼此在对数横坐标上有相等的距离。
若要在0.1rad/s 与100rad/s 之间取50 个点,需输⼊命令:ω=logspace (-1, 2)logspace (d1, d2, n)在⼗进制数10d1和10d2之间,产⽣n 个在对数横坐标上相等距离的点。
实验3 控制系统的根轨迹作图
![实验3 控制系统的根轨迹作图](https://img.taocdn.com/s3/m/40ff351d14791711cc7917fd.png)
自动控制原理实验报告课程名称 自动控制原理 成 绩 实验项目 控制系统的根轨迹作图 指导教师 齐立省 学生姓名 赵儒桐 学号 201100805035 班级专业 11电子信息工程 实验地点 综合楼226 实验日期 年 月 日一、实验目的1.利用计算机完成控制系统的根轨迹作图2.了解控制系统根轨迹图的一般规律3.利用根轨迹进行系统分析及校正二、实验步骤1.在Windows 界面上用鼠标双击matlab 图标,即可打开MATLAB 命令平台。
2.练习相关M 函数根轨迹作图函数:rlocus(sys)rlocus(sys,k)r=rlocus(sys)[r,k]=rlocus(sys)函数功能:绘制系统根轨迹图或者计算绘图变量。
图1-1 格式1:控制系统的结构图如图1-1所示。
输入变量sys 为LTI 模型对象,k 为机器自适应产生的从0→∞的增益向量, 绘制闭环系统的根轨迹图。
格式2:k 为人工给定的增益向量。
格式3:返回变量格式,不作图。
R 为返回的闭环根向量。
格式4:返回变量r 为根向量,k 为增益向量,不作图。
更详细的命令说明,可键入“help rlocus”在线帮助查阅。
例如:系统开环传递函数为)3)(1()(++=s s s k s G g方法一:根轨迹作图程序为k=1; %零极点模型的增益值z=[]; %零点p=[0,-1,-3]; %极点sys=zpk(z,p,k); %零点/极点/增益模型rlocus(sys)作出的根轨迹图如图1-2所示。
方法二:s=tf('s'); G1=1/(s*(s+1)*(s+3));rlocus(G1); 图1-2 gridK1=12;figure;step(feedback(G1*K1,1)) % 绘制K1=12的闭环单位反馈阶跃响应曲线闭合时域仿真simulink 模型:三、实验内容给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。
自动控制原理Matlab实验3(系统根轨迹分析)教材
![自动控制原理Matlab实验3(系统根轨迹分析)教材](https://img.taocdn.com/s3/m/caee1977af45b307e87197d8.png)
《自动控制原理》课程实验报告实验名称系统根轨迹分析专业班级 ********************学号姓名**指导教师李离学院名称电气信息学院2012 年 12 月 15 日一、实验目的1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB 仿真软件(版本6.5或以上)三、实验内容和步骤 1.根轨迹的绘制利用Matlab 绘制跟轨迹的步骤如下:1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。
2) 调用函数 r locus 生成根轨迹。
关于函数 rlocus 的说明见图 3.1。
不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。
图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。
图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序图 3.4 函数 rlocfind 的使用方法注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。
当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。
对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K .可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。
【免费下载】 线性系统的根轨迹-自动控制原理实验报告
![【免费下载】 线性系统的根轨迹-自动控制原理实验报告](https://img.taocdn.com/s3/m/49ef7be4fd0a79563c1e7289.png)
%绘制系统的根轨迹
G_c=feedback(G,1); %形成单位负反馈闭环系统
step(G_c)
60 0.7
40 0.82
0.91 20
0.975
0
0.975 -20
0.91
-40 0.82
0.7 -60
-60 -50
0.56
0.56 -40
Imaginary Axis
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
南邮自动控制原理实验报告
![南邮自动控制原理实验报告](https://img.taocdn.com/s3/m/6b044a001a37f111f0855b24.png)
>> step(G,6)
自然频率=16.9538rad/sec
阻尼比=0.73578
实验二
2.1
(1)考察闭环系统根轨迹的一般形成规律。
(2)观察和理解引进零极点对闭环根轨迹的影响。
(3)观察、理解根轨迹与系统时域响应之间的联系。
(4)初步掌握利用产生根轨迹的基本指令和方法。
2.2
根轨迹绘制的指令法、交互界面法;复平面极点分布和系统响应的关系。
指令:rlocfind(G)
分离点:-2.0095 + 1.0186iK=0.0017
与虚轴的交点:-0.0000 + 3.6025iK=65.8411
(3)利用MATLAB的rlocfind指令,求出系统临界稳定增益,并用指令验证系统的稳定性。
系统临界稳定增益:65.8411
由于系统无右半平面的开环极点,且奈奎斯特曲线不包围(-1,j0)点,系统稳定。
1
-----------
s^2 + s + 1
>> step(G,18)
阻尼比=2:
>> G=tf([1],[1,2,1])
Transfer function:
1
-------------
s^2 + 2 s + 1
>> step(G,18)
结论:
当阻尼比取0时,其振荡频率为1,即为无阻尼振荡;当阻尼比大于0小于1时,二阶系统为欠阻尼二阶系统,其单位阶跃响应为衰减振荡;当阻尼比大于1时,二阶系统为过阻尼二阶系统,其单位阶跃响应为是非振荡的。
自控实验三(线性系统的根轨迹)、四(频域分析)
![自控实验三(线性系统的根轨迹)、四(频域分析)](https://img.taocdn.com/s3/m/3d9d6e33482fb4daa58d4bdd.png)
实验三 线性系统的根轨迹一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、基础知识及MATLAB 函数根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。
这个参数一般选为开环系统的增益K 。
课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。
而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。
假设系统的对象模型可以表示为11210111()()m m m m n n n nb s b s b s b G s KG s K s a s b s a -+--++++==++++系统的闭环特征方程可以写成01()0KG s +=对每一个K 的取值,我们可以得到一组系统的闭环极点。
如果我们改变K 的数值,则可以得到一系列这样的极点集合。
若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。
绘制系统的根轨迹rlocus ()MATLAB 中绘制根轨迹的函数调用格式为:rlocus(num,den) 开环增益k 的范围自动设定。
rlocus(num,d en,k) 开环增益k 的范围人工设定。
rlocus(p,z) 依据开环零极点绘制根轨迹。
r=rlocus(num,den) 不作图,返回闭环根矩阵。
[r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增益向量k 。
其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。
K 为根轨迹增益,可设定增益范围。
例3-1:已知系统的开环传递函数32(1)()429s G s K s s s *+=+++,绘制系统的根轨迹的matlab 的调用语句如下:num=[1 1]; %定义分子多项式 den=[1 4 2 9]; %定义分母多项式 rlocus (num,den) %绘制系统的根轨迹 grid %画网格标度线xlabel(‘Real Axis ’),ylabel(‘Imaginary Axis ’) %给坐标轴加上说明 title(‘Root Locus ’) %给图形加上标题名 若上例要绘制K 在(1,10)的根轨迹图,则此时的matlab 的调用格式如下。
自控原理实验报告(2)
![自控原理实验报告(2)](https://img.taocdn.com/s3/m/13c0323ab90d6c85ec3ac6d8.png)
红河学院工学院实验报告单图1-3 比例环节的模拟电路及SIMULINK图形
按钮,即可进入如图
图1-1 SIMULINK仿真界面
以图1-2所示的系统为例,说明基本设计步骤如下:
)运行并观察响应曲线。
用鼠标单击工具栏中的“
b 1)(2+=s s G
B s s G 21
1)(+=
红河学院工学院实验报告单
三、实验内容和步骤:
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
4)(4+=s s s s G 图2-3 二阶系统的单位脉冲响应
红河学院工学院实验报告单
四、实验内容和步骤:
1.请绘制下面系统的根轨迹曲线)(=
K
s G
(a )根轨迹图形 (b )K=1时的阶跃响应曲线
图3-2 系统的根轨迹和阶跃响应曲线
红河学院工学院实验报告单
[mag,phase,w]=bode(num,den,w)
图4-2(a) 幅值和相角范围自动确定的Bode图图4-2(b) 指定幅值和相角范围的Bode
num=[0 0 0 10]; den=[5 24 -5 0 0]; w=logspace(-2,3,100); bode(num,den,w)
红河学院工学院实验报告单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由以上根轨迹图知,根轨迹起于开环极点,终于开环零点。在复平面上标出系统的开环零极点后,可以根据其零极点数之和是否为奇数确定其在实轴上的分布。根轨迹的分支数等于开环传递函数分子分母中的最高阶次,根轨迹在复平面上是连续且关于实轴对称的。当开环传递函数的分子阶次高于分母阶次时,根轨迹有n-m条沿着其渐近线趋于无穷远处。根轨迹位于实轴上两个相邻的开环极点或者相邻零点之间存在分离点,两条根轨迹分支在复平面上相遇在分离点以某一分离角分开,不在实轴上的部分,根轨迹以起始角离开开环复极点,以终止角进入开环复零点。有的根轨迹随着K的变化会与虚轴有交点。在画图时,确定了以上的各个参数或者特殊点后,就可得系统的根轨迹概略图。
五、心得体会
本次实验我们首先熟悉了MATLAB用于控制系统中的一些基本编程语句和格式,随后又利用MATLAB语句绘制系统的根轨迹。课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图,而用MATLAB可以方便地绘制精确的根轨迹图,并可通过自己添加零极点或者改变根轨迹增益的范围来观测参数变化对特征根位置的影响。
实验三线性系统的根轨迹
一、实验目的
1.熟悉MATLAB用于控制系统中的一些基本编程语句和格式。
2.利用MATLAB语句绘制系统的根轨迹。
3.掌握用根轨迹分析系统性能的图解方法。
4.掌握系统参数变化对特征根位置的影响。
二、实验报告
1.根据内容要求,写出调试好的MATLAB语言程序,及对应的结果。
2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。
[k,r]=rlocfind(G)
G_c=feedback(G,1);
step(G_c)
2、实验结果:
selected_point =
+
k =
+04
r =
+
-
+
-
selected_point =
-
k =
+04
r =
+
-
+
-
selected_point =
+
k =
r =
+
-
+
-
selected_point =
3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K值,确定闭环系统稳定的范围。
4.写出实验的心得与体会。
三、实验内容
请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K值的范围。
一、
1、程序代码:
G=tf([1],[1,8,27,38,26]);
rlocus (G);
G_c=feedback(G,1);
step(G_c)
2、实验结果:
selected_point =
+
k =
+03
r =
+
+
-
selected_point =
+
k =
+03
r =
+
-
+
-
3、结果分析:
根轨迹与虚轴有交点,所以在K从零到无穷变化时,系统的稳定性会发生变化。由根轨迹图和运行结果知,当0<K<时,系统总是稳定的。
在绘制系统根轨迹的过程中,我们逐渐掌握了用根轨迹分析系统性能的图解方法。根轨迹分析法较时域分析法更加方便和直观,它让我们看到了参数变化对系统性能的影响具体方面,让我们理解得更加透彻。
三、
1、程序代码:
G=tf([,1],[,,,1,0]);
rlocus (G);
[k,r]=rlocfind(G)
G_c=feedback(G,1);
step(G_c)
2、实验结果:
selected_point =
+
k =
r =
+
selected_r =
+
-
+
-
3、结果分析:
根轨迹与虚轴有交点,所以在K从零到无穷变化时,系统的稳定性会发生变化。由根轨迹图和运行结果知,当0<K<时,系统总是稳定的.
+
k =
r =
+
-
+
-
3、结果分析:
根轨迹与虚轴有交点,所以在K从零到无穷变化时,系统的稳定性会发生变化。由根轨迹图和运行结果知,当0<K<时,系统总是稳定的。
二、
1、程序代码:
G=tf([1,12],[1,23,242,1220,1000]);
rlocus (G);
[k,r]=rlocfind(G)