短时傅里叶变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
短时距傅里叶变换(英文:short-time Fourier transform, STFT,又称short-term Fourier transform)是和傅里叶变换相关的一种数学变换关系,用以决定时变信号其局部段落之弦波成份的频率与相位。
简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数(window function)再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为:
其中w(t)是窗函数,通常是翰氏窗函数(Hann window)或高斯函数的“丘型”分布,中心点在零,而x(t)是待变换的信号。X(τ,ω)本质上是x(t)w(t−τ)的傅里叶变换,乃一个复函数代表了信号在时间与频率上的强度与相位。
短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。
它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。