中考复习_轴对称和中心对称
2021年中考数学专题复习:轴对称与中心对称(含答案)
2020-2021中考专题复习:轴对称与中心对称一、选择题1. 如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()2. 如图,线段AB与A'B'(AB=A'B')不关于直线l成轴对称的是()3. 如图,在△ABC中,∠ACB=90°,∠B=22.5°,AB边的垂直平分线交BC于点D,则下列结论中错误的是()A.∠ADC=45°B.∠DAC=45°C.BD=AD D.BD=DC4. 在汉字“生活中的日常用品”中,是轴对称图形的有()A.2个B.3个C.4个D.5个5. 如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA长为半径画弧①;步骤2:以点B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.则下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD6. 如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点中心对称,则点B的对称点是()A.点E B.点FC.点G D.点H7. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图0)的对应点所具有的性质是()A.对应点所连线段与对称轴垂直B.对应点所连线段被对称轴平分C.对应点所连线段都相等D.对应点所连线段互相平行8. 把一张长方形纸片按图2①②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是图3中的()二、填空题9. 若点A(x+3,2y+1)与点A′(y-5,1)关于原点对称,则点A的坐标是________.10. 如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连接CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE'的位置.若CE'∥AB,则CE'=.11. 如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE 折叠,使点C落在AB边上的F处,则CE的长为.12. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.13. 在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是________.14. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.15. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).16. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.三、解答题17. 已知:如图,AB=AC,DB=DC,点E在直线AD上.求证:EB=EC.18. 如图,在正方形网格中,△ABC的三个顶点都在格点上,点A,B,C的坐标分别为(-2,4),(-2,0),(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1;(2)平移△ABC,使点A移动到点A2(0,2)的位置,画出平移后的△A2B2C2,并写出点B2,C2的坐标;(3)在△ABC,△A1B1C1中,△A2B2C2与________成中心对称,其对称中心的坐标为________.19. 如图1,△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.20. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.21. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF =3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.22. 如图,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.2020-2021中考专题复习:轴对称与中心对称-答案一、选择题1. 【答案】B[解析]∵∠ADC=2∠B,且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴点D在线段BC的垂直平分线上,故选B.2. 【答案】A[解析] 选项A中,A'B'是由线段AB平移得到的,所以线段AB与A'B'不关于直线l成轴对称.3. 【答案】D[解析] ∵AB的垂直平分线交BC于点D,∴AD=BD,故C正确;∵AD=BD,∴∠B=∠BAD=22.5°.∴∠ADC=45°,故A正确;∠DAC=90°-∠ADC=90°-45°=45°,故B正确.故选D.4. 【答案】B[解析] 根据轴对称图形的定义,在汉字“生活中的日常用品”中,是轴对称图形的有“中”“日”“品”3个.故选B.5. 【答案】A[解析] 如图,连接CD,BD.∵CA=CD,BA=BD,∴点C,B都在线段AD的垂直平分线上.∴BH垂直平分线段AD.故选A.6. 【答案】D[解析] 由于点B,D,F,H在同一条直线上,根据中心对称的定义可知,只能是点B和点H是对称点,点F和点D是对称点.故选D.7. 【答案】B[解析] 连接BB'交对称轴于点O,过点B作BM⊥对称轴,垂足为M,过点B'作B'N⊥对称轴,垂足为N,由轴对称的性质及平移的性质可得BM=B'N.又因为∠BOM=∠B'ON,∠BMO=∠B'NO=90°,所以△BOM≌△B'ON.所以OB=OB'.同理其他对应点也有这样的结论.8. 【答案】C二、填空题9. 【答案】(6,-1) [解析] 依题意,得⎩⎨⎧x +3=-(y -5),2y +1=-1,解得⎩⎨⎧x =3,y =-1.∴点A 的坐标为(6,-1).10. 【答案】[解析]如图,作CH ⊥AB 于H.由翻折可知:∠AE'C=∠AEC=90°,∠ACE=∠ACE', ∵CE'∥AB ,∴∠ACE'=∠CAD ,∴∠ACD=∠CAD ,∴DC=DA.∵AD=DB ,∴DC=DA=DB ,∴∠ACB=90°,∴AB==5,∵·AB ·CH=AC ·BC ,∴CH=, ∴AH==,∵CE'∥AB ,∴∠E'CH +∠AHC=180°, ∵∠AHC=90°,∴∠E'CH=90°, ∴四边形AHCE'是矩形, ∴CE'=AH=,故答案为.11. 【答案】[解析]设CE=x ,则BE=6-x.由折叠的性质可知,EF=CE=x ,DF=CD=AB=10,在Rt △DAF 中,AD=6,DF=10,∴AF=8, ∴BF=AB -AF=10-8=2,在Rt △BEF 中,BE 2+BF 2=EF 2,即(6-x )2+22=x 2,解得x=,故答案为.12. 【答案】6[解析] 如图,过点A ′作A ′B ′⊥a ,垂足为B ′,由题意可知,①与②关于点O 中心对称,所以阴影部分的面积可以看作四边形A ′B ′OD 的面积.又A′D⊥b于点D,直线a,b互相垂直,可得四边形A′B′OD是矩形,所以其面积为3×2=6.13. 【答案】(-2,2)[解析] ∵点P(4,2),∴点P到直线x=1的距离为4-1=3.∴点P关于直线x=1的对称点P′到直线x=1的距离为3.∴点P′的横坐标为1-3=-2.∴对称点P′的坐标为(-2,2).14. 【答案】3[解析] ∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE =1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.15. 【答案】③16. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.三、解答题17. 【答案】证明:连接BC.∵AB=AC,DB=DC,∴直线AD是线段BC的垂直平分线.又∵点E在直线AD上,∴EB=EC.18. 【答案】解:(1)△ABC关于原点O对称的△A1B1C1如图所示.(2)平移后的△A2B2C2如图所示,其中点B2的坐标为(0,-2),点C2的坐标为(-2,-1).(3)△A1B1C1(1,-1)19. 【答案】解:(1)∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°.∵DE⊥AB,∴∠AED=90°.∴∠EDA=90°-25°=65°.(2)证明:∵DE⊥AB,∴∠AED=90°=∠ACB.∵AD平分∠BAC,∴∠DAE=∠DAC.又∵AD=AD ,∴△AED ≌△ACD.∴AE=AC ,DE=DC.∴点A ,D 都在线段CE 的垂直平分线上.∴直线AD 是线段CE 的垂直平分线.20. 【答案】解:∵DE 垂直平分线段AB ,GF 垂直平分线段BC ,∴EB=EA ,GB=GC.∵△BEG 的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.21. 【答案】(1)如解图①,∵折叠后点A 落在AB 边上的点D 处,解图①∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF ,∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF ,∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴14△△AEF ACB S S ,∵∠EAF =∠BAC ,∠AFE =∠ACB =90°,∴△AEF ∽△ABC , ∴2△△()AEF ACB S AE ABS =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,∴AB 2=AC 2+BC 2,即AB =42+32=5,∴(AE 5)2=14,∴AE =52;(2)①四边形AEMF 是菱形.证明:如解图②,∵折叠后点A 落在BC 边上的点M 处,∴∠CAB =∠EMF ,AE =ME ,又∵MF ∥CA ,∴∠CEM =∠EMF ,∴∠CAB =∠CEM ,∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME ,∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x , ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°,∴Rt △ECM ∽Rt △ACB ,∴EC AC =EM AB ,∵AB =5,∴445-,x x =解得x =209, ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2,即CM 22EM EC -=(209)2-(169)2=43,∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF ,∴S AEMF 菱形=4S △AOE =2OE ·AO ,在Rt △AOE 和Rt △ACM 中,∵tan ∠EAO =tan ∠CAM ,∴OE AO =CM AC ,∵CM =43,AC =4,∴AO =3OE ,∴S AEMF 菱形=6OE 2,又∵S AEMF 菱形=AE ·CM ,∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109.22. 【答案】(1)①如图2,当E 在OA 上时,由12y x b =-+可知,点E 的坐标为(2b ,0),OE =2b .此时S =S △ODE =112122OE OC b b ⋅=⨯⨯=. ②如图3,当E 在AB 上时,把y =1代入12y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3(3,)2b -,AE =32b -,BE =52b -.此时 S =S 矩形OABC -S △OAE - S △BDE -S △OCD=1315133()()(52)1(22)22222b b b b -⨯-----⨯⨯- 252b b =-+. (2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形. 作DH ⊥OA ,垂足为H .由于CD =2b -2,OE =2b ,所以EH =2.设菱形DMEN 的边长为m .在Rt △DEH 中,DH =1,NH =2-m ,DN =m ,所以12+(2-m )2=m 2.解得54m =.所以重叠部分菱形DMEN 的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图7。
【中考一轮复习】图形的变换---轴对称与中心对称课件
5.如图,将△ABC折叠,使点A与BC边中点D重合,
折痕为MN,若AB=9,BC=6,则△DNB的周长为( A )
A.12 B.13
C.14
D.15
A
C
Mቤተ መጻሕፍቲ ባይዱ
D
N
B
当堂训练
6.如图,Rt△ABC中,AB=9,BC=6,∠B=90º,将△ABC折叠,使A点与
BC的中点D重合,折痕为MN,则线段BN的长为( C )
是( C ) A.12厘米 B.16厘米 C.20厘米 D.28厘米
考点聚焦---轴对称
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合, 轴对称 那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称
轴,折叠后重合的点是对应点,叫做对称点.
轴对称 如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重 图形 合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.
人教版中考数学第一轮总复习
第七单元 图形的变化
§7.3 轴对称与中心对称
目录
01 轴对称与轴对称图形 02 中心对称与中心对称图形
典型例题
【例1-1】下列四个图案中,不是轴对称图案的是( B )
A.
B.
C.
D.
解:A有3条对称轴,是轴对称图形,故本选项错误;
B没有对称轴,不是轴对称图形,故本选项正确;
△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐
标为( A )
A.(2,2) C.(2,5)
B.(2,-2) D.(-2,5)
y
A
D
A
x
B
C
做关于对称中心的对称点.
【精编版】中考数学轴对称与中心对称专题复习讲义
苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。
下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。
中考数学一轮复习:图形的轴对称与中心对称
A.3
B.4
C.5
D.6
解析:由折叠知 BE=EF=3,则 EC=5.故 CF= EC2-EF2=4.设 AB=x,则 AF=x, AC=x+4,∴x2+82=(x+4)2.∴x=6.
答案:D
二、填空题 3. 如图, D 是AB边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC上的F 处.若∠B=50°,则∠BDF=________.
解析:由题意得AD=DF,又AD=DB,∴DB=DF,∴∠DBF=∠DFB=50°, ∴∠BDF=80°.
答案:80°
4.如图,△ABC 的顶点都在正方形网格格点上,点 A 的坐标为(-1,4).将△ABC 沿 y 轴翻折到第一象限,则点 C 的对应点 C′的坐标是(3,1).
三、解答题 5.如图,在 10× 10 的正方形网格中,每个小正方形的边长都为 1,网格中有一个格点 △ABC(即三角形的顶点都在格点上 ).
解析:∵四边形 ABCD 是正方形,∴∠ABC=90° .由轴对称可知:∠DBF=∠CBF, 1 ∠ABE=∠DBE,∴∠EBF= ∠ABC=45° . 2
答案:C
一、选择题 1. 如图,在下列四个图案中既是轴对称图形,又是中心对称图形的是(
)
答案:B
2.如图,在矩形纸片 ABCD 中,已知 AD=8,折叠纸片使 AB 边与对角线 AC 重合,点 B 落在 F 处,折痕为 AE,且 EF=3,则 AB 的长为( )
知识点二
中心对称图形和中心对称
1.在平面内,一个图形绕某个点旋转 180° ,能与原来的图形重合,这个图形叫做中心 对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点. 2.在平面内,一个图形绕某一定点旋转 180° ,它能够与另一个图形重合,就说这两个 图形关于这个点成中心对称, 这个点叫做对称中心, 旋转后两个图形上能够重合的点叫做关 于对称中心的对称点. 3.中心对称与中心对称图形的区别与联系 区别:(1)中心对称是指两个图形的位置关系,而中心对称图形是指具有某种性质的一 类图形;(2) 成中心对称的两个图形的对称点分别在两个图形上,而中心对称图形的对称点 在同一个图形上. 联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把成中心对称 的两个图形看成一个整体,则成为中心对称图形.
中考专题复习第30课时 轴对称与中心对称
第七单元┃ 图形与变换 探究4 轴对称与中心对称有关的作图问题
命题角度: 1.画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴(或对称 中心)的对称图形(或中心对称图形); 2.利用轴对称或中心对称的性质设计图案. 例 4 分别按下列要求解答: (1)在图 30-6①中,作出⊙O 关于直线 l 成轴对称的图形;(2)在图 30-6② 中,作出△ABC 关于点 P 成中心对称的图形.
图 30-3
回归教材 考点聚焦 考向探究
第七单元┃ 图形与变换
[解析] 根据 B、 C 两点的坐标及△ABC 的面积求出点 A 的坐 标,画出△ABC,再画出 A、B、C 三点关于 y 轴的对称点,连接 各对应点即可得到符合要求的图形. 解:(1)点 B、C 的坐标分别为 B(1,0),C(5,0),BC=4. 根据题意,可知等腰三角形 ABC 的高为 5,点 A 的横坐标为 3, 纵坐标为 5,即 A(3,5).在第一象限内画出△ABC,如图①.
区别
联系
中心对 (1)成中心对称的两个图形中,对应点的连线 平分 ;(2) 称的性 经过对称中心,且被对称中心________ 全等 质 成中心对称的两个图形________
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换
考 向 探 究
探究1 轴对称图形与中心对称图形的概念
命题角度: 1.直接判定一个图形是轴对称图形或中心对称图形; 2.画一个图形关于某条直线成轴对称的图形或关于某点成中心 对称的图形; 3.应用轴对称或中心对称的性质求线段长或角度.
图 30-10 (4)圆中的对称(如图 30-10②).
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换
初中数学知识点总结:轴对称与中心对称
知识点总结一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.注意:对称轴是直线而不是线段3。
轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4。
线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等.5。
角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等。
6。
等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等.判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
中考数学必考知识点-轴对称与中心对称
中考数学必考知识点轴对称与中心对称知识点回顾知识点一:轴对称、轴对称图形1、轴对称图形:如果一个图形沿某条直线对折,对折的两部分是的,那么就称这样的图形为轴对称图形。
这条直线称为,一定为直线。
2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么这两个图形成,两个图形中的对应点叫。
例1:(2009湖南株洲)下列四个图形中,不是..轴对称图形的是A.B.C.D.解析:轴对称图形的特点就是对折后两旁部分完全重合,所以,判断图形是不是轴对称图形,关键是观察能不能找到一条直线可以对折。
四幅图案中,A、B、C都是轴对称图形;D不是。
选择D。
同步测试:1.(2009广西梧州)在下列对称图形中,对称轴的条数最少的图形是()A.圆 B.等边三角形 C.正方形 D。
正六边形【答案】B2.(2009贵州黔东南州)在下列几何图形中一定是轴对称图形的有()A、1个B、2个C、3个D、4个【答案】B知识点二:轴对称图形的性质1、轴对称图形的对应线段,对应角,对应点的连线被对称轴。
轴对称的两个图形,对应线段或延长线相交,交点在 上。
2、轴对称图形变换的特征是不改变图形的 和 ,只改变图形的 ,新旧图形具有对称性。
例2:(2009湖北荆门)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB =( ) A .40° B.30° C.20° D.10° 解析:有关折叠问题是中考常考的题型,必须要辨别清楚折叠前后图形和数量关系。
本题中,将∠A 折叠,出现了轴对称,∠CA ′D =∠A ,因为∠A =50°,所以∠CA ′D =50°。
在Rt △ABC 中,∠ACB =90°,∠B =90°-∠A =40°。
∠CA ′D 是△ A ′B D 的一个外角,等于∠A ′DB 与∠B 之和,所以∠A ′DB =∠A ′DB -∠B =50°- 40°=10°。
初中数学知识归纳中心对称与轴对称
初中数学知识归纳中心对称与轴对称初中数学知识归纳:中心对称与轴对称中心对称(Symmetry with a Center)是几何学中的重要概念之一,也是初中数学中需要重点掌握的知识之一。
它描述了一个图形在某个点上:关于这个点对称时,图形的两侧完全一致。
而轴对称(Symmetry with an Axis)是另一个重要的概念,描述了一个图形以某条线为对称轴时,图形的两侧完全一致。
下面将对中心对称与轴对称进行详细的归纳。
一、中心对称中心对称是指图形关于一个点对称时,图形的两侧完全相同。
具体来说,对于一个点O,如果图形上的每个点P,都能找到另一个点P',使得OP与OP'重合,并且P'在点O的对称位置上,那么图形就是关于点O中心对称的。
中心对称的特点有:1. 对称中心是唯一的。
2. 关于中心对称的图形的每个点到中心的距离相等。
3. 对称中心是图形的一个内部点。
常见的中心对称图形有:1. 圆形:圆是一种最简单的中心对称图形。
它的所有点到圆心的距离相等,因此每个点都能找到另一个点,使得它们关于圆心对称。
2. 正方形:正方形是一个有四条等长边和四个直角的图形。
它的中心即为正方形的对称中心。
3. 六边形:同样是一个有六条边的图形,如果可以找到合适的点作为对称中心,使得六边形的两侧完全一致,那么它就是中心对称的。
中心对称在现实生活中有广泛应用。
例如,许多雪花的形状都是中心对称的,许多建筑物的外观也采用了中心对称的设计。
二、轴对称轴对称是指图形关于一条直线对称时,图形的两侧完全相同。
具体来说,对于一条直线l,如果图形上的每个点P,都能找到另一个点P',使得P'在l上,并且P和P'关于l对称,那么图形就是关于直线l轴对称的。
轴对称的特点有:1. 对称轴是唯一的。
2. 关于轴对称的图形的每个点到直线的距离相等。
3. 对称轴是图形的一个内部线。
常见的轴对称图形有:1. 正圆:正圆是一个最简单的轴对称图形。
中考复习之轴对称与中心对称
第32讲┃ 归类示例
此类作图问题的关键是根据轴对称与中心对称坐标特 征求出对称点的坐标.的拓展创新
教材母题 北师大版八上P95问题解决第13题 如图32-4,甲、乙两个单位分别位于一条封闭街道的 两旁,现准备合作修建一座过街天桥,问:
图32-4 (1)桥建在何处才能使由甲到乙的路线最短?注意,桥 必须与街道垂直. (2)桥建在何处才能使甲、乙到桥的距离相等?
两个 区 轴对称是指______全等图形之 别 间的相互位置关系
第32讲┃ 考点聚焦
联系
轴对称 的性质
①如果把成轴对称的两个图形看成一个整体 (一个图形),那么这个图形是轴对称图形; ②如果把一个轴对称图形中对称的部分看成 是两个图形,那么它们成轴对称 (1)对称点的连线被对称轴________ 垂直平分 (2)对应线段________ 相等 对称轴 (3)对应线段或延长线的交点在________上 (4)成轴对称的两个图形________ 全等
第32讲┃ 归类示例 ► 类型之二 图形的折叠与轴对称
命题角度: 图形的折叠与轴对称的关系.
[2013· 北京] 如图 32-2,在△ABC 中,∠C=90°, 将△ABC 沿直线 MN 翻折后, 顶点 C 恰好落在 AB 边上的点 D 处,已知 MN∥AB,MC=6,NC=2 3,则四边形 MABN 的 面积是 A.6 3 C.18 3 B.12 3 D.24 3 图 32-2 ( C )
图32-3
第32讲┃ 归类示例
[解析] (1)根据关于 y 轴对称的点的横坐标互为相反数,纵 坐标相等,找出点 P′的位置,然后以 3 为半径画圆即可;再根 据直线与圆的位置关系解答; (2)设直线 PP′与 MN 相交于点 Q,在 Rt△QP′N 中,利用 勾股定理求出 QN 的长度,在 Rt△QPN 中,利用勾股定理列式 计算即可求出 PN 的长度.
初中中考复习之轴对称和中心对称(含答案)
中考复习之轴对称和中心对称一、选择题: 1.下列标志中,可以看作是中心对称图形的是【 】2.在下列图形中,为中心对称图形的是【 】A .等腰梯形B .平行四边形C .正五边形D .等腰三角形 3.下列图形中,是轴对称图形的是【 】 A . B . C . D .4.下列图形中,既是轴对称图形又是中心对称图形的是【 】5.下列图形中是轴对称图形的是【 】 A . B . C . D .6.下列平面图形,既是中心对称图形,又是轴对称图形的是【 】A .等腰三角形B .正五边形C .平行四边形D .矩形7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是【 】A .B .C .D .(D ) (C ) (B ) (A )9.下列图形中不是中心对称图形的是【】A.矩形B.菱形C.平行四边形D.正五边形10.下列图案中,属于轴对称图形的是【】A. B.C.D.11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A.①B.②C.③D.④12.下列交通标志图案是轴对称图形的是【】A.B.C.D.13.在下列四个汽车标志图案中,是中心对称图形的是【】A.B. C.D.14.下列图形中,中心对称图形是【】15.下列图案是轴对称图形的是【】A. B. C. D.17.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形 B.等边三角形 C.等腰梯形 D.正方形18.下列图形中是轴对称图形的是【】19.下列几何图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.矩形C.平行四边形D.等腰梯形20.下列两个电子数字成中心对称的是【】21.下列图形中,是.中心对称图形,但不是..轴对称图形的是【】22.下列图形中,有且只有两条对称轴的中心对称图形是【】.A .正三角形 B.正方形 C.圆 D.菱形23.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【】A. B. C. D.24.下列图形:①等腰梯形,②菱形,③函数1y=x的图象,④函数y=kx+b(k≠0)的图象,其中既是轴对称图形又是中心对称图形的有【】 A.①② B.①③ C.①②③ D.②③④A. B. C. D.26.下列图形中,既是轴对称图形,又是中心对称图形的是【】.A.等腰三角形B.平行四边形C.正方形D.等腰梯形27.下列平面图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C. D.28.下列图案中是中心对称图形但不是轴对称图形的是【】A.B.C.D.29.岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是【】A.轴对称图形 B.中心对称图形C.既是轴对称图形,又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形30.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是【】31.下列图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形 B.平行四边形 C.正方形 D.等腰梯形32.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.33.把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC【】A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确34.下列图形中,既是轴对称图形又是中心对称图形的有【】A. 4个B. 3个C. 2个D. 1个35.下列几何图形中,对称性与其它图形不同的是【】36.下列历届世博会会徽的图案是中心对称图形的是【】A. B. C. D.37.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有【】A.1种B.2种C.3种D.4种38.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.39.下列图形是中心对称图形的是【】A. B. C. D.40.下列图形中,既是轴对称图形又是中心对称图形的是【】41.下列交通标志是轴对称图形的是【】A. B. C. D.42.下列各图,不是轴对称图形的是【】43.下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A. B. C. D.44.下列图形是中心对称图形的是【】A. B. C. D.45.下列图形中既是中心对称图形,又是轴对称图形的是【】A.正三角形B.平行四边形C.等腰梯形D.正方形46.下列图形中,既是轴对称图形又是中心对称图形的有【】A.4个B.3个C.2个D.1个47.下列图形中,是中心对称图形的是【】A. B. C. D.48.下列图形中是中心对称图形是【】A.B.C.D.49.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个 B.2个 C .3个 D.4个50.下列图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C . D.51.如图,所给图形中是中心对称图形但不是轴对称图形的是【】A .B.C.D.52.下列图形即使轴对称图形又是中心对称图形的有:【】①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A.1个B.2个C.3个D.4个53.下面四个标志图是中心对称图形的是【】A B C D54.在下列平面图形中,是中心对称图形的是【】A. B. C. D.55.娜娜有一个问题请教你,下列图形中对称轴只有两条的是【】56.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.57.下列四幅图案中,既是轴对称图形又是中心对称图形的是【】A. B. C. D.58.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是【】A. B. C. D.59.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.60.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°61.下列图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C. D.62.下列哪个函数的图象不是中心对称图形【 】A.y 2x =-B. 3y x= C .()2y x 2=- D.y 2x = 63.下列图形是中心对称图形的是【 】.(A) (B) (C) (D)64.下列图形既是轴对称图形,又是中心对称图形的是【 】A .B .C .D .二、填空题:1.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA 十QB 的值最小的点,则OP OQ ⋅= .2.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .3.在四边形ABCD 中,AB=CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)4.如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC⊥MN 于点C ,过B 作BD⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是 。
轴对称与中心对称
轴对称与中心对称轴对称和中心对称是几何学中常见的两种对称性形态。
它们在不同的对象和场景中都有广泛的应用,无论是在数学中的几何学还是在现实生活中的设计中,都扮演着重要的角色。
本文将介绍轴对称和中心对称的概念、特点以及应用,并通过实例展示其在实际生活中的具体应用。
一、轴对称轴对称就是以某条直线为轴,对称图形的一种对称形态。
在轴对称中,图形的一部分与其余部分关于轴线对称,即对称图形的每一点在轴线上的投影到对称图形的另一侧都保持相等距离。
轴对称的特点是对称形态关于中心轴线对称,具有镜像对称性。
这种对称形态常见于图形的设计中,尤其是时钟面、树叶、汽车对称等。
轴对称能够给人以和谐、稳定、平衡的感觉,因此在设计中被广泛应用。
例如,时钟面上的数字通常被设计成轴对称的形态,这样一来无论是数字“6”还是数字“9”,只需要沿着钟面的某条轴线翻折即可得到对称的结果。
这种设计不仅美观,还使得人们在观看时能够迅速辨认出时间。
二、中心对称中心对称即以某一点为中心,对称图形的一种对称形态。
在中心对称中,对称图形的每一点都对称于以中心点为对称中心的另一点,即对称位置上的点到中心点的距离保持相等。
中心对称的特点是对称形态关于中心点对称,具有旋转对称性。
这种对称形态常见于自然界中的一些对象,如花朵、雪花、生物身体结构等。
中心对称能够给人以和谐、优美、自然的感觉,因此在艺术和设计中被广泛运用。
例如,花朵的形态通常呈现出中心对称的特点。
以玫瑰花为例,花瓣的排列呈现出以花心为中心的旋转对称,使得整个花朵看起来美丽而有序。
这种对称性不仅使花朵具有视觉上的吸引力,还让人们在欣赏花朵时感受到一种和谐与平衡。
三、轴对称与中心对称的应用轴对称和中心对称的应用非常广泛,涉及到多个领域和行业。
以下将分别介绍它们在数学、艺术和设计、自然界以及日常生活中的应用。
1. 数学领域轴对称和中心对称是数学几何学中的重要概念,常被用于分析和描述图形的形态特征。
通过研究轴对称和中心对称的性质,可以进一步深入理解几何学的基本原理,并应用于解决实际问题。
中考专项训练-轴对称与中心对称
轴对称与中心对称【典型例题】例1.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到DEF △.如果8cm AB =,4cm BE =,3cm DH =, (1)根据题意你能得到那些结论?(2)图中阴影部分面积为 2cm .例2.△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向右平移6个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;并写出点C 1的坐标; (2)将△ABC 绕原点O 逆时针旋转90°得到△A 2B 2C 2,请画出△A 2B 2C 2. (3)将△ABC 绕原点O 旋转180°得到△A 3B 3C 3,请画出△A 3B 3C 3(4)△A 1B 1C 1与是△A 3B 3C 3成中心对称吗?如果是找出对称中心并写出改点坐标坐标例3(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.例4、已知:如图是抛物线342+-=x x y 与x 轴相交于点A 、B ,与y 轴相交于点C (1)求A 、B 、C 三点的坐标(2)在P 是抛物线对称轴上的一动点,求当P 点运动到什么位置时△ACP 的周长最短?求此时P 点的坐标。
【课堂练习】1.下列几何图形中,一定是轴对称图形的有( )A. 2个B. 3个C. 4个D. 5个2.下面四张扑克牌中,图案属于中心对称的是图中的 ( )3.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A .等腰梯形B .平行四边形C .正三角形D .矩形4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为 ( )A.①③B. ①④C.②③D.②④5如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .A 图① A 图② F EE D C FB A 图③ E DC A B F G 'D ' A DE C BG α图④ 图⑤B6、下列图形中,是轴对称图形但不是中心对称图形的是 ( ) A .正三角形 B .菱形C .直角梯形D .正六边形7.如图是一个中心对称图形,A 为对称中心,若 ∠C =90°,∠B =30°,BC =1,则BB '的长为( ) A .4 B .33 C .332 D .3348.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于 ( ) A .120° B .90° C .60°D.30°9、如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.1.如图,OAB △绕点O 逆时针旋转80到OCD△的位置,已知45AOB ∠=,则AO D ∠等于A.55 B.45 C.40 D.35 ( )2.如图,用放大镜将图形放大,应该属于( ) A.相似变换 B.平移变换 C.对称变换 D.旋转变换3.将线段AB 平移1cm ,得到线段A B '',则对应点A 与A'的距离为 cm .4.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是 ( ) A .⑴⑷ B .⑵⑶ C .⑴⑵ D .⑵⑷5.在平面直角坐标系中,ΔABC 的三个顶点的位置如图所示, 点A ′的坐标是(一2,2) ,现将 △ABC 平移.使点A 变换为点A ′, 点B ′、C ′分别是B 、C 的对应点.(1) 请画出平移后的像///A B C ∆ (不写画法) ,并直接写出点/B 、/C 的坐标:/B ( )、/C ( ) .(2) 若ΔABC 内部一点P 的坐标为(a ,b ),则点P 的对应点/P 的坐标是 .6.如图,矩形纸片ABCD 中,AB=4,BC=43,将矩形沿对角线AC 剪开,解答以下问题:(1)在△ACD 绕点C 顺时针旋转60°,△A 1CD 1是旋转后的新位置(图(a )),求此AA 1的距离;(2)将△ACD 沿对角线AC向下翻折(点A 、点C 位置不动,△ACD 和△ABC 落在同一平面内),△ACD 2是翻折后的新位置(图(b)),求此时BD 2的距离;7.把一副三角板如图甲放置,其中90ACB DEC ==∠∠45A =∠,30D =∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1 E 1 相交于点F .(1)求1OFE ∠的度数;(2)求线段AD 1的长;(3)若把三角形D 1 C E 1 绕着点C 顺时针再旋转30°得△D 2 CE 2 ,这时点B 在△D 2 CE 2的内部、外部、还是边上?说明理由.8(2007年荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:______________________.(2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:__________.(3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是__________.(图3、图4用于探究)9、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠C PD=∠OAB,且58BD BA =,求这时点P 的坐标.。
中考复习第30课时轴对称与中心对称课件
第30课时┃ 轴对称与中心对称
考 点 聚 焦
考点1 轴对称
1.下列图形中,不是轴对称图形的是( C )
考点聚焦
豫考探究
当堂检测
第30课时┃ 轴对称与中心对称
2.如图30-2,直线l是四边形ABCD的对称轴,有下面的结论: ①AB=AD;②BO=DO;③BD⊥AC;④△ABC≌△ADC. 其中正确的结论有 ①②③④ .(填序号)
2.[2012· 乐山] 如图30-9,在10×10的 正方形网格中,每个小正方形的边长 都为1,网格中有一个格点△ABC(即 三角形的顶点都在格点上 ). (1)在图中作出△ABC关于直线l对称的 △A1B1C1;(要求:A与A1,B与B1,C与C1相对应) (2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
(3)拓展延伸 如图④:点P是四边形ABCD内一点,分别在边AB、BC上作出 点 .. M、点N,使PM+PN的值最小,保留作图痕迹,不写作法.
考点聚焦 豫考探究
当堂检测
第30课时┃ 轴对称与中心对称
解
(1) 3.
因为BP+PE=CE=AD= AB2-BD2= 22-12= 3; (2) 2 ;作B点关于CD的对称点B′,连接OA、OB′、AB′,则 OA2+OB′2 =
考点聚焦
豫考探究
当堂检测
第30课时┃ 轴对称与中心对称 解
(1)如图,△A1B1C1是△ABC关于直线l的对称图形.
(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高 是4. 1 1 ∴S四边形BB1C1C= (BB1+CC1)×4= ×(4+2)×4=12. 2 2
考点聚焦
豫考探究
中考数学点对点-轴对称与中心对称图形问题(解析版)
专题35 轴对称与中心对称图形问题专题知识点概述1.对称轴:把一个图形沿某条直线对折,如果它与另一个图形重合,就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2.轴对称图形:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
3.轴对称的性质:(1)关于某条直线成轴对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
(4)轴对称图形上对应线段相等、对应角相等。
4.中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
这个点就是它的对称中心。
例题解析与对点练习【例题1】(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A. B.C.D.【答案】C【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解.A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.【对点练习】(2019山东东营)下列图形中,是轴对称图形的是()【答案】D【解析】观察图形,选项D中图形是轴对称图形,有3条对称轴,其他图形都不是轴对称图形.故选D.【例题2】(2020武汉模拟)下列图形中是中心对称图形的是()【答案】D【解析】根据中心对称图形是图形沿对称中心旋转180度后与原图重合的图形。
所给图形中只有D绕着中心旋转180°后能与自身重合,故选D。
【对点练习】下列图形是中心对称图形的是()A B C D【答案】A.【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.A.∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形.专题点对点强化训练1.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C.D.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,不合题意;D.既是中心对称图形,又是轴对称图形,符合题意.2.下列图案中,属于轴对称图形的是()【答案】D.【解析】根据轴对称图形的定义:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.四个选项只有选项D符合要求,故答案选D.3.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数 C.随机性D.数形结合【答案】A【解析】用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的轴对称性。
中考总复习29——图形的轴对称、平移和旋转
中考复习29——图形的轴对称、平移和旋转考点复习1.轴对称、轴对称图形(1)轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称.两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.(2)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线称为对称轴.对称轴一定为直线.(3)轴对称图形变换的特征:不改变图形的和,只改变图形的.新旧图形具有对称性.2.中心对称、中心对称图形(1)中心对称:把一个图形绕着某一点旋转,如果它能与另一个图形,那么这两个图形成中心对称,该点叫做对称中心.(2)中心对称图形:一个图形绕着某一点旋转后能与自身,这个图形叫做中心对称图形,该点叫做对称中心.3.图形的平移(1)定义:在平面内,将某个图形沿某个移动一定的,这样的图形运动称为平移.(2)特征:①平移后,对应线段相等且平行,对应点所连的线段且.②平移后,对应角且对应角的两边分别平行,方向相同.③平移不改变图形的和,只改变图形的位置,平移后新旧两图形全等.4.图形的旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.(2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;注意每对对应点与旋转中心的连线所成的角度都是旋转角,旋转角都;对应点到旋转中心的距离.图形的对称1.(2020呼和浩特)下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.(2020天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )3.(2020湘潭)下列图形中,不是中心对称图形的是( )4.(2020遂宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.正五边形5.(2020绥化)下列图形是轴对称图形而不是中心对称图形的是( )6.(2020烟台)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( )A.12B.920C.25D.13图形的平移7.(2020泸州)在平面直角坐标系中,将点A(-2,3)向右平移4个单位长度,得到的对应点A'的坐标为( )A.(2,7)B.(-6,3)C.(2,3)D.(-2,-1)8.(2020台州)如图,把△ABC先向右平移3个单位长度,再向上平移2个单位长度得到△DEF,则顶点C(0,-1)对应点的坐标为( )A.(0,0)B.(1,2)C.(1,3)D.(3,1)9.(2020青海)如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为_______.图形的旋转10.(2020南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限11.(2020天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是( )A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF12.(2020潮州模拟)如图,在Rt△ABC中,∠ACB=90°,∠CAB=30°,将△ABC绕点A顺时针旋转一定的角度得到△ADE,点B,C的对应点分别是D,E.当点E恰好在AB上时,则∠BDE的度数为___________ .13.(2020孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF 的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为( )A.54B.154C.4D.92广东中考14.(2018广东)下列图形中,不是轴对称图形的是( )15.(2015广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )16.(2016广东)下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形17.(2017广东)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆18.(2018广东)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形19.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )20.(2016广州)如图,在△ABC中,AB=AC,BC=12 cm,点D在AC上,DC=4 cm.将线段DC沿着CB 的方向平移7 cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为______cm.21.(2018广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,则四边形ACE'E的形状是________ .22.(2014广东)如图,△ABC绕点A顺时针旋转45°得到△A'B'C',若∠BAC=90°,AB=AC=√2,则图中阴影部分的面积等于.23.(2016广东)如图,在矩形ABCD中,对角线AC=2√3,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B'处,则AB=.24.(2017广州)如图,E,F分别是▱ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC'D',ED'交BC于点G,则△GEF的周长为( )A.6B.12C.18D.2425.(2017广东)如图①,在矩形纸片ABCD中,AB=5,BC=3,先按图②操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图③操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A,H两点间的距离为.26.(2020广东)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )A.1B.√2C.√3D.227.(2020广州)如图,在正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD于点E,F,若AE=4,则EF·ED的值为____________ .。
初中中考复习之轴对称和中心对称(精编含答案)
中考复习之轴对称和中心对称一、选择题:1.下列标志中,可以看作是中心对称图形的是【 】2.在下列图形中,为中心对称图形的是【 】A .等腰梯形B .平行四边形C .正五边形D .等腰三角形3.下列图形中,是轴对称图形的是【 】A .B .C .D .4.下列图形中,既是轴对称图形又是中心对称图形的是【 】5.下列图形中是轴对称图形的是【 】A .B .C .D .6.下列平面图形,既是中心对称图形,又是轴对称图形的是【 】A .等腰三角形B .正五边形C .平行四边形D .矩形7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是【 】A .B .C .D .(D ) (C ) (B ) (A )9.下列图形中不是中心对称图形的是【】A.矩形B.菱形C.平行四边形D.正五边形10.下列图案中,属于轴对称图形的是【】A. B.C.D.11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A.①B.②C.③D.④12.下列交通标志图案是轴对称图形的是【】A.B.C.D.13.在下列四个汽车标志图案中,是中心对称图形的是【】A.B.C.D.14.下列图形中,中心对称图形是【】15.下列图案是轴对称图形的是【】A.B.C.D.16.下列图形中,既是轴对称图形又是中心对称图形的是【】17.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形B.等边三角形C.等腰梯形D.正方形18.下列图形中是轴对称图形的是【】19.下列几何图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.矩形C.平行四边形D.等腰梯形20.下列两个电子数字成中心对称的是【】21.下列图形中,是.中心对称图形,但不是..轴对称图形的是【】22.下列图形中,有且只有两条对称轴的中心对称图形是【】.A .正三角形 B.正方形 C.圆 D.菱形23.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【】A.B.C.D.24.下列图形:①等腰梯形,②菱形,③函数1y=x的图象,④函数y=kx+b(k≠0)的图象,其中既是轴对称图形又是中心对称图形的有【】A.①② B.①③ C.①②③ D.②③④25.下列图形中,是中心对称图形,但不是轴对称图形的是【】A.B.C.D.26.下列图形中,既是轴对称图形,又是中心对称图形的是【】.A.等腰三角形B.平行四边形C.正方形D.等腰梯形27.下列平面图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.28.下列图案中是中心对称图形但不是轴对称图形的是【】A.B.C.D.29.岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是【】A.轴对称图形B.中心对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,又不是中心对称图形30.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是【】31.下列图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.平行四边形C.正方形D.等腰梯形32.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.33.把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC【】A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确34.下列图形中,既是轴对称图形又是中心对称图形的有【】A. 4个B. 3个C. 2个D. 1个35.下列几何图形中,对称性与其它图形不同的是【】36.下列历届世博会会徽的图案是中心对称图形的是【】A. B. C. D.37.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有【】A.1种B.2种C.3种D.4种38.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.39.下列图形是中心对称图形的是【】A.B.C.D.41.下列交通标志是轴对称图形的是【】A.B.C.D.42.下列各图,不是轴对称图形的是【】43.下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A.B.C.D.44.下列图形是中心对称图形的是【】A. B. C. D.45.下列图形中既是中心对称图形,又是轴对称图形的是【】A.正三角形B.平行四边形C.等腰梯形D.正方形46.下列图形中,既是轴对称图形又是中心对称图形的有【】A.4个B.3个C.2个D.1个A .B .C .D.48.下列图形中是中心对称图形是【】A .B .C .D .49.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个B.2个C.3个D.4个50.下列图形中,既是轴对称图形,又是中心对称图形的是【】A .B .C .D .51.如图,所给图形中是中心对称图形但不是轴对称图形的是【】A .B .C .D .52.下列图形即使轴对称图形又是中心对称图形的有:【】①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A.1个B.2个C.3个D.4个53.下面四个标志图是中心对称图形的是【】A B C D54.在下列平面图形中,是中心对称图形的是【】A.B.C.D.55.娜娜有一个问题请教你,下列图形中对称轴只有两条的是【】56.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.57.下列四幅图案中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.58.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是【】A.B.C.D.59.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.60.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130°B.120°C.110°D.100°61.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.62.下列哪个函数的图象不是中心对称图形【】A.y 2x =-B. 3y x = C .()2y x 2=- D.y 2x = 63.下列图形是中心对称图形的是【 】.(A) (B) (C) (D)64.下列图形既是轴对称图形,又是中心对称图形的是【 】A .B .C .D .二、填空题:1.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA 十QB 的值最小的点,则OP OQ ⋅= .2.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .3.在四边形ABCD 中,AB=CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)4.如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC ⊥MN 于点C ,过B 作BD ⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是 。
包头市2015中考复习第7章 第1节 图形的轴对称与中心对称
第七章图形的变换与相似第1节图形的轴对称与中心对称轴对称与轴对称图形1.轴对称:一个图形沿着某一条直线折叠后,能够与________图形重合.2.轴对称图形:一个图形沿一条直线折叠,直线________的部分能够互相重合.3.性质:对称轴是任何一对对应点所连线段的________.4.P(x,y)关于x轴的对称点为________,关于y轴的对称点为________.中心对称与中心对称图形1.联系:都是把一个图形绕着某一点旋转________.2.区别:中心对称是旋转后的图形能与________重合,中心对称图形是旋转后的图形能与________重合.3.性质:(1)对称点所连线段都经过__________,而且被对称中心所__________;(2)两个图形是________图形.4.P(x,y)关于原点O的对称点为________.轴对称与轴对称图形【例1】如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′.下列判断错误的是( B )A.AB=A′B′B.BC∥B′C′C.l⊥BB′D.∠A′=120°两个图形关于直线l成轴对称―→对应点的连线被对称轴垂直平分.中心对称与中心对称图形【例2】(1)下列两个字母成中心对称的是( B )(2)(2014·广州)下列图形是中心对称图形的是( D )中心对称―→两个图形的位置关系,中心对称图形―→一个特殊的图形.注意认真理解轴对称图形和中心对称图形的概念,等边三角形是轴对称图形而不是中心对称图形.【例3】下列图形:①等边三角形;②平行四边形;③菱形;④函数y =1x 的图象;⑤函数y =kx +b (k ≠0)的图象,其中既是轴对称图形又是中心对称图形的有( C )A .1个B .2个C .3个D .4个 真题热身1.(2014·潍坊)下列标志中不是中心对称图形的是( C )2.(2014·烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( D )3.(2014·深圳)下列图形中是轴对称图形但不是中心对称图形的是( B )4.(2012·丽水)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( B )A .①B .②C .③D .④ 5.(2014·齐齐哈尔)如图,在四边形ABCD 中,(1)画出四边形A 1B 1C 1D 1,使四边形A 1B 1C 1D 1与四边形ABCD 关于直线MN 成轴对称; (2)画出四边形A 2B 2C 2D 2,使四边形A 2B 2C 2D 2与四边形ABCD 关于点O 中心对称; (3)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2是否对称,若对称请在图中画出对称轴或对称中心.解:略第七章图形的变换与相似第1节图形的轴对称与中心对称基础过关一、精心选一选1.(2014·南京)下列图形中,既是轴对称图形,又是中心对称图形的是( C )2.(2014·泰州)下列图形中是轴对称图形但不是中心对称图形的是( B )3.(2014·徐州)顺次连接正六边形的三个不相邻的顶点,得到如图所示的图形,该图形( B )A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形4.(2013·柳州)如图是经过轴对称变换后所得的图形,与原图形相比( A )A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.(2013·深圳)在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a +b的值为( D )A.33 B.-33 C.-7 D.76.(2014·宁波)用矩形纸片折出直角的平分线,下列折法正确的是( D )7.(2013·凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( C )A.30°B.45°C.60°D.75°8.(2014·聊城)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( A )A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm二、细心填一填9.(2014·泰州)点A(-2,3)关于x轴的对称点A′的坐标为__(-2,-3)__.10.(2013·宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有__3__种.,第10题图) ,第11题图)11.(2014·白银)如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__12__.12.(2014·资阳)如图,在边长为4的正方形ABCD 中,点E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为__6__.,第12题图) ,第13题图)13.(2013·厦门)如图,在平面直角坐标系中,点O 是原点,点B(0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上,若点B 和点E 关于直线OM 对称,则点M 的坐标是(__1__,.14.(2013·上海)如图,在△ABC 中,AB =AC ,BC =8,tan C =32,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为__154__.三、用心做一做15.(2014·金华)在棋盘中建立如图①的直角坐标系,三颗棋子A ,O ,B 的位置如图,它们分别是(-1,1),(0,0)和(1,0).(1)如图②,添加棋子C ,使A ,O ,B ,C 四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P ,使A ,O ,B ,P 四颗棋子成为一个轴对称图形,请直接写出棋子P 的位置的坐标.(写出2个即可)解:(1)图略(2)图略,P点坐标为(0,-1)或(-1,-1)等16.(2013·安徽)如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.解:(1)图略(2)B2(2,-1),2<h<3.5点拨:点B2向上平移h个单位,使其落在△A1B1C1内部,则落点在B1与A1C1中点之间17.(2013·哈尔滨)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A ,B ,M ,N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为对称轴的轴对称图形,点A 的对称点为D ,点B 的对称点为点C ;(2)请直接写出四边形ABCD 的周长.解:(1)略 (2)四边形ABCD 的周长为AB +BC +CD +DA =5+22+5+32=25+5 2挑战技能18.(2013·淄博)如图,菱形纸片ABCD 中,∠A =60°,折叠菱形纸片ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE ,则∠DEC 的大小为( B )A .78°B .75°C .60°D .45°19.(2013·吉林)如图,在矩形ABCD 中,AB 的长度为a ,BC 的长度为b ,其中23b <a<b ,将此矩形纸片按下列顺序折叠,则C′D′的长度为__3a -2b__.(用含a ,b 的代数式表示)20.(2014·孝感)如图,已知矩形ABCD ,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE ,BE ,若△ABE 是等边三角形,则S △DCE S △ABE=__13__.,第20题图) ,第21题图)21.(2013·河南)如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处,当△CEB′为直角三角形时,BE 的长为__32或3__.22.(2013·梅州)如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点C 与点A 关于原点O 对称,则点C 的坐标为__(2,-2)__; (2)将点A 向右平移5个单位得到点D ,则点D 的坐标为__(3,2)__;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为0的概率.解:(3)由图(略)可知,在平行四边形ABCD 内,横、纵坐标均为整数的点有15个,其中横、纵坐标和为0的点有3个,即(-1,1),(0,0),(1,-1),∴P =315=1323.如图①,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出△ABC.请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图②中所画的三角形与△ABC组成的图形是轴对称图形;(2)图③中所画的三角形与△ABC组成的图形是中心对称图形;(3)图④中所画的三角形与△ABC的面积相等,但不全等.....解:(1)(2)(3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称和中心对称选择题1. (2011北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。
故选D。
2.(2011天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.(2011天津3分)如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为(A) 15° (B) 30° (C) 45° (D) 60°【答案】C。
【考点】折叠对称,正方形的性质。
【分析】根据折叠后,轴对称的性质,∠ABE=∠EBD=∠DBF=∠FBC=22.50,∴∠EBF=450。
故选C。
4.(2011重庆4分)下列图形中,是中心对称图形的是【答案】B。
【考点】中心对称图形。
【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心。
据此判断;A、C、D、将图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕中心旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;故选B。
5.(2011重庆4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是A 、1B 、2C 、3D 、4【答案】C 。
【考点】翻折变换(折叠问题),全等三角形的判定和性质,勾股定理。
【分析】①正确:因为AB=AD=AF ,AG=AG ,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确:因为EF=DE=CD=2,设BG=FG=x ,则CG=6﹣x .在直角△ECG 中,由勾股定理得()()222642x x -+=+,解得x =3.所以BG=3=6﹣3=GC ;③正确;因为CG=BG=GF ,所以△FGC 是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误:过F 作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴FH EF GC EG =,EF=DE=2,GF=3,∴EG=5,∴FH EF 2GC EG 5==,∴FH=26355⨯=。
∴S△FGC=S△GCE﹣S△FEC=1161834432255⨯⨯-⨯⨯=≠。
故选C 。
6.(2011浙江温州4分)如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相切,点E ,F 分别在AD ,DC 上,现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE=2,则正方形ABCD 的边长是A 、3B 、4C 、2D 、【答案】【考点】翻折变换(折叠问题),正方形的性质,切线的性质,勾股定理。
【分析】延长FO 交AB 于点G ,根据折叠对称可以知道OF⊥CD,所以OG⊥AB,即点G 是切点,OD 交EF 于点H ,点H 是切点.结合图形可知OG=OH=HD=EH ,等于⊙O的半径,先求出半径,然后求出正方形的边长:在等腰直角三角形DEH 中,DE=2,=AE ,所以AD=AE+DE=2C 。
7.(2011浙江义乌3分)下列图形中,中心对称图形有A .4个B .3个C .2个D .1个【答案】B 。
【考点】中心对称图形。
【分析】根据轴对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,结合各图的特点即可求解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形,中心对称图形有3个。
故选B 。
8.(2011浙江省3分)下列图形中,既是轴对称图形又是中心对称图形的是【答案】D。
【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
A.是轴对称图形不是中心对称图形,选项错误;B.是中心对称图形不是轴对称图形,选项错误;C. 是中心对称图形不是轴对称图形,选项错误;D. 既是轴对称图形又是中心对称图形,选项正确。
故选D。
9.(2011浙江省3分)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于A. 2:5B.14:25C.16:25D. 4:21【答案】B。
【考点】折叠对称的性质,勾股定理,相似三角形的判定和性质。
【分析】由已知,根据勾股定理可求出AB=10,由折叠对称的性质,知BD=AD=5。
由相似三角形的判定知△BDE∽△ACB,从而得ED BDBC AC=,即ED568=,得ED=154。
在Rt△EBD和Rt△EBC中,由勾股定理,得BE2=ED2+BD2,BE2=BC2+CE2,即ED2+BD2= BC2+CE2,所以CE2=(154)2+52-62=4916,从而CE=74。
因此,S△BCE:S△BDE=12·BC·CE:1 2·BD·ED=6×74:5×154=14:25。
故选B。
10.(2011辽宁沈阳4分)下列图形是中心对称图形的是【答案】D。
【考点】中心对称图形。
【分析】根据中心对称图形的定义,在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合的图形的只有D,而A、B、C都不是。
故选D。
11.(2011吉林省3分)如图所示,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“1”的图形,将纸片展开,得到的图形是【答案】D。
【考点】折叠,轴对称。
【分析】根据折叠和轴对称的性质,从折叠的方向和剪去一个三角形的位置看,放开后是位于中间的正方形,故要B,D两项中选择;从剪去的如“1”的图形方向看箭头朝外。
故选D。
12.(2011黑龙江哈尔滨3分)下列图形中,既是轴对称图形又是中心对称图形的是(A) (B) (C) (D)【答案】D。
【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A项为中心对称图形,不是轴对称图形,故本项错误,B项为轴对称图形,不是中心对称图形,故本项错误,C项既不是中心对称图形,也不是轴对称图形,故本项错误,D项是中心对称图形,也是轴对称图形,故本项正确。
故选D。
13.(2011黑龙江龙东五市3分)下列QQ标识图形中既是轴对称图形又是中心对称图形的是A、①③⑤B、③④⑤C、②⑥D、④⑤⑥【答案】D。
【考点】轴对称图形,中心对称图形。
【分析】中心对称图形是旋转180°后能够与原图形完全重合的图形;轴对称图形是两部分沿对称轴折叠后可重合的图形。
从而得:①此图形不是中心对称图形,也不是轴对称图形,故此选项错误;②此图形不是中心对称图形,但是轴对称图形,故此选项错误;③此图形不是中心对称图形,但是轴对称图形,故此选项错误;④此图形是中心对称图形,也是轴对称图形,故此选项正确;⑤此图形是中心对称图形,也是轴对称图形,故此选项正确;⑥此图形是中心对称图形,也是轴对称图形,故此选项正确;故答案为:④⑤⑥正确。
故选D。
14.(2011黑龙江省绥化、齐齐哈尔、黑河、大兴安岭、鸡西3分)下列图形中既是轴对称图形又是中心对称图形的是【答案】B。
【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误。
故选B。
15.(2011黑龙江牡丹江3分)下列图形中,既是轴对称图形又是中心对称图形的有.A.1 B.2 C.3 D.4【答案】B。
【考点】轴对称图形,中心对称图形。
【分析】轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
根据轴对称图形与中心对称图形的概念得,第一个和第三个图形既是轴对称图形又是中心对称图形;第二个图形和第四个图形是轴对称图形,不是中心对称图形.故既是轴对称图形又是中心对称图形的有2个。
故选B。
16.(2011广西桂林3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是【答案】C。
【考点】中心对称图形。
【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断: A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误。
故选C。
17.(2011广西北海3分)下列四个图形中,是轴对称图形的有A.①③ B.②③ C.①④ D.②④【答案】B。
【考点】轴对称图形。
【分析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此所给图形中②③是轴对称图形。
故选B。
18.(2011广西柳州3分)在三角形、四边形、五边形、和正六边形中,是轴对称图形的是A.三角形B.四边形C.五边形D.正六边形【答案】D。
【考点】轴对称图形。
【分析】根据轴对称图形两部分沿对称轴折叠后可重合的定义,只有正六边形沿某条直线折叠后直线两旁的部能够完全重合,是轴对称图形。