微积分练习题二
微积分复习题集带参考答案(二)
微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
微积分下册练习题(配套于李庶民主编的《简明微积分》(下册))
(4) � �������������2 − ������������ 2 ������������������������ = __________________
0
2、求下列函数在给定点处的导数或者导数值。
0 ������������ 0 ������������ 0 ������������ 0
(−1)������������
������������
������������ ������������ (5) � 2 sin ������������ _____________________ (6) � 4 __________________________ 2 ������������ + 2 1 1 (7) � (−1)������������ _______________________ (8) � ������������ _________________________ ������������ 3 +1
(−1)������������ (−1)������������ (1) � ________________________ (2) � __________________________ ������������2 ������������ (3) �
������������=1 ������������=1 ������������=1 ������������=0 ������������=1
1 +∞
(4)������������ = � (1) � �
1 +∞
3、判断下列反常积分的敛散性。 1 ������������������������_____________ ������������ 2
《微积分II》(第一层次)第二学期期中练习题
《微积分II 》(第一层次)第二学期期中练习题一1. 求直线11212x y z -+==绕z 轴旋转一周的曲面的方程 .2. 求曲线22222z x yx y x⎧=+⎪⎨+=⎪⎩在点 ( 1 , -1 , 2 ) 处的切线方程 .3. 设由(,)0F y x z -= 确定(2)(,),z z x y F C=∈, 求2z x y∂∂∂ .4. 求函数sin()x u x e y z =+-在点( 1 , 1 , 1 ) 处沿(1,2,2)l =-的方向导数 . 5. 已知2u xy z =-,求u 在点(9,12,10)M -梯度()grad u M . 6. 求曲面22z x y =+的切平面,使其通过直线11112x y z -+== .7. 证明曲面3(0)xyz a a =>上任何一点处的切平面与坐标面所围成的四面体的体积等于一个常数 .8. 求函数22233z x xy y x y =++-++的极值 .9. 设∑为由22,2z x y z =+=所围曲面,求∑的内接长方体体积的最大值 . 10. 求sin(),:,0,02Dy x dxdy D x y x y π-+===⎰⎰所围区域 .11. 求222222(),:2,4.Dx y dxdy D x y x x y x ++≥+≤⎰⎰12. 计算Dxd σ⎰⎰,其中D 为第一象限内221x y +=与x 轴,y 轴所围的闭区域 .13. 计算三重积分222222x y z dxdydz abcΩ--⎰⎰⎰(1-),其中Ω为椭球体:2222221x y z abc++≤.14. 求曲环面:(cos )cos ,(cos )sin ,sin (0)x b a y b a z a a b ψϕψϕψ=+=+=<≤所界的物体体积 .15. 计算222()Cx y z dS ++⎰,其中C 为螺旋线:cos ,sin ,(02)x a t y a t z bt t π===≤≤的部分 .16. 计算曲线积分[()][()]x xAmBy e my dx y e m dy ϕϕ'-+-⎰,式中()y ϕ与()y ϕ'为连续函数,Am B 为连接点1122(,)(,)A x y B x y 和的任意逐段光滑曲线,但与线段A B 围成的面积为A 的平面区域D Am B =.《微积分II 》(第一层次)第二学期期中练习题二1. 求以2222x y y z ⎧+=⎨=⎩为准线,以(2,0,0)为顶点的锥面的直角坐标方程.2. 设由(,)0x z F y y =确定(1)(,),z z x y F C =∈,求 x z z y x y∂∂+∂∂ 3. 求函数23u xy z =在点( 1 , 2, -1 ) 处沿22l i j k =-+的方向导数 .4. 求椭球面2222321x y z ++=上某点处的切平面π的方程,使平面π过已知直线6321:212x y z L ---==-. 5. 求椭球面2222221x y z abc++=的切平面 (,,0x y z ≥),使其与三个坐标平面所围的立体的体积最小,并求最小值.6. 求曲面21z xy -=上到原点最近的点.7. 求22,:2.Ddxdy D x y y +≤⎰⎰8. 设函数()f x 连续,满足()2Df t f dxdy =+⎰⎰,这里D 为222x y t +≤,求()f x .9. 求 401limsin()t txt dx xy dy t→+⎰⎰ .10. 计算三重积分Ω⎰⎰⎰,其中Ω是球体222x y z z ++≤.11. 计算曲线积分. 1. 222zdl x yΓ+⎰,其中Γ的参数方程是:3cos ,3sin ,3(02)x t y t z t t π===≤≤.2.(e +)(e cos 7)xxsiny 8y dx y x dy Γ+-⎰,其中Γ为由点(2,0)A 沿22(4)9x y -+=到点(6,0)B 的一段 .12. 计算曲面积分(2×10分=20分).1. 求222()x y z dS ∑++⎰⎰,其中∑为2222(12)x y z z z ++=≤≤ .2. 设∑为上半球面z =的上侧,计算3326zx dydz zy dzdx z dxdy ∑++⎰⎰.《微积分II 》(第一层次)第二学期期中练习题三1. 求直线11:111x y z L --==-在平面π:210x y z -+-=上的投影直线0L 的方程,并求0L 绕y 轴旋转一周所成曲面的方程.2. 函数),(y x f z =由方程04)(2222=++-+z y x z y x 确定,求z 在点)1,2,2(-P 处的全微分dz .3. 设函数),(y x z z =由方程0),(=++xz y yz x F 所确定,其中F 可微,计算并化简yz yxz x ∂∂+∂∂.4. 求函数y xy y x z --+=232的极值.5. 已知 2222332u x y z x y =+++-,求u 在点(1,1,2)M 的梯度()gradu M .6. 求函数2a r c t a n (2)u x y z =++在点(0,1,0)A 处沿空间曲线22230240x y z x x y ⎧++-=⎨--=⎩在(2,0,B 的切向量的方向导数.7. 试求一平面π,使它通过空间曲线23(1)y xz y ⎧=Γ⎨=-⎩:在1y =处的切线,且与曲面22:4x y z ∑+=相切.8. 设常数0a >,平面π通过点(4,5,3)M a a a -,且在三个坐标轴上的截距相等. 在平面π位于第一卦限部分求一点000(,,)P x y z ,使得函数(,,)u x y z =在P 点处取最小值.9. 已知曲面Σ2=,设0000(,,)P x y z 为曲面Σ上的一点.1. 求曲面Σ在点0000(,,)P x y z 的切平面方程;2. 求该切平面在各个坐标轴上的截距之和.(10分) 10. 计算二重积分 1arcsin 3arcsin sin yydy xdx π-⎰⎰.11. 计算二重积分(,)Df x y d x d y ⎰⎰其中0,12,(,)0,y x x f x y ≤≤≤≤=⎩其他, 而积分区域{(,)2,02}D x y y x =≤≤≤≤12. 计算 Dxydxdy ⎰⎰,其中D 是由抛物线 2y x =及直线2y x =-所围成的区域.13.计算三重积分 2Vz dxdydz ⎰⎰⎰,其中V 是椭球体2222221x y z abc++≤. (10分)14. 计算 22()Cx y ds +⎰,其中C 为曲线 (cos sin ),(sin cos ),(02)x a t t t y a t t t t π=+=-≤≤.15. 判断曲线积分2222Cx y x y dx dy x yx y-++++⎰是否与路径无关?当C 为曲线2cos ,sin (02)x t y t t π==≤≤,并且沿t 增加的方向时,计算该曲线积分.(10分)16. 计算曲面积分 222()x y z dS ∑++⎰⎰,其中Σ为曲面2222x y z a ++=.。
微积分练习
一、填空题(每空1分,共15分)1. 通过x 轴且过点(4, -3, -1)的平面方程是 .2. 设函数22),(y x y x y x f -=-+,则),(y x f = ,),(y x df = .3.=+→222)0,0(),(limyx xyy x ,=+→22)0,0(),(limyx xy y x .4.σd D⎰⎰1= , 其中}.10|),{(22≤+≤=y x y x D σd y x D⎰⎰+)(= , 其中}.21,30|),{(≤≤≤≤=y x y x D5. 几何级数,0,0,11≠≠∑∞=-q a aqn n ,当|q| 时,级数收敛,且收敛时其和为 ;当|q| 时,级数发散.6. 级数∑∞=+112n n n 的敛散性是 .7. 方程0'=+yy x 的通解为 ;满足初始条件4)3(=y 的特解为 . 8. 方程xxec ec y 321+=-是二阶常系数齐次线性微分方程 的通解.9. n 阶微分方程的通解中含 个任意常数. 二、判断题(每小题2分,共10分)1. 若函数),(y x f 在有界区域D 上连续,σ为D 面积,则至少存在一点D ∈),(ηξ,使得.),(),(σηξσ⎰⎰=Df d y x f ( )2. 若二元函数),(y x f 在区域D 上的二个偏导数),('y x f x , ),('y x f y 都存在,则),(y x f在该区域D 上可微. ( )3. 若级数∑∞=1n n u ,∑∞=1n nv都发散,则∑∞=+1)(n n n v u 必发散. ( )4. 若级数∑∞=1n n u 绝对收敛,),2,,1( =n v n 为有界数列,则n n n v u ∑∞=1收敛 . ( ) 5. 方程222'x xe xy y -=+的通解是2)(2xe C x y -+=,C 为任意常数.( )三、计算题(每小题5分,共45分) 1. 设xy z arctan=, 求dz.2. 计算由曲面0,0,1,0,1===+=++=y x y x z y x z 所围成的立体的体积.3. 设函数xyzeu =,求.3zy x u ∂∂∂∂ 4 . 设,,sin ,cos xe v x u v u z ===, 求dz.5. 求由方程2sin xy xey y=+所确定的隐函数y=f(x)的导数.6. 计算σ⎰⎰Dxyd , 其中D 是圆环4122≤+≤y x 在第一象限的部分.7. 解方程yxxy dxdy 22=-.8. 求方程x y y +='''满足初始条件0)0(',0)0(==y y 的特解.9. 求方程22'2''x y y y =+-的通解.四、(10分) 讨论级数∑∞=+-1)1()1(n nn n 的敛散性, 若收敛, 是条件收敛还是绝对收敛.五、(10分) 设某产品的生产函数5.03.0LKQ =为, 其中Q 为产量, K 为资金, L 为劳动, 且K 与L 受条件限制6K+2L=384. 求资金与劳动各投入多少时, 可使产出Q 最大? 六、证明题(每小题5分,共45分) 1.dx y x f dy y y⎰⎰+-1112),(=dy y x f dx x⎰⎰-11102),(+.),(1121dy y x f dx x ⎰⎰-2. .02sinlim 2=∞→nn n π答案一、1. y-3z=0; 2. xy , ydx+xdy; 3. 0, 不存在; 4. π, 9; 5. <1,qa -1, 1≥; 6. 发散;7. C y x =+22, 2522=+y x ; 8. 03'2''=--y y y ; 9. n. 二、错; 错; 错; 对; 对.三、1. dy yx x dx yx y dz 2222+++-=; 2.65;3. )13(222++xyz z y x exyz; 4. xx x e x e x e sin sin cos cos ⋅-⋅;5.xyxey e y dxdy yy2cos 2-+-=; 6.815; 7. Cx x y +=32;8. 122---=x xe y x; 9. xe x C x C x y )sin cos ()1(21212+++=.四、条件收敛. 五、K=24, L=120.微积分试题一、填空:(10分,每空1分)1.函数z y =的定义域为 。
微积分B2练习2+答案
练 习 卷一、选择题1、微分方程(ln )0y y dx xdy -+=的类型是( ).A .可分离变量方程B .一阶线性齐次方程C .一阶线性非齐次方程D .齐次方程 2、方程222240x y z -+=表示的曲面是( ). A .单叶双曲面B .双叶双曲面C .椭圆抛物面D .锥面3、函数z =sin(x 2+y )在点(0,0)处( ).A .无定义B .无极限C .有极限,但不连续D .连续 4、函数2222z x y x y =+-在点(1,1)处的全微分 (1,1)dz 等于( ). A . 0 B . dx dy + C . 22dx dy + D . 22dx dy - 5、更换积分次序12201(,)(,)xx dx f x y dy dx f x y dy -+⎰⎰⎰⎰等于( ). A .120(,)yy dy f x y dx -⎰⎰B .220(,)yydy f x y dx -⎰⎰C .12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰D .1201(,)ydy f x y dx -⎰⎰6、设曲线L为下半圆y =22()Lx y ds +⎰=( ).A .0B .2πC .π-D .π 二、填空题1、在xOy 面内过原点,且与直线215321x y z -+-==-垂直的直线方程为 . 2、设函数(,,)()z u x y z xy =,则点(1,2,1)处的u u u xyz∂∂∂++=∂∂∂ . 3、曲面163222=++z y x 在点)3,2,1(--处的切平面方程是 . 4、22222(,arctan )x y xyf x y dxdy x+≤+⎰⎰化为极坐标下的二次积分为 .5、设f 可微,L 是光滑有向闭曲线取正向,则22()()Lf x y xdx ydy ++=⎰ .6、判别级数∑∞=⋅1!2n nnnn 的敛散性 .三、解答题1、求微分方程2(23)0y dx xy dy -+=的通解.2、设方程2223x y z xyz ++=确定了隐函数(,)z z x y =,求,z z x y∂∂∂∂.3、求函数22(,)(2)=++x f x y e x y y 的极值.4、求二重积分2Dxydxdy ⎰⎰,其中D 由曲线2y x =与直线y x =所围成.5、求曲线积分43224(4)(65)Lx xy dx x y y dy ++-⎰,其中L 为35(1)sin12x ye e π-+-=上由点(2,1)A --至点(3,0)B 的一段弧.6、验证2sin 2sin33cos3cos 2x ydx y xdy -在整个xOy 平面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ).7、求幂级数∑∞=-12)1(n nnx 的收敛域.8、设函数f (t )在[0,)+∞上连续,且满足方程:222299()t x y t f t e f dxdy π+≤=+⎰⎰,又f (0)=1,求f (t ).、选择题:1、A ;2、D ;3、D ;4、A ;5、A ;6、D . 、填空题:1、230x y z==; 2、32ln 2+; 3、323160+-+=x y z ;4、2cos 2202(,)d f r rdr πθπθθ-⎰⎰; 5、0; 6、收敛 .、解答题:1、解:将方程化为223dx x dy y y-=,方程是一阶非齐次线性微分方程, 其中223(),()P y x Q y y y=-=,根据其通解公式有: 2223()dydy yy x ee dy C y---⎰⎰=+⎰2ln 2ln 23()y y e e dy C y -=+⎰=243()y dy C y =+⎰231()y C y=-+1Cy y =-. 2、解:两边分别对x , y 求偏导数, 由2233z z x zyz xy x x ∂∂+=+∂∂,得3223z yz xx z xy∂-=∂-, 由2233z z y zxz xy y y ∂∂+=+∂∂,得3223z xz y y z xy∂-=∂-. 3、解:由方程组得222(2241)0(22)0x x xyf e x y y f e y ⎧=+++=⎪⎨=+=⎪⎩得驻点1(,1)2-,又由1(,1)202xx f e -=>,1(,1)0,2xy f -=1(,1)22yy f e -=,所以2240xx yy xy f f f e ⋅-=>,由判断极值的充分条件知,在点1(,1)2-处函数取得极小值,1(,1)22ef -=-.4、解:用区域D 的草图,边界2,y x y x ==与的交点(0,0),(1,1), 由2{(,)|,01}D x y x y x x =≤≤≤≤,22111222222400011[]()22xx x x Dx ydxdy x dx ydy x dx y x x x dx ===-⎰⎰⎰⎰⎰⎰146571001111121()[]225723535x x dx x x =-=-=⋅=⎰. 5、解:432244,65,P x xy Q x y y =+=-212,P Qxy y x∂∂==∂∂ 曲线积分与路径无关,选取A(-2,-1)到C(3,-1)到B(3,0),43224(4)(65)Lx xy dx x y y dy ++-⎰342421(4)(545)x x dx y y dy --=-+-⎰⎰52335021154[2][]6253x x y y --=-+-=. 6、解:在整个xOy 平面内,2sin 2sin3,3cos3cos 2,P x y Q y x ==-具有一阶连续偏导数,且6sin 2cos3,Q Px y x y∂∂==∂∂ 故所给表达式为某一函数u (x , y )的全微分,取(x 0,y 0)=(0,0),则有(,)(0,0)(,)2sin 2sin33cos3cos20(3cos3cos2)x y xyu x y x ydx y xdy dx y x dy =-=+-⎰⎰⎰0[s i n 3c o s 2]c o s 2si n 3yy x x y =-=-. 7、解:令t =x -1, 级数变为∑∞=12n n n nt .21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ, 所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 发散; 当t =-2时, 级数成为∑∞=-1)1(n n, 收敛.因此级数∑∞=12n nnnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3).8、解:222339900011()()2()33t t t t f t e d f d e f d πππθρρρπρρρ=+=+⎰⎰⎰,2299()1823()31818()t t f t te f t t te tf t ππππππ'=+⋅⋅=+, 即 29()18()18t f t tf t te πππ'-=为一阶线性非齐次微分方程,222218189999()[18][18]tdttdtt t t t f t e te e dt C e te e dt C ππππππππ--⎰⎰=⋅+=⋅+⎰⎰22992[18](9)t t e tdt C e t C ππππ=+=+⎰,而由f (0)=1,得C =1,所以292()(91)t f t e t ππ=+.。
微积分II(甲)多元函数积分学练习
微积分II (甲)多元函数积分学练习题一、二重积分 1.计算二重积分22d Dx yσ⎰⎰,其中D 是由1,,2y x y x x ===所围成的闭区域. 2.计算二重积分Dxyd σ⎰⎰,其中D 是由直线2y y x ==、和2y x =所围成的闭区域.3. 作出积分区域的图形,交换积分次序,计算10dy ⎰.4.计算二重积分2,{(,)1,02}Dy xd D x y x y σ-=≤≤≤⎰⎰5.用极坐标计算Dσ⎰⎰,其中D 为{}22(,)|4,0,0x y x y x y +≤≥≥.6. 设D 为闭区域22{(,)|2}x y x y y +≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.7. 设D 为闭区域22{(,)|2,}x y x y x y x +≤≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.8. 利用二重积分计算由曲面22z x y =+和平面1z =所围成的立体的体积. 9.求由三个坐标面和平面1=+y x 及抛物面z y x -=+622所围立体的体积. 10.求由()π≤≤=x x y 0sin 与0=y 所围的均质薄板的质量中心.二、三重积分 11. 求xydV Ω⎰⎰⎰,其中Ω为1x y +=,1z =与三个坐标面所围成的三棱柱体.12. 求()⎰⎰⎰Ω+++dV z y x 311,其中Ω为三个坐标面与平面1=++z y x 所围成的四面体. 13.计算下列三重积分⎰⎰⎰Ω+dV y x z 22 ,其中Ω由22z x y =+及平面1z =围成. 14. 计算,⎰⎰⎰ΩzdV 其中Ω是由球面4222=++z y x与抛物面z y x 322=+所围成(在抛物面内的那一部分)的闭区域. 15.计算()d V z y x⎰⎰⎰Ω++222,其中Ω是球体1222≤++z y x .16. 计算球体22222a z y x ≤++在锥面22y x z +=上方部分Ω的体积.17.求由曲面)0(2222>=++a az z y x 及222z y x =+(含有z 轴部分)所围成空间的体积.18. 立体Ω是圆柱面122=+y x 内部, 平面2=z 下方, 抛物面221y x z --=上方部分, 其上任一点的密度与它到z 轴之距离成正比(比例系数为K ), 求Ω的质量m .三、曲线积分19. 计算⎰Γxdl ,其中 Γ是由x y =和2x y = 围成的区域的整个边界。
2019版 2微积分练习题(下) 第二章 答案
dx f (x, y)dy
1
1
x
13
33
dy f (x, y)dx dy f (x, y)dx
1
1
3
y
1y
12
练习题 7
班级
学号
姓名
1. 把下列二重积分化为累次积分.
(1) f (x, y)d ,其中 D 是由 y x ,
D
x 2 及 x 轴所围成的闭区域;
解:原式= 2 x f (x, y)dydx . 00
2. 交换下列二次积分的积分次序(要求画出积 分区域的图形):
1
y
(1) dy f (x, y)dx ;
0
y
1x
解:原式= dx f (x, y)dy . 0 x2
1x
2 2x
(3) dx f (x, y)dy + dx f (x, y)dy .
00
1
0
1 2 y
解:原式= dy f (x, y)dx .
积函数关于 x 轴、 y 轴不对称,所以该式不
成立.
2.计算二重积分:
(| x | y)dxdy , D : x y 1;
D
解:积分区域 D 关于 x 轴、 y 轴都对称, y 关于
y 是奇函数, ydxdy 0
D
1 1x
x dxdy 2 xdxdy 2 dx xdy
D
D1
0 x1
2
2
cos
原式=
2
0
f ( cos , sin )dd
2
2.利用极坐标计算下列各题:
(1) e x2 y2 dxdy , D : x 2 y 2 4 ; D
解:设 x r cos , y r sin .则
微积分II(甲)多元函数积分学练习解答
微积分II (甲)多元函数积分学练习题解答1.计算二重积分22d D x yσ⎰⎰,其中D 是由1,,2y x y x x ===所围成的闭区域. 解:222121x xDx xyd dx dy y σ=⎰⎰⎰⎰ ()231124x x dx =-=⎰ 2.计算二重积分Dxyd σ⎰⎰,其中D 是由直线2y y x ==、和2y x =所围成的闭区域.解:202yy Dxyd dy xydx σ=⎰⎰⎰⎰2234003338322y dy y ⎛⎫=== ⎪⎝⎭⎰ 3. 作出积分区域的图形,交换积分次序,计算10dy ⎰.解:21021)9x I dx ==⎰⎰4.计算二重积分2,{(,)Dy xd D x y x σ-=≤⎰⎰ 解: 12D D D =⋃(1D 是所有阴影部分面积)12222DD D y x d y x d y x d σσσ-=-+-⎰⎰⎰⎰⎰⎰()()2211222101x xdx x y dy dx y x dy --=-+-⎰⎰⎰⎰11424111146(22)2215x dx x x dx --=+-+=⎰⎰. 5.用极坐标计算Dσ⎰⎰,其中D 为{22(,)|4,0,0x y x y x y +≤≥≥.解:32233220cos cos =cos cos =4DDDr r rdrd r drd d r dr d r dr ππσθθθθθθθθ=⋅⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰6. 设D 为闭区域22{(,)|2}x y x y y +≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.2解:I=2sin 0(cos ,sin )d f r r rdr πθθθθ⎰⎰.7. 设D 为闭区域22{(,)|2,}x y x y x y x +≤≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.解:I=2cos 402(cos ,sin )d f r r rdr πθπθθθ-⎰⎰.8. 利用二重积分计算由曲面22z x y =+和平面1z =所围成的立体的体积. 解 设所求体积为V ,则有=V ()221Dxy d σ--⎰⎰,其中 (){}22,1D x y xy =+≤,于是=V ()()22211D Dxy d r rdrd σθ--=-⎰⎰⎰⎰=()212012d r rdr ππθ-=⎰⎰.9.求由三个坐标面和平面1=+y x 及抛物面z y x -=+622所围立体的体积. 解 设所求体积为V ,则有=V ()⎰⎰--Dd y xσ226,其中 (){}x y x y x D -≤≤≤≤=10,10,,于是=V ()⎰⎰--Dd y xσ226=()112206x dx xy dy ---⎰⎰()1323011766136x x x x dx ⎡⎤=--+--=⎢⎥⎣⎦⎰10.求由()π≤≤=x x y 0sin 与0=y 所围的均质薄板的质量中心. 解 设该薄板所在区域为D ,则 该均质薄板的面积为 0sin 2S xdx π==⎰,又有 sin 00x Dxd dx xdy πσπ==⎰⎰⎰⎰, 及sin 04x Dyd dx y dy ππσ==⎰⎰⎰⎰,由均质平面薄片的质量中心公式可得所求质量中心坐标为⎪⎭⎫⎝⎛8,2ππ.二、三重积分11. 求xydV Ω⎰⎰⎰,其中Ω为1x y +=,1z =与三个坐标面所围成的三棱柱体.解xydV Ω⎰⎰⎰111x dx dy xydz -=⎰⎰⎰=1100x dx xydy -⎰⎰()120111224x x dx =-=⎰. 12. 求()⎰⎰⎰Ω+++dV z y x 311,其中Ω为三个坐标面与平面1=++z y x 所围成的四面体.解 ()⎰⎰⎰Ω+++dV z y x 311()111300011x x y dx dy dz x y z ---=+++⎰⎰⎰ =()1121318821x dx x dy x y -⎡⎤-+⎢⎥++⎢⎥⎣⎦⎰⎰()1013115ln 2218828x dx x ⎡⎤⎛⎫=-+=-⎢⎥ ⎪+⎝⎭⎣⎦⎰. 13.计算下列三重积分⎰⎰⎰Ω+dV y x z 22 ,其中Ω由22z x y =+及平面1z =围成. 解 Ω在z xoy =平面上的投影区域为22{(,)1}x y x y +≤ 可用柱面坐标计算:221211122200012401224(1).21r r d r dr zdz r dr z r r dr πθπππΩ⎛⎫== ⎪⎝⎭=-=⎰⎰⎰⎰⎰⎰⎰⎰ 14. 计算,⎰⎰⎰ΩzdV 其中Ω是由球面4222=++z y x 与抛物面z y x 322=+所围成(在抛物面内的那一部分)的闭区域.解 球面4222=++z y x 与抛物面z y x 322=+的交线为2222243x y z x y z⎧++=⎪⎨+=⎪⎩ 从中解得两曲面交线为,1=z 223x y +=,Ω在xOy 面上的投影区域为:D ,30≤≤r πθ20≤≤,利用柱面坐标,对投影区域D 内任一点),,(θr 有2243r z r -≤≤, 所以I 23r DzdV rdrd θΩ==⎰⎰⎰⎰⎰⎰2203r d zdz πθ=⋅⎰⎰⎰π413=. 15.计算()d V z y x⎰⎰⎰Ω++222,其中Ω是球体1222≤++z y x .解()⎰⎰⎰⎰⎰⎰ΩΩ=++θϕρϕρd d d dV z y xsin 42222140004sin 5d d d ππθϕϕρρπ==⎰⎰⎰16. 计算球体22222a z y x ≤++在锥面22y x z +=上方部分Ω的体积.解 在球面坐标系中, :Ω,20a r ≤≤,40πϕ≤≤πθ20≤≤,故所求体积V ⎰⎰⎰Ω=dV 224sin d d d ππθϕρϕρ=⎰⎰⎰340)2sin 3d ππϕϕ=⋅⎰.)12(343a -=π 17.求由曲面)0(2222>=++a az z y x 及222z y x =+(含有z 轴部分)所围成空间的体积.解 在球面坐标下计算⎰⎰⎰⎰⎰⎰ΩΩ==θϕρϕρd d d dV V sin 222cos 24sin a d d d ππϕθϕϕρρ=⎰⎰⎰3334082cos sin 3a d a ππϕϕϕπ==⎰.18. 立体Ω是圆柱面122=+y x 内部, 平面2=z 下方, 抛物面221y x z --=上方部分, 其上任一点的密度与它到z 轴之距离成正比(比例系数为K ), 求Ω的质量m .解 据题意得,密度函数为,),,(22y x K z y x +=ρ所以.),,(22⎰⎰⎰⎰⎰⎰ΩΩ+==dV y x K dV z y x m ρ利用柱面坐标,先对z 积分,Ω在xOy 平面上投影域D 为},1),({22≤+=y x y x D故222212122001()r Dr m Kr rdrd dz K r drd dzK d r dr dzπθθθ-Ω-===⎰⎰⎰⎰⎰⎰⎰⎰⎰1220162(1)15KK r r dr ππ=+=⎰. 三、曲线积分19. 计算⎰Γxdl ,其中 Γ是由x y =和2x y = 围成的区域的整个边界。
微积分练习册(下)
第六章 定积分的应用6.2 定积分在几何学上的应用一、求由曲线222x y a +=所围图形绕直线y b =-(0a b <<)旋转所成旋转体的体积.(22a b π2)二、求抛物线243y x x =-+-及其在点(0,3)-和(3,0)处的切线所围成的图形的面积.(94)三、求由以下各曲线所围成的图形的面积:(1)2cos a ρθ=(圆);(2)3cos x a t =,3sin y a t =(星形线). ((1)2a π;(2)238a π)四、求位于曲线xy e =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. (2e )五、求下列曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积:1. 2y x =,2x y =,绕y 轴2.22(5)16x y +-=,绕x 轴. ((1)310π;(2)160π2)六、计算曲线ln y x =x ≤≤. (131ln22+)七、计算曲线)y x =-(13x ≤≤)的弧长. (43) 八、求心形线(1cos )a ρθ=+的全长. (8a )6.2 定积分在物理学上的应用一、由实验知道,弹簧在拉伸过程中需要的力F (单位:N )与伸长量s (单位:cm )成正比,即 F ks = (k 是比例常数).如果把弹簧由原长拉伸6cm ,计算所作的功. (0.18(J)k )二、设一锥形贮水池,深15m ,口径20m ,盛满水,今以唧筒将水吸尽,问要作多少功? (57697.5(kJ))三、有一闸门,它的形状和尺寸如图(教材287页,图6-33)所示,水面超过门顶2m ,求闸门上所受的水压力. (205.8(kN))四、洒水车上的水箱是一个横放的椭圆柱体,尺寸如图所示(教材287页,图6-34). 当水箱装满水时,计算水箱的一个端面所受的压力. (17.3(kN))第九章 重积分9.1 二重积分的概念与性质一、利用二重积分的几何意义确定下列二重积分的值:1.(4Dd σ-⎰⎰,其中22:4D x y +≤。
微积分习题答案第二章极限与连续
练习2.11.写出下列数列的前五项.()12312+-=n n a n (n=1,2,3,…) ()23)1(1n nn a --= (n =1,2,3, …)()3n n na )11(+= n=1,2,3, …)()4)!12()1(121--=--n x n n n a (n=1,2,3, …),其中x 是固定的实数.解:()1由2312+-=n n a n (n=1,2,3, …)得数列的前五项为 51,83,115,147,179. ()2由3)1(1nnn a --= (n=1,2,3, …)得数列的前五项为 2,0,332,0,352. ()3由n n na )11(+= (n=1,2,3, …)得数列的前五项为2,2)23(,3)34(,4)45(,5)56(.()4由)!12()1(121--=--n x n n n a (n=1,2,3, …) 得数列的前五项为!1x,!33x -,!55x ,!77x -,!99x .2.做出下面各数列在数轴上的点,并说出哪些数列有极限?哪些没有极限?()1n n a 21=()2n nna )1(-= ()3n n n a 1)1(-= ()41+=n n a n ()5n n a n πsin 1= ()62sin πn n a n =. 解:作图略.()1有极限为0 ()2没有极限 ()3有极限为0 ()4有极限为1 ()5有极限为0 ()6没有极限.3*(略) 4*(略) 5*(略)6.设()⎩⎨⎧≥-<=1,131,x x x x x f ,作()x f 的图形,并讨论当1→x 时()x f 的左右极限,问)(lim 1x f x → 是否存在? 解:图略.因为 2)(lim 1=+→x f x ,1)(lim 1=-→x f x)(lim )(lim 11x f x f x x -+→→≠所以)(lim 1x f x →不存在.7.求下列函数在指定点的极限.()1xx x f ||)(=在0=x 处 ()2⎩⎨⎧-+=124)(x x x f 11≥<x x 在0=x ,1=x ,2=x 处. 解:()1⎩⎨⎧-==11||)(x x x f Θ00<>x x 11lim )(lim 00==++→→x x x f ,11lim )(lim 0-=-=--→→x x x f所以xx x f ||)(=在0=x 处极限不存在. ()24)4(lim )(lim 00=+=++→→x x f x x ,4)4(lim )(lim 0=+=--→→x x f x x所以⎩⎨⎧-+=124)(x x x f 11≥<x x 在0=x 处极限为4.1)12(lim )(lim 11=-=++→→x x f x x ,5)4(lim )(lim 11=+=--→→x x f x x所以⎩⎨⎧-+=124)(x x x f 11≥<x x 在1=x 处极限不存在.3)12(lim )(lim 22=-=++→→x x f x x ,3)12(lim )(lim 22=-=--→→x x f x x所以⎩⎨⎧-+=124)(x x x f 11≥<x x 在2=x 处极限为3.8.下列函数在什么情况下是无穷大量,什么情况下是无穷小量?()111-=x y ()2x y ln = ()32x y = ()4x e y =.解:()1当1→x 时11-=x y 是无穷大量,当∞→x 时11-=x y 是无穷小量.()2当+∞→x 时x y ln =是无穷大量,当+→0x 时x y ln =是无穷大量,当1→x 时x y ln =是无穷小量.()3当∞→x 时2x y =是无穷大量,当0→x 时2x y =是无穷小量.()4当+∞→x 时x e y =是无穷大量,当-∞→x 时x e y =是无穷小量.9.下列各题中哪些是无穷小,哪些是无穷大?()1221,0xx x +→ ()212,0-→-x x()3x x lg ,0+→ ()4θθθsec 1sin ,0+→.解:()1、()3是无穷大,()2、()4是无穷小. 10.下列说法是否正确?()1无穷大量是极限为无穷大的变量()2无穷大量是无界变量,无界变量也是无穷大量 ()3无极限的数列一定无界.解:()1不正确。
微积分练习100题及其解答
《微积分》练习100题及其解答1.求极限:.⎪⎭⎫ ⎝⎛--→x e x x 111lim 0解:∵,)0(~1→-x xe x ∴.()2121lim 1lim 11lim 111lim 02000-=-=+-=-+-=⎪⎭⎫ ⎝⎛--→→→→x e x e x e x e x x e x x x x x x x x x 2.求极限:.xx e e x x x sin lim sin 0--→解:∵,∴.)0(~1→-x xe x1sin 1lim sin lim sin sin 0sin 0=--⋅=---→→xx e e x x e e xx x x x x x 或者:记,则当时,在之间满足Lagrange 定理的条件,存x e x f =)(0≠x )(x f x x sin ,在(介于与之间),使得,从而ξξx x sin )(sin sin ξf x x e e xx '=--,所以,.1)0()(lim sin lim 0sin 0='='=--→→f f x x e e x x x x ξ1sin lim sin 0=--→xx e e x x x 3.求极限:.()x xx x e1lim+→解:;()11200lim lim 1xxe e xx xx x x x e xe e e →→⎡⎤⎛⎫⎢⎥+=⋅+= ⎪⎢⎥⎝⎭⎣⎦或者.()()12000ln 1limlim 2lim x x xx x x x x e x e e x e xe x →→→++==⇒+=+4.求极限:.01lim 1xx x +→⎛⎫+ ⎪⎝⎭解:,而,所以,.01lim ln 101lim 1x xx x x e x +→+⎛⎫+ ⎪⎝⎭→⎛⎫+= ⎪⎝⎭0ln(1)1lim ln 1lim0t x t x t x +→+∞→⎛⎫++== ⎪⎝⎭01lim 11xx x +→⎛⎫+= ⎪⎝⎭5.求极限:.())0,0,0(3ln ln lim0>>>-++→c b a xc b a x x x x解:.()00ln ln 3ln ln ln ln limlim 3x x x x x x x x x x x a b c a a b b c c abc xa b c →→++-++==++6.求极限:.()00x αα→>解:.()()112110001101lim lim 10111x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++7.求极限:.lim(0)x αα→>解:.()()22211000112202limlim022211x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++8.求极限:.(0)x αα→>解:.012x α→=-9.设函数在内,讨论的单调性.)(x f ()∞+∞-,0)0(,0)(≤>''f x f xx f y )(=解:,,⎥⎦⎤⎢⎣⎡-'=-'='⎪⎭⎫ ⎝⎛='x x f x f x x x f x f x x x f y )()(1)()()(20)0()()(--≤x f x f x x f 当时,,而,则,即,从而此时0>x )0()(f xx f '≤0)(>''x f )0()(f x f '≥'0>'y 递增;同理,当时,递增.x x f y )(=0<x xx f y )(=所以,在内单调增加.xx f y )(=()∞+∞-,10.设函数,求:(1)的极大值;(2)()220()2(0)xf x a ta dta =-+->⎰)(x f M 求极小时的值.M a 解:(1),而,所以xx f a x x f 2)(0)(=''±=⇒='0>a ;a a a f M 232)(3-=-=(2)时,,此时,0>a 102223223=⇒=-='⎪⎭⎫ ⎝⎛-='a a a a M a04>=''a M的极小值为.M 34)1(-=M 11.求极限:.22011lim sin x x x →⎛⎫-⎪⎝⎭解:()()2222224000sin sin 11sin lim lim lim sin sin x x x x x x x x x x x x xx →→→-+-⎛⎫-== ⎪⎝⎭.320000sin sin 1cos sin 1limlim 2lim 2lim 363x x x x x x x x x x x x x x →→→→-+-====12.求极限:.⎪⎭⎫ ⎝⎛-→x x x 220sin 11lim 解:2222222200011sin sin 22lim lim lim sin sin 2sin sin 2x x x x x x x x x x xx x x x →→→--⎛⎫-== ⎪+⎝⎭;222000cos 212sin 2limlimsin 2sin 2cos 22sin 26cos 22sin 22sin 212lim 2sin 234cos 2sin 22x x x x xx x x x x x x x x xx x x x x x x →→→--==+++--==-+-13.求极限:.⎪⎭⎫⎝⎛--→x x x ln 111lim 1解:;211ln 11lim ln 11lim ln 111lim ln )1(1ln lim ln 111lim 11111-=---=--+=--+=-+-=⎪⎭⎫ ⎝⎛--→→→→→x x x x x x xx xx x x x x x x x x x x 14.求极限:.1lim arcsin xx e x +→解:∵,∴.arcsin ~(0)x x x →11100lim arcsin lim lim t t xx x t x x ee x xe t ++=→+∞→→=====+∞15.求极限:.⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim解:.22221arctan 21lim arctan lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞⎛⎫-- ⎪⎛⎫⎝⎭+-==== ⎪+⎝⎭-16.求极限:.2120lim x x x e→解:.22112lim lim t tx x x t e x et=→→+∞====+∞17.求极限:.lim sin ln x x x +→解:.00001ln tan sin lim sin ln lim lim lim 0csc csc cot x x x x x x x x x x x x x x++++→→→→===-=-18.求极限:.1lim x -→解:11lim x x -→→=112sec 24x x ππ--→→===19.求极限:.xx xx x sin tan lim 20-→解:.22232200000tan tan sec 11cos sin21lim lim lim lim lim sin 3363x x x x x x x x x x x x x x x x x x →→→→→----=====20.求极限:.()ln 1ln limcot x x xarc x→+∞+-解:()222222111ln 111lim lim lim 1lim 1.111cot 1111x x x x x x x x x x arc x x xx x x →+∞→+∞→+∞→+∞⎛⎫+-- ⎪+⎝⎭==+==-+⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭21.求极限:.()2lim sec tan x x x π→-解:.()2221sin cos lim sec tan limlim 0cos sin x x x x xx x x x πππ→→→--===-22.求积分:.cos sin 1sin 2x xdx x --⎰解:()2cos sin cos sin 11sin 2cos sin cos sin x x x x dx dx dx x x x x x --==---⎰⎰⎰.1ln csc cot 2244sin 4dx x x C x πππ⎛⎫⎛⎫=-=---+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭⎰23.求积分:.cos sin 1sin 2x xdx x -+⎰解:.()()()22cos sin 11cos sin cos sin sin cos sin cos x xdx d x x C x xx x x x -=+=-++++⎰⎰24.求积分:.cos sin 1cos 2x xdx x -+⎰解:()2cos sin cos sin 1sec tan sec 1cos22cos 2x x x x dx dx xdx xdxx x --==-+⎰⎰⎰⎰.()1sec ln sec tan 2x x x C =--++25.求积分:.dx xxx ⎰--2cos 1sin cos 解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x --==--⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =-+-+26.求积分:.cos sin 1cos 2x xdx x +-⎰解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x ++==+-⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =---+27.求积分:.1sin 1cos2xdx x--⎰解:()221sin 1sin 1csc csc 1cos 22sin 2x x dx dx xdx xdx x x --==--⎰⎰⎰⎰.()1cot ln csc cot 2x x x C =-+-+28.求积分:.1sin 1cos2xdx x -+⎰解:()221sin 1sin 1sec sec tan 1cos 22cos 2x x dx dx xdx x xdx x x --==-+⎰⎰⎰⎰.()1tan sec 2x x C =-+29.求积分:.1cos 1cos2xdx x-+⎰解:()221cos 1cos 1sec sec 1cos22cos 2x x dx dx xdx xdx x x --==-+⎰⎰⎰⎰.()1tan ln sec tan 2x x x C =-++30.求积分:.1cos 1cos2xdx x--⎰解:.()()221sin 1sin 1csc csc 1cos22sin 211cot ln tan cot ln csc cot 222x x dx dx xdx xdxx x x x C or x x x C--==--⎛⎫=-++-+-+ ⎪⎝⎭⎰⎰⎰⎰31.求积分:.1arctan21xedx x +⎰解:.1arctan11arctan arctan 21arctan 1xx x e dx e d e C x x=-=-++⎰⎰32.求积分:.2x dx解:222211222xe t x x e dx =⎛⎫==== ⎪⎝⎭.(2211ln ln 222x x e c e C ⎛ '=++=++ ⎝33.求积分:.211x dx e +⎰解:⎰+dx e x 211⎰⎰----++-=+=)1(112112222xx x x e d e dx e e C e x ++-=-)1ln(212或者:⎰⎰+=+=xxx x x x de e e dx e e e 222222)1(121)1(.[]C e x de e de e xx x x x ++-=⎥⎦⎤⎢⎣⎡+-=⎰⎰)1ln(221111212222234.求积分:.()21xxe dx x +⎰解:()()()2211(1)11111xxx xxxe xe xe dx d x xe d d xe x x x x x ⎛⎫=+=-=-+ ⎪+++⎝⎭++⎰⎰⎰⎰.11x x xxe e e dx C x x=-+=+++⎰35.求积分:.211dx x x -+⎰解:2221141133111422dx dx dxx x x x ==-+⎛⎫⎤⎫+-+- ⎪⎪⎥⎝⎭⎭⎦⎰⎰⎰.211122112d x x C x ⎤⎤⎫⎫=--+⎪⎪⎥⎥⎭⎭⎦⎦⎤⎫+-⎪⎥⎭⎦⎰36.求积分:.2141dx x x -+⎰解:()2221111413231dx dx dxx x x ==-+---⎰⎰⎰.21ln ln 3661d C C ⎫==+=⎪⎭⎫-⎪⎭⎰37.求积分:.dx解:22111ln 1111u u du du C u u u u -⎛⎫⎛⎫=-=+ ⎪ ⎪--++⎝⎭⎝⎭⎰⎰.))ln 2ln12ln1Cor x C or x C ⎛⎫=+-+-+ ⎝38.求积分:.解:设,则,,x e u +=1)1ln(2-=u x du u udx 122-=222112111u du du u u u ⎛⎫==+- ⎪--+⎝⎭⎰⎰12ln ln 1u u C C u ⎛⎫-⎛⎫=++=+ ⎪+⎝⎭.)2ln1orx C -+39.求积分:.21443dx x x +-⎰解:.21121ln 443823x dx C x x x -=++-+⎰40.求积分:.23222x dx x x --+⎰解:222323*********(1)x x dx dx x x x x x ⎡⎤--=+⎢⎥-+-+++⎣⎦⎰⎰.()23ln 22arctan(1)2x x x C =-++++41.求积分:.2dx x⎰解:设,则,,t x sin 2=t x cos 242=-tdt dx cos 2=.()222cot csc 1cot arcsin 2x dx tdt t dt t t C C x x ==-=--+=--+⎰⎰⎰42.求积分:.2dx x ⎰解:设,则,,θtan 2=x 2sec θ=θθd dx 2sec 2=.()Cxx x x C x x x x x x C d d d dx x x ++-++=++++--+-=++---=⎪⎭⎫⎝⎛-+=-==+⎰⎰⎰⎰22222222222244ln 44ln 2141sin 1sin ln 21csc sin sin 11sin 1sin sin )sin 1(1sin cos 14θθθθθθθθθθθθ43.求积分:.⎰++dx x x 1)2(1解:消去根号,记,t =122122+=+=-=t x tdtdx t x.()222arctan 21tdtt C C t t ==+=++⎰44.求积分:.⎰-+dx x x x21解:记,3122222+=+=+=⇒-=t x tdtdx t x x t ()()⎰⎰⎰⎰++=⎪⎭⎫ ⎝⎛++=++=-+dt t t dt t t t dt t t dx x x x 21222112232212222.C x x C tt +-+-=++=22arctan 2222arctan2245.求积分:.⎰++dx x x x21解:记,1122222-=+=-=⇒+=t x tdtdx t x x t ()()⎰⎰⎰⎰-+=⎪⎭⎫ ⎝⎛-+=--=++dt t t dt t t t dt t t dx x x x 21222112212212222.C x x x C t t t +++-+++=++-+=2222ln 222222ln 22246.求积分:.2dx x -⎰解:记,2213222t t t x dx tdt x +-=⇒==-=,.2222312212623332t dx dt dt t dt x t t t t C C⎛⎫==+=+ ⎪----⎝⎭=+=+⎰⎰⎰⎰47.求积分:.解:记,232212122+=+=-=⇒+=t x tdtdx t x x t .Cxx C t t dt t t dt t dt t t dx x x ++-+=+-=+-=⎪⎭⎫ ⎝⎛+-=+=++⎰⎰⎰⎰321arctan 322123arctan3223162331232221222248.求积分:.⎰++dx x 3111解:记,dt t dx t x x t 23323,211=-=⇒+=.22233313331ln 1212142233(1)ln 142t dx dt t dt t t t C t t x C ⎛⎫==-+=-+++ ⎪++⎝⎭=+-+++⎰⎰49.求积分:.()⎰-dx x xx 2321arcsin 解:设:,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1lnln 1ln 12x xu u u udx d u du ud uu u x u u udu u u u u C C x x C ===-=-=-++==-++-+⎰⎰⎰⎰⎰50.求积分:.()()2213xdx xx ++⎰解:.()()()222222211111ln 4134313xx dx d x C x x x x x ⎛⎫+⎛⎫=-=+ ⎪ ⎪+++++⎝⎭⎝⎭⎰⎰51.假设某种商品的需求量,商品的总成本是,每1200080Q P =-2500050C Q =+单位商品需要纳税2元,试求使销售利润最大时商品单价(单位:元)和最大利润额.P 解:收入,28012000)8012000(P P P P PQ R -=-==总成本,P Q C 40006250005025000-=+=总利润,649000161608022-+-=--=P P Q C R L 边际利润,16160160+-='-'='P C R L 令,得,此时,有最大利润(元).0='L 101=P 0160<-=''L 167080=Max L 52.一商家销售某种商品的价格(万元/吨),为销售量,商品的成本函数x P 2.07-=x 是(万元).(1)若每销售1吨商品,政府征税t (万元),求商家获取最大利润时13-=x C 的销售量;(2)t 为何值时,政府税收最大?解:(1)收入,总成本,22.07)2.07(x x x x Px R -=-==13-=x C 税收,总利润,tx T =1)4(2.02+-+-=--=x t x T C R L 边际利润;令,得,此时,有最t x L -+-='44.00='L t x 5.210-=04.0<-=''L 大利润;(2),,令,得,所以当时政府税25.210t t tx T -==t T 510-='0='T 2=t 2=t 收最大.53.求积分:.()322arcsin 1x xdx x -⎰解:设,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1ln 1ln 1.2x xu u u udx d u du ud u u ux u u udu u u u u C Cx x C ===-=-=-++==++-+⎰⎰⎰⎰⎰54.已知的一个原函数为,求积分:.()f x ()1sin ln x x +()xf x dx '⎰解:∵,()1sin ()1sin ln cos ln xf x x x x x x'+=+=+⎡⎤⎣⎦∴()()()()xf x dx xdf x xf x f x dx'==-⎰⎰⎰.()1sin cos ln 1sin ln x x x x x x C =++-++55.设是三阶可导函数,,而.求.()f t ()0f t ''≠()()()x f t y tf t f t '=⎧⎨'=-⎩33d y dx解:由已知,,,,从而;()dx f t dt ''=()dy tf t dt ''=dy dy dt t dx dx dt ==1d dy dt dx ⎛⎫= ⎪⎝⎭,.()221d y d dy dx dt dx dt dx f t ⎛⎫== ⎪''⎝⎭()()()323321()d f t d y d d y f t dx dx dx d f t f t ⎡⎤⎢'''''⎛⎫⎣⎦===- ⎪'⎡⎤''⎡⎤⎝⎭⎣⎦⎣⎦56.设,求.()22tan()sec x yx x y tdt x y ---=≠⎰22d ydx解:对等式两边求导.得,()()()()222sec 1sec 1x y y x y y ''---=--整理,得,2sin ()y x y '=-()()()222sin cos 1d yx y x y y dx '∴=---.()()()21sin 2()cos sin 22y x y x y x y '=--=--57.已知,其中二阶可微,求.()y f x y =+()f u 22d ydx 解:,.()()1y f x y y '''=++()'1()f x y y f x y '+∴='-+对两边再求导,()()1y f x y y '''=++,()()()21y f x y y y f x y ''''''''=++++.()()()211y f x y y f x y '''++''∴='-+3"()[1'()]f x y f x y +=-+58.已知,求.0sin ()xtf x dt t p =-ò0()f t dt p ò解:由已知,,或sin ()xf x xp ¢=-sin ()()x f x xf x p ¢¢=-01cos sin ()()t t tt xdx f x dx xf x dxp ¢¢-==-òòò,()(0)()()()()()t tt f t f xf x f x dx f t tf t f x dx p p p =--+=-+òò取,有,t p =021cos ()()()f f f x dx pp p p p p =-=-+ò.()2f t dt p\=ò59.求积分:.121211x x x e x +æö÷ç+-÷ç÷çèøò解:1111122222111112222221111x x x x x x x x x x I x e dx e dx x e dx e dx xd e x x +++++æöæöæö÷ç÷÷çç÷=+-=+-=+ç÷÷çç÷÷÷ççç÷çèøèøèøòòòòò.21521232x x xee +==60.求极限:.2240sin lim x x xx®-解:224300sin sin sin lim lim x x x x x x x x x x x ®®-+-=×302sin cos 222lim x x xx x®-=.3022sin cos 2lim 8t t t t t ®-=2011cos lim 2t t t ®-=2202sin 12lim 2t t t ®=20sin 12lim 42t t t ®æö÷ç÷ç÷çç=çç÷ç÷÷çèø14=而,22223200000sin sin sin 1cos 1sin 1lim lim lim 2lim 2lim sin 3323x x x x x x x x x x x x x x x x x x x ®®®®®-+--=×==´=请问以上方法错在哪里?61.计算.x ò解:记,代入,得()221ln 1x u e u x u ==+=+原式()()222ln 1121u u uduu u ++=+ò()()22222ln 12ln 121u u du u u duu =+=+-+òò.()22ln 12222u u u arctgu c c =+-++=-++62.求积分:.()12ln 11x dx x++ò解:令,,,,11t x t -=+211x t +=+()221dt dx t =-+()()22222111111t t x t t +æö-ç+=+=ççè++代入,则()12ln 11x I dx x +=+ò()()()()21122200ln 1122ln 11211x t I dx dt x t t t ++==×++++òò()()1112220001120ln 2ln 1ln 1ln 211112ln 2ln 214t x dt dt dx t t xI dt t p-++==-+++\==+òòòò.112011ln 221I dx x \=×+òln 28p =63.求积分:1ò解:记212t x t dx tdt==-=-当时,;当时,,则0x =t 1=1x =0t =原式.110202212dt arctgtt p ===-ò64.设在内有意义,且(1)可导;(2)有反函数;(3)()F x ()0,+¥()x j .求.()()5322115F x t dt x x j æö÷ç÷=-ç÷ç÷èøò()F x 解:由(3)可知,时,,0x =()()010F t dt j =ò()01F =记,则为其反函数()x F y =()y x j =且或()()F y y j =()()F x xj =对(3)的式子两边求导,有,即.()()()23321123F x F x x x j ¢=- ()23321123x F x x x ¢×=-化简有()F x ¢=()23321132F x dx x x c æö\==-+ò而,故.()01F =()233211132F x x x =-+65.求积分:1ò解:11I -==òò.112-==òò12arcsin tp ==66.求积分:1ò解:令sin 02x t t p =<<.()22202200sin cos cos 1cos 1cos 4t d t I dt arctg t tt p pp p==-=-=++òò67.证明:.()4011212n tg xdx n np<<+ò证明:记,则.14201n nn t I tg xdx dt t p==+òò()11212n I n n<<+68.求积分:.244sin 1xxdx ep p --+ò解:.224404sin 11sin 111x x x x dx xdx e e e pp p ---æö÷ç=+÷ç÷çèø+++òò2402sin 8xdx p p -==ò69.设,且,则方程0在()[],f x C a b Î()0f x >()()1xxabf x dx dx f x +=òò(),a b内有几个根.解:记,,()()()1xxabF x f t dt dt f t =+òò()()()110abbaF a dt dt f t f t ==-<òò,而.;()()0baF b f x dx =>ò()0f x >[],x a b Î()()()10F x f x f x ¢=+>在内严格单调增加.因此,在内只有一个根.()F x \(),a b ()F x (),a b 70.在上连续可微,且满足.试证存在一点.使()f x [)0,1()()1212f xf x dx =ò()0,1x Î.()()0f f x x x ¢+=证:设.则,()()F x xf x =()()0000F f =´=.()()()()112211122F f xf x dx F x dx =´==´òò由于在上可微,由积分中值定理,必存在一点,使得()F x []0,110,2h æö÷çÎ÷ç÷çèø,在上,满足Rolle 定理的三个条件,固而存在()()()1122F F F h h =´´=[],1h ()F x ,使得.即.x (),1h Î()0,1Ì()0F x ¢=()()0f f x x x ¢+=71.设求,.()11010x x xe x f x e x ìïïïï¹ï=íï+ïïï=ïî()0f -¢()0f +¢解:由知()()()000limx x f x f x f x x x ®-¢=-()0f -¢()()11000lim lim lim 0011txt t x x x f x f e e x e e --®-¥®®-====-++()0f +¢()()11000lim lim lim 1011txt t x x xf x f e e x ee ++®+¥®®-====-++另,时0x ¹()1121111xx x e e x f x e æö÷ç÷-+ç÷ç÷èø¢=æö÷ç÷+ç÷ç÷èø;()0f -¢()1121011lim lim 1xx x x xe e xf x e --®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()121lim01u u u xu u e u e e =®-¥-+¾¾¾®=+()0f +¢()1121011lim lim 1xx x x xe e xf x e ++®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()21lim1u u u u e u e e ®+¥-+=+()()()11lim21u u u u u uu e u e e e e e ®+¥-++-=+()22lim21u uu uu e ue e e ®+¥-=+.()221lim lim 1221u u u u u u e u e e e ®+¥®+¥--===+72.设在上连续,且,证明:必存在,使()f x []0,n ()()()0f f n n N =Î()0,n x Î.()()1f f x x +=证明:记,则在上连续,因而有最大(小)值()()()1x f x f x j =+-()x j []0,1n -,,;()M m ()m x M j ££[]0,1x n Î-而,,…,;()()()010f f j =-()()()121f f j =-()()()11n f n f n j -=--从而,()()()1110n n k k k f k f k m M nnj --==éù+-ëû£==£åå故而,必存在,使,即()0,n x Î()0j x =.()()1f f x x +=73.证明:函数在上一致连续.3)(x x f =[]1,0证明:任取两点,,不妨设,则,考虑到1x []1,02∈x 21x x ≠03231≠-x x ()321232312132232132121323121)()(x x x x x x x x x x x x x x x f x f +--≤++-=-=-;()2323121323121)()(x x x x x x x f x f --≤-=-即;2133231321)()(x x x x x f x f -≤-=-所以,对于任意小的正数,取,当时,必有0>ε3εη=η<-21x x 成立,ε<-≤-=-321323121)()(x x x x x f x f 故而函数在上一致连续.3)(x x f =[]1,074.函数在上有定义,且(1),(2)对于在,)(x f ()∞,0)1()(lim 1f x f x =→0>∀x ,则(为常数).)()(2x f x f =C x f ≡)(C 证明:任取,记,,,…,()∞+∈,0x x x =1x x x ==124123xx x x ===,….则1211-==-n x x x n n 由可知,,即)()(2x f x f =)()(x f x f =;)()()()()(321n x f x f x f x f x f ===== 而注意到,故)0(1lim >=+∞→x x n n ;)0(1lim lim 121>==-+∞→+∞→x x x n n n n 而,从而)1()(lim 1f x f x =→;)1()lim ()(lim )(11f x f x f x f n x n x ===→→所以,(为常数).C x f ≡)()1(f C =75.求极限:.21n n n tan n lim ⎪⎭⎫ ⎝⎛∞→解:注意到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛n tan n ln n exp n tan n n 1122,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-⋅=11111112n tan n n tan n ln n tan n n exp 且,111111=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+∞→ntan n n tan n ln lim n 而22111tan lim 11tan lim n n n n n n n n -=⎪⎭⎫ ⎝⎛-∞→∞→30201tan lim1tan lim y y y y y y y y ny -=-=→→=.yy tan lim y y sec lim y y 31331220220==-=→→故.e n tan n lim n n 3121=⎪⎭⎫⎝⎛∞→76.已知,,求.12a =()11112n n n a a n a +⎛⎫=+> ⎪⎝⎭lim n n a →∞解:很明显,,,,,12a =0n a >11112n n n a a a +⎛⎫=+≥ ⎪⎝⎭()12111122n n n a n a a +⎛⎫=+≤>⎪⎝⎭所以,,单调有界,存在;1212n n a a a +≤≤≤≤= {}n a lim n n a →∞记,则由得,注意到,解得.lim n n a l →∞=1112n n n a a a +⎛⎫=+ ⎪⎝⎭112l l l ⎛⎫=+ ⎪⎝⎭21≤≤l 1l =77.设函数,求.xx y +=12()n y 解:,,11112++-=+=x x x x y 2111111⎪⎭⎫⎝⎛+-='⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-='x x x y ,()()322121111+-='⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=''x x y 由数学归纳法可得:.()()())1(1!11>+-=+n x n yn n n 78.设函数在区间上连续,在内可导,且,()x f []0,1()0,1()()010==f f .试证:121=⎪⎭⎫ ⎝⎛f (1)存在,使;1,12η⎛⎫∈⎪⎝⎭()ηη=f (2)对任意实数,必存在,使得.λ()0,ξη∈()()1f f ξλξξ'--=⎡⎤⎣⎦证明:(1)设,则在区间上连续,在内可导,且()()h x x f x =-()h x []0,1()0,1,,,则存在,,即()00h =()11h =11022h ⎛⎫=-< ⎪⎝⎭1,12η⎛⎫∈ ⎪⎝⎭()()0h f ηηη=-=.()ηη=f (2)记,在区间上连续,在内可导,且,()()xF x f x x e λ-=-⎡⎤⎣⎦[]0,1()0,1()00F =,则由定理,必存在,使得,即()0F η=Rolle ()0,ξη∈()0F ξ'=.()()1f f ξλξξ'--=⎡⎤⎣⎦79.判断级数的敛散性.11nn ¥=åò提示:.220001122n xdx n n>=®<òòò80.证明:当时,.0>x ()x x xx<+<+1ln 1证明:记,则在上连续因而可积.tt f +=11)()(t f []x 0由积分第一中值定理,比存在一点,使得:()x 0∈ξ,()()x f dt t x x⋅=+=+⎰ξ0111ln 即.()x x ξ+=+111ln 而,,x <<ξ011111<+<+ξx ∴,)0(11><+<+x x x x x ξ即.()x x x x<+<+1ln 181.求在条件下,()22212312323,,2334f x x x x x x x x =+++2221231x x x ++=()123,,f x x x 的最大值和最大值点.解:利用拉格朗日乘数法,设,()()22222212312323123,,,23341L x x x x x x x x x x x λλ=++++++-,则123112233322221234206240624010x x x L x x L x x x L x x x L x x x λλλλ'=+=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩.1231222312323(1)020121(2)05x x x x Maxf x x x x x Maxf x x λ≠⇒=-⇒==→=±⇒=⎧+=⎪=⇒⇒==⇒=⎨=⎪⎩82.设随机变量,问:当取何值时,落入区间的概率最大?()2~,X N μσσX ()1,3解:因为,()212~x X f x σ⎛⎫- ⎝⎭=,{}133113()X P X P g σσσσσσ∆⎧⎫⎛⎫⎛⎫<<=<<=Φ-Φ=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭利用微积分中求极值的方法,有223311()g σσσσσ⎛⎫⎛⎫⎛⎫'''=-Φ+Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;222222221311111422231111130e e σσσσ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎢⎥==-=⎢⎥⎣⎦令得,则;又,故.404ln 3σ=0σ=0()0g σ''<0σ=故当落入区间的概率最大.σ=X ()1,383.设,讨论方程的实数根.x e x f x λ-=)(0=-x e x λ解:(1)显然,当时,方程没有实根;0λ=0=-x e x λ(2)当时,方程有唯一实根;0λ<0=-x e xλ(3)当时,;曲线为下凸的,0>λ0)(,)(>=''-='x x e x f e x f λx e x f x λ-=)(呈∪型;由可知,驻点,极小值,0)(=-='λx e x f λln 0=x )ln 1()(0λλ-=x f 由此可知,当时,方程没有实根;e <<λ00=-x e x λ当,极小值,方程只有一个实根;e =λ0)ln 1()(0=-=λλxf 0=-x e x λλln 0=x 当,极小值,方程有2个实根.e >λ0)ln 1()(0<-=λλxf 0=-x e xλ84.函数的单调增减区间、凹凸区间与极值.()()()211f x x x =-+解:,()()()()()()()()()22111211131f x x x ,f x x x x x x '=-+=++-+=+-由得驻点:;()0f x '=113x ,=-由上可知,函数在与内单调递增,在内递减;极()f x ()1,-∞-13,⎛⎫+∞ ⎪⎝⎭113,⎛⎫- ⎪⎝⎭大值,极小值;()10f -=132327f ⎛⎫=-⎪⎝⎭由可得,因而函数曲线在内()()()211f x x x =-+()62f x x ''=+13,⎛⎫-∞- ⎪⎝⎭,函数曲线上凸;在内下凸,如下图.()0f x ''<13,⎛⎫-+∞ ⎪⎝⎭85.已知收益函数为,其中为价格,为需求量,求需求弹性时260R=Q Q -P Q 2d ε=-的边际收益.MR 解:因为,所以需求函数,边际收益函数为,且260R=Q Q -60P Q =-602R =Q '-需求弹性函数为;60601d P dQ Q Q dP Q Qε-==-=-当需求弹性时,,此时的边际收益.2d ε=-20Q =()20604020MR R '==-=86.设函数,求其渐近线.xx exe x f y 111)(+==解:首先考虑其水平渐近线和垂直渐近线:x()1,-∞-1-113,⎛⎫- ⎪⎝⎭1313,⎛⎫+∞ ⎪⎝⎭()f x '+0-0+()f x 增加极大值递减极小值递增因为,,,所以,1lim 1=∞→x x e +∞=+→x x e 100lim 0lim 100=-→xx e ;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e+-→+∞→+∞→⎛⎫==== ⎪++⎝⎭+;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e--→-∞→-∞→⎛⎫==== ⎪++⎝⎭+;110011limlim lim (1)(1)1t x t t x t t xxee t t e t e x e-→∞→→⎛⎫===∞=⎪++⎝⎭+故而没有水平渐近线和垂直渐近线;xx exex f y 111)(+==由于,()111limlim 21xx x xf x e a x e →∞→∞===+()1111111211lim lim lim 2211x x x x x x x x xe x e xe b fx x x e e →∞→∞→∞⎡⎤⎛⎫-+⎢⎥⎡⎤ ⎪⎡⎤⎝⎭⎢⎥⎢⎥=-=-=⎢⎥⎢⎢⎥⎣⎦++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,11011111122lim lim 2(1)41x t t x t xx xe e t t e x e→∞→-+-⎛⎫==== ⎪+⎝⎭+故而有斜渐近线:.xx exe x f y 111)(+==4121+=x y 87.求函数曲线的渐近线.()1ln 1x y e x=++解:显然,,为其垂直渐近线;()01lim ln 1x x e x→⎡⎤++=∞⎢⎥⎣⎦0x =,为其水平渐近线;()()1lim ln 1lim ln 10x xx x e e x →-∞→-∞⎡⎤++=+=⎢⎥⎣⎦0y =又,,,因而()()11ln 1ln 1x x y e x e x x -=++=+++()1lim ln 10x x e x -→+∞⎡⎤++=⎢⎥⎣⎦为其一条斜渐近线.y x=88.若,试证明:与具有相同的敛散性.lim (0)n n a a a →∞=≠∑∞=+-11n n n a a ∑∞=+-1111n nn a a 证明:问题为讨论两个正项级数的敛散性,可以用比较法的极限形式,因为不是具体的级数形式.记,则,111nn n a a V -=+0,0>>n n V U ==n n n V U ∞→limnn nn n a a a a 11lim11--=++∞→1.lim +∞→n n n a a )0(2≠a 可见,与具有相同的敛散性.∑∞=+-11n n n a a∑∞=+-1111n nn a a 89.讨论下列级数的敛散性:(1)2);(3);(4)1n ∞=11tan 2n n n ∞+=∑()3113nnn n n ∞=⎤+-⎣⎦∑()∑∞=+-+121211n n n n n(5);(6);(7).()()1111ln 1n n n ∞+=-+∑()211nn n n ∞=-+∑()()1111ln n n nn e e ∞+-=-+∑解:(1)当充分大时,比如时,有,从而n 3>n ()n n <+<1ln 1,而当时,,()n n n n <+<1ln 1∞→n 1→n n由极限的夹逼性定理知,当时,,所以,∞→n 1→1n ∞=(2)注意到,这是正项级数,当时,(等价无穷小),0→x x x ~tan 所以,而后者收敛,所以收敛.11tan ~2n n n π∞+=∑112n n n π∞+=∑11tan 2n nn π∞+=∑(3)利用柯西判别法:也是正项级数,,可见原()33113n+-=<→级数收敛;事实上,,,)())333111333nnnn nnnn nn ⎤+-+⎣⎦<<3113nnn n ∞=⎤⎣⎦∑都收敛,且同为正项级数,因而原级数收敛.3113nn n n ∞=⎤⎣⎦∑(4)因为,()()111111122221212112121→+⋅+⋅=+=+=+-+-nn nnnn n n n n n n nnnnnu 改用比较判别法:取,则21nv n =;()11lim 1lim lim 122121=⎪⎪⎭⎫⎝⎛+=+=+∞→++∞→∞→n n n n n nn n n n n nv u其中()(){}1122222lim lim exp lim 12ln ln 111n x n x x n x x x x n x ++→∞→+∞→+∞⎛⎫⎛⎫⎡⎤==+-+ ⎪ ⎪⎣⎦++⎝⎭⎝⎭,()()()()()22222222ln ln 1211exp lim exp lim exp lim 111111x x x x x x x x x x x x x →+∞→+∞→+∞⎧⎫⎧⎫⎪⎪-⎪⎪⎧⎫-++⎪⎪⎪⎪⎪⎪+===-=⎨⎬⎨⎬⎨⎬+⎪⎪⎪⎪⎪⎪-⎩⎭+⎪⎪⎪⎪+⎩⎭⎩⎭所以,与同时收敛.()∑∞=+-+121211n n n nn ∑∞=121n n(5)条件收敛.(6),发散.()()22111111nnn n n nn n n∞∞∞===-+-=+∑∑∑(7)=,()()1111ln n n n n e e ∞+-=-+∑()()12111ln 1n n n e n∞+=-+-∑,()222ln 1n n n e n e n e +-<-<()()()22222lim lim lim ln 1ln 1ln n x xn x x x n x x e e e e n e x e e -→∞→+∞→+∞==+-+-+==∞.()=+-=--+∞→x x x x xx e e e e e 22lim ()22221lim 1x x x x e e e →+∞+-x xx x ee e 2532106lim ++∞→另一方面,==,;()x x e e -+ln 1()xe x 21ln 1-++()x e xx x 1~1ln 11112-++()+∞→x 可见,原级数非绝对收敛;但是单调减少且趋于0,所以,原级数条件收敛.()x x e e -+ln 190.若正项级数与都发散,讨论与的敛散性.1nn v∞=∑1nn u∞=∑{}1max ,nnn u v ∞=∑{}1min ,nnn u v ∞=∑解:,,{}{}1max ,2n n n n n n u v u v u v =++-{}{}1min ,2n n n n n n u v u v u v =+--(1)显然,,或者,故而{}{}1max ,2n n n n n n n u v u v u v u =++-≥{}max ,n n n u v v ≥发散;{}1max ,nnn u v ∞=∑(2)而的敛散性未定.{}1min ,nnn u v ∞=∑例如,若,()222211111111123456212n n u n n ∞==+++++++++-∑ ,()222=11111111123456221n n v n n ∞=+++++++++-∑。
解答微积分B上第二章练习二
第二章 练习二(§2.4、§2.5)班级________________姓名________________学号______________一、是非判断题1、如果在某一极限过程中,)(),(x g x f 都无极限,则)()(x g x f +也可能有极限.[ 是 ]11(0)x x x→,,-2、如果在某一极限过程中,)(),(x g x f 都无极限,则)()(x g x f ⋅ 必无极限. [ 非 ]1(sin )sin x x x→∞,,3、如果在某一极限过程中,)(x f 有极限,)(x g 无极限,则)()(x g x f +必无极限. [ 是 ]4、如果在某一极限过程中,)(x f 有极限,)(x g 无极限,则)()(x g x f ⋅必无极限. [ 非 ]1(0)x x x→,,,5、如果0)(lim ,)(lim 0==→→x g A x f x x x x 则 )()(limx g x f x x →必不存在. [ 非 ] (0sin )x x x →,,6、如果)(x f >)(x g ,而,)(lim 0A x f x x =→,)(lim 0B x g x x =→那么A >B . [ 非 ]7、若)()(limx g x f x x →存在,且0)(lim 0=→x g x x ,则0)(lim 0=→x f x x . [ 是 ]8、如果a z y n n n n ==∞→∞→lim lim ,且1010>n 时有 n y ≤n x ≤n z ,那么a x n n =∞→lim . [ 是 ]9、数列收敛的充分必要条件是数列单调有界. [ 非 ]10、如果{n a }是单调数列,则数列有极限或者∞=∞→n n a lim . [ 是 ]11、如果)(x f >0,且,)(lim 0A x f x x =→ 那么A ≥0. [ 是 ]12、如果 A x f x =+∞→)(lim ,0>∃X 且x >X 时)(x f ≥0,那么A ≥0. [ 是 ]二、填空题1、,6)2)(1(lim 21-=--++→x x cbx x x 则=b 4 ,=c -5 .22111lim(1)(2)0lim 6,lim()0,(1),(1)(2)x x x x bx cx x x bx c c b x x →→→++--==-++==-+--(而故必得 22211111(1)lim lim lim(1)(2)(1)(2)(1)(2)x x x x bx c x bx b x b x x x x x x x →→→+++---+-==------于是令 11lim264,5)2x x bb bc x →++==--=-==--,得2、l x x ax x x =++---→14lim231,则=a 4 ,=l 10 . 3、=→xctgx x 0lim 1 ;=∞→nn n x2sin2lim x . 4、x x x 432cos sin 与 nx 是同阶无穷小,则n = 5 0)n x x →(由题设是无穷小,故.234334422000sin cos sin sin sin (cos ,limcos 1,lim 1,23,lim ,n n n x x x x x x x x x x x n x x x x --→→→=⋅==->=∞当时∴333222000sin sin sin 023,lim ,20,lim 0,23lim 10)n n n x x x x x xn n n x x x---→→→<-<-≤=-==≠时不存在时仅当时5、设0)(lim 0=→x x x α,则=→)()(sin lim0x x x x αα 1 .6、当∞→x 时,2)2sin(3x与2xA是等价无穷小,则A = 12 . 22222222223sin()3sin()12sin()sin1212((,1),112)222()()4x x x x x A A A A A A x x x x==→→∞→=⇔=当时而三、计算题1、502030)12()23()12(lim +--∞→x x x x =20)23(.22222211lim (11)lim11x x x x x x x x x x x x x x →+∞→+∞++-+-++--+=+++-+2、222lim1111111x x x x x→+∞==+++-+.3、h a h a h sin )sin(lim0-+→ 4、30sin lim xxtgx x -→02sin cos()22lim h h h a h→+= 30sin (1cos )lim cos x x x x x →-= 0s i n 2l i m c o s ()c o s .22h hh a a h →=⋅+= 22001sin 12lim lim cos 2x x x x x x x →→=⋅=. 5、x x x x x 2cos 2sin 1cos sin 1lim 0-+-+→ 6、xx x x x 2220tan 43)2cos 1(25lim +--→201sin cos lim 2sin cos 2sin x x x x x x →+-=+ 20202(1cos 2)5limtan 34lim()x x x x x x →→--=+00sin 1cos lim lim 2sin (cos sin )2sin (cos sin )x x x x x x x x x x →→-=+++ 2202012(2)25lim 1tan 734(lim )x x x x x x→→⋅-==+. 2001112lim lim 2(cos sin )2(cos sin )2x x x x x x x x →→=+=++.四、利用夹逼准则求极限)1211(lim 222πππn n n n n n +++++++∞→ .(略) 五、设),,2,1(,11,111 =++==+n x x x x nnn 利用单调有界准则求n n x ∞→lim .证 显然{}110,12,(1,2,),1n n n n n x x x n x x -->=+<=+从而即数列有界;又121132,11,12x n x x x ==+=>=+时 2111111,1111k k k k k k k x n k x x x x x n k x ------=>+>⇒+>=++设时,即,于是当时,11111111111111211*********k k k k k k k k k k k k k k k x x x x x xx x x x x x x x x -----+-----+++-=+-=+--=-+++++++222111111111111222310,(23)(1)(23)(1)k k k k n k k k k k k x x x x x x x x x x x -----------+++--+-==>++++{}11,,,k k n n n x x n Z x x x ++>∀∈>+即从而即数列单调增加;{}11lim ,1,1n n n n n n x x x A x x -→∞-==++由单调收敛则,数列收敛,设则由111112lim lim 12n n n n n n n n n n x x x x x x x x ----→∞→∞+=+++有,于是()=(),21512,2A A A A ±+=+⇒=∴ 15150,,lim 22n n n x A x →∞++>==又即∴.。
《微积分(二)》同步练习册(最终使用版)解析
《微积分(⼆)》同步练习册(最终使⽤版)解析第五章不定积分 §5.3 凑微分法和分部积分法(第5.1~5.2节的内容,请参见本练习册末尾、第五章“⾃测题”前的附加材料)1. 求下列不定积分:(1) ?-dx e x2; (2)dx x x ln 1;(3)?+xx dx 2; (4) ?-dx x x 21; (5) dx x x x ?-+-2211; (6)()?-dx x 21sin 2;(7)?xdx x 32cos sin ; (8)dx x 4sin 1;(9) ?+dx xx 231;(10);(11)?dx xx x cos sin 1; (12*)?+dx ex11;ln 1; (14*)()+2cos 2sin x x dx.3. 求下列不定积分: (1)[]?++dx x x )1ln(arcsin ; (2)?-dx e x x 22;(3)?xdx e x2sin ; (4)()dx e x x x221?+;(5) ?xdx ln sin ; (6)?+dx x 21.4. 求下列有理函数的不定积分:(1)+dx x x )1(17; (2)?++dx x x x 21.5. 求下列不定积分: (1) 已知)(x f 是2x e -的⼀个原函数,求?'dx x f x )(;(2) 已知2x e -是)(x f 的⼀个原函数,求?'dx x f x )(.§5.4 换元积分法1. 求下列不定积分: (1)?+dx x 1; (2)?+-dx x 3211;dx x x cos ;(6)?-dx e x; (7)()-dx x x 21012981(7) ?++dx xx)11ln(.2*. 求不定积分?-+dx x x xx cos sin cos sin 2.3*. 试求不定积分2ln 1(ln )x dx x -?.4*. 已知ln(1)(ln )x f x x+=,求()f x dx ?.第六章定积分 §6.1 定积分的概念与性质1. 利⽤定积分的⼏何意义,计算下列定积分: (1)?-201dx x ; (2)?-11sin xdx ;(3)--22121dx x .2. 不计算积分,⽐较下列各积分值的⼤⼩(指出明确的“=<>,,”关系,并给出必要的理由). (1)?10xdx ; (2)?212dx x 与21xdx ;(3)?20sin πxdx 与20πxdx ; (4)?40tan πxdx 与40πxdx .3. 利⽤定积分的性质,估计?-=20dx xe I x 的⼤⼩.4. 设()x f 在区间[]1,0上连续,在()1,0内可导,且满⾜()()?=31031dx x f f ,试证:在()1,0内⾄少存在⼀点ξ,使得()0='ξf .5. 试判断下列定积分是否有意义(即,被积函数在相应的积分区间上是否“可积”),并说明理由. (1)?-111dx x ; (2)()?20dx x f ,其中()?=≠=1,21,2x x x x f .6*.根据定积分的定义,试将极限+++∞→n n n n n n πππsin 2sin sin 1lim表§6.2 微积分基本定理1.求下列函数关于x 的导数: (1)()1/1 2sin3x tt dt -?; (2)?12xt dt te ;(3)22x xt dt e ; (4*)()?-xtdt t x 0sin .2.求下列极限: (1)?→x x du x u 02tan lim; (2)()?+→xu x du u x 010211lim ;(3)?-→2040)cos 1(1lim x x du u x.3.求函数()()()?---=xudu e u u x f 0221的极值点.4.计算下列定积分: (1)?3231dx x x x ; (2)?ππ2121sin 1dx x x;(3)?-20cos 21πdx x ; (4){}-322,1min dx x ;(5)()?-21dx x f ,其中()≥<=1,1,2x xe x xe x f x x ;(6)?-b dx x 1,其中b 为常数.5.设()x f 在[]1,0上连续,且满⾜()()?+-=132dx x f x x f ,试求()x f .6*.试利⽤定积分的定义及计算原理求解数列极限n n S ∞→lim ,其中nn n n S n ++++++=21221121 .§6.3 定积分的换元积分法与分部积分法1. 试利⽤定积分的换元法计算下列积分: (1)?-2ln 01dx e x; (2)()?+-212(3)?-122221dx xx ; (4)?++202422dx x x x ;(5)-π3sin sin dx x x .2. 利⽤函数的奇偶性计算下列定积分:(1)()-++22221ln sin ππdx x x x ; (2)()-+-+1122513dx x x x x.3. 设()x f 是R 上的连续函数,试证:对于任意常数0>a ,均有()()??=2002321a a dx x xf dx x f x .4*. 设()x f 是R 上的连续函数,并满⾜()20x dt e t x f x t =-?5. 利⽤定积分的分部积分法计算下列积分:(1)?40sin πxdx x ; (2)()+121ln dx x ;(3)?21ln cos πe xdx .6*. 试计算()?20πdx x f ,其中()?=2sin πxdt ttx f .7*. 已知()x f 是R 上的连续函数,试证:()()()?=-x t x dt du u f dt t x t f 000.§6.4 定积分的应⽤1. 计算下列曲线围成的平⾯封闭图形的⾯积: (1)0,43=-=y x x y ; (2)x y x y x y 2,,===.2. 假设曲线()1012≤≤-=x x y 、x 轴和y 轴所围成的区域被曲线()02>=a ax y 分为⾯积相等的两部分,试确定常数a 的值.3. 求由下列曲线围成的平⾯图形绕指定轴旋转⼀周⽽成的⽴体体积: (1)1,41,0,14====x x y xy ;绕x 轴,(ii )绕y 轴4. 已知某产品的固定成本为50,边际成本和边际收益函数分别为()642+-=q q q MC ,()q q MR 2105-=,其中q 为产品的销售量(产量),试求最⼤利润.5. 已知某产品在定价1=p 时的市场需求量a Q =,在任意价格p 处的需求价格弹性为Qb E p =,其中0,0<>b a 均为常数,Q 为产品在价格p 处的市场需求量。
《微积分(下)》第2章多元函数微分学练习题--参考答案
第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1)()11(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin;x y x y x y →∞∞++(3) ()(,)0,1sin lim;x y xyx →(4)((,)0,0limx y →解: (1) 当1(,)2,2x y ⎛⎫→- ⎪⎝⎭时,10xy +→,因此()[]1112(1)11(,)2,(,)2,22lim2lim1(1)e yxy y xy x y x y xy xy -++⎛⎫⎛⎫→-→- ⎪⎪⎝⎭⎝⎭⎧⎫+=++=⎨⎬⎩⎭。
(2) 当()(,),x y →-∞+∞时,2230x y →+,因此222233sin ~x y x y++, ()()()()22222222(,),(,),33limsinlim 3x y x y x y x y x y x y →∞∞→∞∞+=+⋅=++。
(3) 当()(,)0,1x y →时,0xy →,因此sin ~xy xy ,()()(,)0,1(,)0,1sin limlim 1x y x y xy xyx x →→==。
(4) 当()(,)0,0x y →10,0xy →→,因此,(())())(,)0,0(,)0,0(,)0,01limlimlim12x y x y x y xy xy→→→===。
2.证明:当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
证明: 取2(0)y kx k =≠,则()()()()()()()444484433334444444(,)0,0(,)0,0(,)0,0limlimlim11x y x y x y x y k x x k k xyxk xk k →→→===++++显然此极限值与k 的取值相关,因此当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
微积分II课后答案详解
2�计算下列各式的近似值�分析运用公式
f (x0 + ∆x1 y0 + ∆y) ≈ f (x0, y0 ) + f x′ ∆x + f ′y∆y � �1� (10.1)2.03 解�令 f (x, y) = x y , x0 = 10, ∆x = 0.1, y0 = 2, ∆y = 0.03
(10.1)2.03 = f (x0 + ∆x1 y0 + ∆y) ≈ f (x0 , y0 ) + f x′ ∆x + f ′y∆y = 102 + yx y−1 (10,2) ⋅ 0.1 + x y ln x (10,2) ⋅ 0.01 = 100 + 2 + 3ln10 ≈ 108.9
f (x, y) = x − kx = 1 − k ≠ 1(k ≠ 0) x + kx 1 + k
综合①②可知函数极限不存在。
练习 5.2
1.求下列函数的偏导数
① z = x3 y − xy3,求 ∂z , ∂z
∂x ∂y
解� ∂z = 3x 2 y − y 3 , ∂z = x3 − 3xy 2
x+ y
x→0
分析�由二元函数极限定义�我们只须找到沿不同路径 p → p0(0,0) 时�所得极限值不同即可。
证明� ① p(x, y) x ( x ≠ 0, y = 0)
f (x, y) = f (x,0) = 1, lim f (x, y) = 1 x →0 y→0
p0 (0, 0)
②当 p(x, y)沿直线y = kx(x ≠ 0)趋于�0�0�时�
练习 5.1
1.在空间直角坐标系下,下列方程的图形是什么形状?
微积分(一)综合测试2试题及答案
《微积分》上册 综合练习题2一、填空题(每小题2分,共20分): 1.设11(1),()2-11x f f x xx x-==-则。
1111111(1),1,,(),()121111211-=-=====-+---+f t x f t f x x x x tt x t解由令 2.函数)12ln(2712arcsin )(2--+-=x x x x x f 的定义域区间 。
解 12(,1)(1,2]3.已知函数2()2=-f x x x 的单增区间是 (0,1) 。
解222'()0,1,(0,1)'()022-===∈>-x f x x x f x x x当时,,单增区间是(0,1)4.)1(1)(2--=x x e x f x 的可去间断点为=0x 0 ;补充定义=)(0x f -2时,则函数在0x 处连续。
2200111212lim lim 2,lim lim (1)(1)(1)(1)x x x x x x e x e xx x x x x x x x →→→→--==-==∞----解 5.若)(x f 在x = a 处可微,则[]hh a f h a f h )()(lim--+→= 。
[][])('2)()()()(lim )()(lim00a f hh a f a f a f h a f h h a f h a f h h =--+-+=--+→→解 6. 如果()(1)2)(3)(4)f x x x x x =----则方程()0f x '=有 3 个实根。
解 由罗尔定理可得。
7.曲线1222()arctan 2x x f x e x x =⋅--有 2 条渐近线。
解12220lim ()lim arctan 0,lim ()2→∞→∞→=⋅==∞--x x x x x f x e f x x x8.已知函数)(x f 任意阶可导,且2()[()]f x f x '=,则)(x f 的n (n ≥ 2)阶导数=)()(x f n 1![()]n n f x +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分练习题二
一. 填空题
1. 若0→x 时,x kx 2~)1ln(+,则k=
2. =+++-+∞→40
210
2302)146()44()12(lim x x x x x x 3. 若)(x f 为偶函数,且)(x f 可导,则=)0('f ,=)]'0([f .
4. 曲线2x y =在点(2, 4)处的切线方程为 .
5. 若)(x f 在点x 处可微,则=-∆→∆)(lim 0dy y x ,=∆-∆→∆x
dy y x 0lim . 6. 设某厂每月生产产品的固定成本为1000(元),生产x 单位产品的可变成本为x x 1001.02+(元),则边
际成本为 ,其经济意义是
7. 设某产品的需求函数为Q=400-100P ,则P=1时的需求价格弹性为 ,其经济意义是
8. 若曲线c bx ax x y +++=23有一拐点(1, -1),且在x=0处有极大值,则a= , b= , c= .
9. 如果对任意的),(b a x ∈,均有)(')('x g x f =,则在(a, b)内)(x f 与)(x g 的关系是
二. 是非题 (对的打“√”,错的打“×”号)
1. 曲线y=|x|在x=0处有切线,故在x=0处可导。
( )
2. x
e x
f 1)(=,当0→x 时,是无穷大量。
( )
3. 方程013=++x x 在区间(-1, 1)内有且仅有一个实根。
( )
4. 对任何实数1x ,2x ,都有.|||sin sin |1212x x x x -≤- ( )
三. 计算题 1. 求.21lim 323232⎪⎪⎭
⎫ ⎝⎛+++∞→n n n n n 2. 求.1323lim 2x x x x ⎪⎭⎫ ⎝⎛+-∞→ 3. 求由方程02cos ln =-+x x y e xy 所确定的隐函数的导数
dx dy . 4. 求x x y cos )
(sin =的导数. 5. 设⎩⎨⎧>+≤=,
0),1ln(,0,2)(x x x x x f 求)('x f . 四. 设某厂生产x 件产品的成本为240120025000)(x x x C +
+=(元), 问: (1) 生产多少件产品,可使平
均成本最小?(2) 若每件产品以500元销售,则生产多少件产品,可获利最大?
五.列表讨论函数1
2)(2
-=x x x f 的单调区间,极值,凸性,拐点,并求渐近线。
六. 证明题
(1) 设)(x f 在[0, 1]上连续,在(0, 1)内可导,且,1)2
1(,0)1()0(===f f f 又.)()(x x f x g -= 证明:
至少存在一点)1,0(∈ξ,使得.0)('=ξg
(2) 设函数f(x)处处可导,且有1)0('=f ,并对任何实数x 和h ,恒有f(x+h)=f(x)+f(h)+2hx, 试证12)('+=x x f .。