轴心受力构件[资料]
轴心受力构件
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
钢结构设计原理 第四章-轴心受力构件
因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
轴心受力构件
④在设有夹钳吊车或刚性料耙吊车的厂房中,支撑(表中第2项除外)的长细比不宜超过300。
⑤受拉构件在永久荷载与风荷载组合作用下受压时,其长细比不宜超过250。
⑥跨度等于或大于60m的桁架,其受拉弦杆和腹杆的长细比不宜超过300(承受静力荷载)或250(承受动力荷载)。
§6-3轴心受压构件的整体稳定
6.3.1轴心受压构件的整体失稳现象
图6.2.2净截面面积的计算
对于高强度螺栓摩擦型连接的构件,可以认为连接传力所依靠的摩擦力均匀分布于螺孔四周,故在孔前接触面已传递一半的力(图6.2.3)。因此,最外列螺栓处危险截面的净截面强度应按下式计算:
(6.2.3)
式中 ;
—连接一侧的高强度螺栓总数;
—计算截面(最外列螺栓处)上的高强度螺栓数目;
1.弹性弯曲屈曲
图6.3.2为两端铰接的理想等截面构件,当轴心压力N达到临界值时,处于屈曲的微弯状态。在弹性微弯状态下,由内外力矩平衡条件,可建立平衡微分方程,求解后可得到著名的欧拉临界力(Eulercriticalforce)公式为:
对无孔洞等削弱的轴心受力构件,以全截面平均应力达到屈服强度为强度极限状态,
应按下式进行毛截面强度计算:
(6.2.1)
式中 —构件的轴心力设计值;
—钢材抗拉强度设计值或抗压强度设计值;
轴心受力构件
18
第6章 轴心受力构件 第三节 轴心受压构件旳受力性能
2 承载力极限状态旳计算内容 (1)截面强度破坏
(2)构件整体失稳(屈曲)
(3)板件局部失稳(屈曲) 限制受压板件旳宽厚比
19
第6章 轴心受力构件 第三节 轴心受压构件旳受力性能
3 稳定问题旳某些概念 (1)应力刚化效应 拉力提升构件旳弯曲刚度 压力降低 (2)只要构件旳截面中存在受压区域,就可能存在稳定问题 (3)强度问题是应力问题,针正确是构件最单薄旳截面,加大截面 积即可提升构件旳强度,计算以净截面为准 (4)稳定问题是刚度(变形)问题,针正确是构件整体,减小变形 (提升刚度)旳措施都能够提升构件旳稳定性,计算以毛截面为准
➢ 根据截面残余应力旳峰值大小和分布,弯曲屈曲旳方向,将截面 分为a、b、c三类,相应地得到a、b、c三条柱子曲线
44
第6章 轴心受力构件 第七节 规范中实腹式轴压构件弯曲屈曲时整体稳定计算
➢ a类截面临界应力最高,残余应力对临界应力起有利作用或影响 很小,只涉及两种截面: ✓ 绕强(x)轴屈曲时旳热轧工字钢和热轧中翼缘、窄翼缘H型钢 ✓ 热轧无缝钢管
(1)发生弯扭屈曲旳条件 ✓ 截面形式:单轴对称截面 ✓ 失稳方向:绕对称轴失稳。绕非对称轴失稳必然是弯曲失稳 ✓ 原因:形心和剪心不重叠,弯曲时截面绕剪心转动
51
第6章 轴心受力构件 第八节 实腹式轴压构件弯扭屈曲时整体稳定计算
(2)单角钢截面、双角钢组合截面弯扭屈曲旳规范计算措施 ➢ 用换算长细比 (考虑扭转效应)替代弯曲屈曲时旳长细比 查得稳定系数 ,再按下列公式验算杆件旳稳定
42
第6章 轴心受力构件 第七节 规范中实腹式轴压构件弯曲屈曲时整体稳定计算
轴心受力构件
还使得构件极限承载力显著降低,同时初弯曲和自重产生的 挠度也将对构件的整体稳定带来不利影响。
(2)扭转屈曲——失稳时除杆件的支撑端外,各截面均绕纵轴扭转,是某 些双轴对称截面可能发生的失稳形式。 (3)弯扭屈曲——单轴对称截面绕对称轴屈曲时,杆件发生弯曲变形的同 时必然伴随着扭转。
5.2 实腹式轴压柱的整体稳定
2.理想轴心压杆的弹性屈曲概念 N
稳 定 平 衡F 状 态
对两端铰支的理想细长压杆, 当压力N较小时,杆件只有轴心压 缩变形,杆轴保持平直。如有干扰 使之微弯,干扰撤去后,杆件就恢 复原来的直线状态,这表示直线状 态的平衡是稳定的。
可认为连接传力所依靠的摩擦力均匀分布于螺孔四周,故在孔前接触面 已传递一半的力,因此最外列螺栓处危险截面的净截面强度应按下式计算:
N
N f
An,1
其中:An,1 b n1 d0 t
N’
N
N
N
1
Байду номын сангаас
0.5n1 n
n1 计算截面上的螺栓数;
n 连接一侧的螺栓总数。
轴心受力构件对刚度提出限值要求的原因
第5章 轴心受压构件
Axially compressive member
5.1 概述
轴心受力构件是指承受通过截面形心轴线的轴向力作用的构件。
N
N
轴心受力构件广泛应用于各种钢结构之中,如 网架与桁架的杆件、钢塔的主体结构构件、双跨 轻钢厂房的铰接中柱、带支撑体系的钢平台柱等。
第四章 轴心受力构件
§4-6 格构式轴心受压柱的截面设计
§4-6 格构式轴心受压柱的截面设计
一、格构式轴心受压柱的组成 分肢
缀板
缀件
缀条
§4-6 格构式轴心受压柱的截面设计
二、格构式轴心受压柱的实轴和虚轴
垂直于分肢腹板平面的主轴--实轴;
垂直于分肢缀件平面的主轴--虚轴;
格构式轴心受压构件的设计应考虑:
§4-3 轴心受压构件的整体稳定
1.0
0.8 d 0.6 c b
a
0.4
0.2
0
50
100
150
200
250
(Q235)
a类为残余应力影响较小,c类为残余应力影响较大, 并有弯扭失稳影响,a、c类之间为b类,d类厚板工字 钢绕弱轴。
§4-3 轴心受压构件的整体稳定
构件长细比的确定
y x x
截面为双轴对称构件:
§4-2 轴心受力构件的强度和刚度
二、刚度计算(正常使用极限状态) 保证构件在运输、安装、使用时不会产生过大变形。
l0 [ ] i
l0 构件的计算长度;
i
I 截面的回转半径; A
[ ] 构件的容许长细比
§4-3 轴心受压构件的整体稳定
§4-3 轴心受压构件的整体稳定
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 轴心受压构件
轴 心 受 力 构 件
稳定
(承载能力极限状态)
刚度 (正常使用极限状态)
§4-2 轴心受力构件的强度和刚度
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)
N f An
其中: N — 轴心拉力或压力设计值; An— 构件的净截面面积; f— 钢材的抗拉强度设计值。 轴心受压构件,当截面无削弱时,强度不必计算。
轴心受力构件
轴心受力构件是指受到力沿着其中心轴线方向作用的构件,包括拉杆、柱子、管道等等。
在机械工程中,充当着至关重要的角色,它们能够在不同的应用场景中承受压力、弯曲和剪切等力量,从而使得机械设备得以正常运转。
让我们深入探讨的运用和作用。
一、的类型及应用常常分为拉压杆和管子。
拉杆用于承受拉伸力,管子用于承受高压液力或燃气力。
在机械设计中,这些构件通常被用于桥梁、塔楼、建筑物和车辆等结构的建造中。
同时,也被广泛应用在航空、航天和船舶设计中,纤维材料的应用更是增强了的使用范围。
二、的受力分析的设计需要考虑很多因素,如承受的荷载大小、材料的强度和刚度、构件的长度和支承方式等。
在实际使用过程中,还需要考虑力的传导和使构件具备符合要求的变形能力等因素。
在受力分析中,的力学特性是重要的。
如果设计不当,构件可能会承受破坏性变形,从而导致严重事故的发生。
例如,当长度超过一定比例时,由于柔性构件的配重达到了高峰值,会导致塔架的共振而倒塌。
三、的设计方法的设计需要考虑构件的应用领域、材料的种类和强度、以及构件长度及支承方式等因素。
设计师需要根据具体的要求进行选择和修改,并根据设计结果进行适当的测试和验证。
其中,材料的选择是重要的一环。
常见的材料有钢、铝和钛合金,选择合适的材料可以提高构件的强度和硬度,从而承受更大的压力。
在设计过程中,还需要使用工具进行力学分析,如荷载分析、变形分析和应力分析等。
对于复杂的结构,还可以通过CAD或其他软件进行模拟和分析。
最终的结果需要根据实际的实验测试结果进行优化,以确保能够达到设计要求。
四、的优化和改进的优化和改进是一个长期的研究领域。
近年来,各国的专家学者已经提出了许多新的方法和技术,如新材料的应用、优化的结构设计和精确的力学分析方法等。
这些技术的不断进步和应用,使得的质量和使用效果都得到了极大的提高。
总之,是机械工程中不可或缺的部分。
在未来,随着科技的进步,的研究将逐步深化,并得到更广泛的应用。
轴心受力构件
4
k
I
2z
2y
2z
2
4 1 a02
/ i02
2y2z
1/
2
通常Nyz恒比Ny和Nw小,因此a0/i0越大, Nyz越小,但可能大
于N
,因此对称截面的承载力决定于
Ex
N
Ex
和Nyz中的较小者。
第四章 轴心受力构件
§4.3.2 初始缺陷对轴心压杆的整体稳定承载力影响
前面介绍的是理想压杆的临界力,实际构件与理想状态有 很大的差别,构件总有初弯曲、初偏心、残余应力存在。理 想的轴心压杆是不存在的。其中初弯曲、初偏心及残余应力 的影响为不利影响,而边界条件的影响往往是有利的(悬臂 杆除外)。
4.3.1 理想轴心压杆的临界力
轴心受力构件由于截面形式不同,可能有三种不同的屈 曲形式而丧失稳定。
弯曲屈曲 对称平面内失稳
扭转屈曲 十字截面
弯扭屈曲 非对称平面内失稳
4.3 轴心压杆的整体稳定
第四章 轴心受力构件
4.3.1 理想轴心压杆的临界力
4.3 轴心压杆的整体稳定
第四章 轴心受力构件
4.3.1 理想轴心压杆的临界力
β为与截面形状有关的系数。
d2y dx2
N EI
y
N
GA
d2y dx2
y(1 N ) N y 0
GA EI
k
2
N E I (1
N
)
GA
y k 2 y 0
代入边界条件x=0和x=l时,y=0,满足上式的最小k值
k2
N E I (1
N
)
2
l2
第四章-轴心受力构件
2
300
200
有重 级工 作制 吊车 旳
厂房
250
-
受压构件旳允许长细比
项次
构件名称
允许长 细比
柱、桁架和天窗架中旳杆件
1 柱旳缀条、吊车梁或吊车桁架 150 下列旳柱间支撑
支撑(吊车梁或吊车桁架下列
旳柱间支撑除外)
2
200
用以降低受压构件长细比旳杆
件
第二节 轴心受压构件旳整体稳定
3、理想构件旳弹性弯曲失稳
根据右图列平衡方程
d2y EI dx2 Ny 0
解平衡方程:得
欧拉临界力只合用
N cr
π2 EI l02
π2 E λ2
A
于材料为弹性时旳 情况,应力一旦超 出材料旳百分比极
σ cr
N cr A
π2 E λ2
限,则欧拉公式不 再合用。
4、理想构件旳弹塑性弯曲失稳
构件失稳时假如截面应力超出弹性
ix( y)
Ix( y) A
实腹式轴心受压构件旳稳定性应按下式计算:
N ≤f
A
A为杆件毛截面面积
式中 为整体稳定系数,实质是临界应力与屈
服点旳比值。柱旳临界应力与截面形状、力作用方
向等有关,
— 轴心受压构件的整体稳定系数
根据构件截面分类取由λx,λy,λyz
fy 决定的
235
max
(1)规范现对t 40mm旳轴压构件作了专门要求。同步补充了d 类
r
2Er 2
5、实际构件旳整体稳定 实际构件与理想构件间存在着初始缺陷,缺陷主要有:
初始弯曲、残余应力、初始偏心。 ⑴、初始弯曲旳影响
1.一经加载产生 挠度,先慢后快
钢结构轴心受力构件
钢结构轴心受力构件在钢结构的世界里,轴心受力构件是其中一类至关重要的组成部分。
它们在建筑结构、桥梁工程以及各类工业设施中都扮演着不可或缺的角色。
那么,什么是钢结构轴心受力构件呢?简单来说,就是在承受外力作用时,构件的截面形心与外力的作用线重合,从而使构件沿着其轴线方向承受拉力或压力的钢结构部件。
钢结构轴心受力构件主要包括轴心受拉构件和轴心受压构件两种类型。
先来说说轴心受拉构件。
这类构件在实际应用中非常常见,比如钢结构中的吊车梁、屋架中的下弦杆等。
当构件受到拉力作用时,其内部的应力分布相对均匀,主要承受拉应力。
在设计轴心受拉构件时,我们需要重点考虑的是材料的抗拉强度。
因为一旦拉力超过了材料的抗拉极限,构件就会发生破坏。
为了保证轴心受拉构件的可靠性和安全性,我们在选材上要格外谨慎。
一般会选择高强度的钢材,以充分发挥其抗拉性能。
同时,在连接节点的设计上也不能马虎,要确保连接牢固,避免出现松动或断裂的情况。
接下来谈谈轴心受压构件。
轴心受压构件在钢结构中也有着广泛的应用,例如柱子、桁架中的受压弦杆等。
与轴心受拉构件不同,轴心受压构件的受力情况要复杂得多。
当受到压力作用时,构件可能会发生整体失稳或者局部失稳的现象。
整体失稳是指整个构件突然发生弯曲变形,失去承载能力。
而局部失稳则是指构件的某个局部区域出现了屈曲现象。
为了防止这些失稳情况的发生,我们在设计轴心受压构件时,需要考虑很多因素。
首先,要合理选择构件的截面形状和尺寸。
常见的截面形状有圆形、方形、矩形等。
对于较大的压力,通常会选择回转半径较大的截面形状,以提高构件的稳定性。
其次,要控制构件的长细比。
长细比是指构件的计算长度与截面回转半径的比值。
长细比越大,构件越容易失稳。
因此,在设计时要通过合理的布置和支撑,减小构件的计算长度,从而降低长细比。
此外,还需要考虑材料的抗压强度和屈服强度。
在实际工程中,为了提高轴心受压构件的稳定性,常常会采用一些加强措施,比如设置纵向加劲肋、横向加劲肋等。
轴心受力构件
λmax≤[λ]
三、相关设计计算
在进行轴心受力构件的设计时,对于承载能力的极 限状态,受拉构件一般以强度控制,而受压构件则需要 考虑同时满足强度和稳定的要求。对于正常使用的极限 状态,是通过保证构件的刚度——即限制其长细比来满 足。 因此,按照其受力性质的不同,轴心受拉构件的设 计需要分别进行强度和刚度验算;而轴心受压构件的设 计需分别进行强度、稳定和刚度的验算。
第三节 轴心受压构件的整体稳定
一、概述
1.定义 轴心压力超过某一值后,构件突然产生很大的变形 而丧失承载能力,称为轴心受压构件丧失整体稳定性或屈 曲。轴心受压构件通常是由整体稳定条件决定承载力。 2. 分类 依变形分为弯曲屈曲、扭转屈曲、弯扭屈曲。双轴对称 截面轴心受压构件的一般为弯曲屈曲,当截面的扭转刚度 较小时(如十字形截面),也可能发生扭转屈曲。单轴对 称截面轴心受压构件绕非对称轴屈曲时,为弯曲屈曲;若 绕对称轴屈曲时,由于轴心压力所通过的截面形心与截面 的扭转中心不重合,此时发生的弯曲变形总伴随着扭转变 形,属于弯扭屈曲。截面无对称轴的轴心受压构件,其屈 曲形式都属于弯扭屈曲。
3. 缀材设计 (1) 格构式轴心受压构件的剪力 规范以中高处截面边缘最大应力达屈服强 度为条件,导出的构件最大剪力V的简化算 fy Af 式为 V
85 235
设计缀材及连接时取剪力沿杆长不变。
(2) 缀条的设计 每个缀材面如同一平行弦桁架,缀条按桁架的 腹杆进行设计。一根斜缀条承受的轴向力Nt为 Nt =V1 / (n cos) 构件失稳时的变形方向不确定,斜缀条可能 受压或受拉。设计时按轴心受压构件设计。单系缀 条体系的横缀条,其截面尺寸一般取与斜缀条相同, 也可按容许长细比确定。 (3) 缀板的设计 缀板柱可视为一多层刚架。假定整体失稳时各 层分肢中点和缀板中点为反弯点。
钢结构设计原理4轴心受力构件
轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt
轴心受力构件
轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。
一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。
二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。
②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。
③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。
2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。
1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。
由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。
第5章 轴心受力构件
An1 b n1 d0 t
螺栓错列布置可能沿正交截面(I -I)破坏,也可能沿齿状截面 (Ⅱ- Ⅱ)破坏,取截面的较小面 积计算:
2 An 2c4 n2 1 c12 c2 n2 d 0 t
Steel Structure
对于高强螺栓的摩擦型连接,可以认为连接传力所依靠的摩擦力均匀分 N 布于螺孔四周,故在孔前接触面已传递一半的力。 N
试计算此拉杆所能承受的最大拉力及容许达到的最大计算长度。
Steel Structure
【解】 查型钢表附表13,2∟100×10角钢:ix= 3.05cm,iy=4.52cm。 f=215N/mm2,角钢的厚度为10mm,在确定危险截面之前先把它按中面展 开如图5.8 (b) 所示。 (1)容许承受的最大拉力 齿状净截面(I—I)的面积为:
缀条用斜杆组成或斜杆与横杆共同
组成,它们与分肢翼缘组成桁架体 系;缀板常用钢板,与分肢翼缘组
成刚架体系。
Steel Structure
5.2 轴心受压构件的强度和刚度
◆ 在进行轴心受力构件的设计时,应同时满足第一类极限状态和
第二类极限状态的要求。 ◆ 对于承载能力的极限状态,受拉构件一般以强度控制,而受压 构件需同时满足强度和稳定的要求。 ◆ 对于正常使用的极限状态,是通过保证构件的刚度-限制其长 细比来达到的。 ◆ 轴心受拉构件的设计需分别进行强度和刚度的计算; 而轴心受压构件的设计需分别进行强度、稳定和刚度的计算。
Steel Structure
『关键知识』 1.轴心受压构件的整体稳定计算; 2.轴心受压构件的局部稳定计算;
3.实腹式和格构式轴心受压构件的设计方法;
4.轴心受压柱铰接柱脚的设计。 『重点讲解』
轴心受力构件的概念及其类型
轴心受力构件的概念及其类型轴心受力构件是工程结构中常见的一种构件形式,它由多个轴心受力元件组成,能够承受内力、外力和变形。
轴心受力构件广泛应用于建筑、桥梁、机械等各种领域,具有结构简单、强度高、稳定可靠等特点。
本文将详细介绍轴心受力构件的概念、分类、设计原则和应用领域。
一、概念介绍轴心受力构件是指由一根或多根轴向受力的线材、板条、形状复杂的截面、系统部件等构成的构件。
轴心受力构件通常具有良好的轴向力传递能力,能够在内力作用下产生轴向应变和轴向应力。
在设计中,轴心受力构件通常通过选取适当的截面形状和尺寸来满足强度、刚度和稳定性的要求。
二、类型分类根据构件的材料和截面特点,轴心受力构件可以分为以下几种类型:1.线材构件:线材构件通常由圆钢、角钢、工字钢等线材形成。
这种构件截面形状简单,常用于承受拉力和压力。
2.板条构件:板条构件通常由薄板和矩形截面钢材构成,如钢板、钢带等。
板条构件适用于承受弯曲力、剪切力和压力。
3.有孔构件:有孔构件通常应用于承受剪切力和扭矩,如圆孔、槽孔等形状的构件。
4.混凝土构件:混凝土构件通常由钢筋和混凝土组成。
这种构件在承受压力和弯曲力时具有良好的性能。
5.复合构件:复合构件由不同材料组成,可以充分发挥各种材料的特点以及各自的优势。
三、设计原则在轴心受力构件的设计过程中,需要遵循以下原则:1.合理选材:根据结构的要求,选择合适的材料,考虑强度、刚度、稳定性等因素。
2.合理选截面:根据内力的特点和作用方式,选择合适的截面形状和尺寸。
3.合理分布内力:在设计中,应尽量合理分配内力,避免集中在某一截面或某一部位,提高构件的整体性能。
4.考虑边界条件:结构系统的边界条件对构件的应力分布和变形有重要影响,应在设计中充分考虑。
5.考虑构件的连接方式:在设计中需考虑构件之间的连接方式和连接强度,保证构件的力学性能。
四、应用领域轴心受力构件广泛应用于各个工程领域,包括建筑、桥梁、航空航天、交通运输、能源等。
轴心受力构件知识点总结
轴心受力构件知识点总结一、概念轴心受力构件是指受力对象的截面积负重心和受力方向一致的构件,在受力作用下,截面上各点受到的应力主要是轴向拉力或轴向压力,受力构件一般用材料强度和截面形状进行受力设计。
轴心受力构件的主要特点是受力为单轴应力,只产生轴向应力,不产生剪切应力。
轴心受力构件一般用钢、木、混凝土、玻璃等材料制作。
二、受力情况1. 轴向拉力当受力构件受到拉力作用时,构件内部各点受到的应力都是轴向拉力。
这时构件上每一个截面都受到一般的拉力,截面上的应力为均匀的拉应力。
2. 轴向压力当受力构件受到压力作用时,构件内部各点受到的应力都是轴向压力。
这时构件上每一个截面都受到一般的压力,截面上的应力也为均匀的压应力。
三、受力工作原理受力构件在受力作用下,内部各点受到的应力都是轴向拉力或轴向压力,主要受力方式包括:拉伸、压缩、弯曲、扭转等。
受力构件的受力工作原理主要包括静力平衡条件和应力平衡条件。
1. 静力平衡条件轴心受力构件在受力作用下,整个构件的外力和内力要达到平衡,即受力构件所受外力和内力的合力和合力矩为零。
2. 应力平衡条件轴心受力构件在受力作用下,截面上各个微元受到的应力要达到平衡,即受力构件所受应力和强度平衡,截面上各点的应力和应变满足静力平衡和变形条件。
四、受力公式1. 拉力公式受力构件受到拉力作用时,其拉力公式为N = A * σN为拉力,A为受力构件的截面积,σ为截面受力构件所受的应力。
2. 压力公式受力构件受到压力作用时,其压力公式为N = A * σN为压力,A为受力构件的截面积,σ为截面受力构件所受的应力。
3. 应变公式受力构件在受力情况下,其应变公式为ε = δ / Lε为应变,δ为受力构件的变形量,L为受力构件的长度。
五、受力计算1. 根据静力平衡和应力平衡条件,可以计算受力构件所受的拉力和压力大小,受力构件的承载能力等。
2. 在计算受力构件的承载能力时,需要考虑受力构件的截面形状、材料强度、受力方式等因素。