轴心受力构件的强度和刚度计算

合集下载

钢结构设计原理 第四章-轴心受力构件

钢结构设计原理 第四章-轴心受力构件

因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t

2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。

钢结构第四章轴心受力构件

钢结构第四章轴心受力构件
以极限承载力Nu为依据。规范以初弯曲v0 =l/1000来综合考
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:

轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。

轴心受力构件的强度计算公式为f A Nn≤=σ (4-1) 式中: N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。

对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。

因此,验算最外列螺栓处危险截面的强度时,应按下式计算:f A N n≤='σ (4-2)'N =)5.01(1nn N - (4-3)式中: n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数; 0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度f AN≤=σ (4-4)式中: A ——构件的毛截面面积。

2.轴心受力构件的刚度计算为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。

轴心受力构件的刚度是以限制其长细比来保证的,即][λλ≤ (4-5)式中: λ——构件的最大长细比;[λ]——构件的容许长细比。

3. 轴心受压构件的整体稳定计算《规范》对轴心受压构件的整体稳定计算采用下列形式:f AN≤ϕ (4-25)式中:ϕ——轴心受压构件的整体稳定系数,ycrf σϕ=。

整体稳定系数ϕ值应根据构件的截面分类和构件的长细比查表得到。

构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件⎭⎬⎫==y y y x x x i l i l //00λλ(4-26)式中:x l 0,y l 0——构件对主轴x 和y 的计算长度;x i ,y i ——构件截面对主轴x 和y 的回转半径。

双轴对称十字形截面构件,x λ或y λ取值不得小于5.07b/t (其中b/t 为悬伸板件宽厚比)。

第四章轴心受力构件公式整理

第四章轴心受力构件公式整理
当 b1 t 0.56 l 0 y b 1 时:
2 2 l b1 0yt 3 .7 1 t 52.7b14
( 4 30a )
yz
( 4 30b )
④、单轴对称的轴心受压构件在绕非对称轴以外的任意轴失稳时 ,应按弯扭屈曲计算其稳定性。
当计算等边角钢构件绕平行轴(u轴)稳 定时,可按下式计算换算长细比,并按b类 截面确定 值:
钢结构
2014-2015-2
一、强度计算(承载能力极限状态)
N f An
N—轴心拉力或压力设计值; An—构件的净截面面积; f—钢材的抗拉强度设计值。
( 4 1)
适用于fy/fu≤0.8的情况;轴心受压构件,当截面无削 弱时,强度不必计算。
二、刚度计算(正常使用极限状态)
保证构件在运输、安装、使用时不会产生过大变形。
( 4 41)
式中: 构件两方向长细比较大 值,当 30时 , 取 30;当 100时,取 100。
B、箱形截面翼缘板
b 235 13 t fy b0 235 40 t fy
( 4 42 ) ( 4 43)
b0 t
( 4 27b )
B、等边双角钢截面,图(b)
b
y
b
当 b t 0.58 l 0 y b时:
4 0 . 475 b yz y 1 2 2 l0 y t 当 b t 0.58 l 0 y b时:
y

(b)
( 4 28a )
yz
y
(C)
( 4 29a )
yz
b2 5 .1 t
2 2 l0 t 1 y 4 17 . 4 b 2

钢结构设计原理4轴心受力构件

钢结构设计原理4轴心受力构件

轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt

轴心受力构件

轴心受力构件

轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。

一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。

采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。

二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。

②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。

③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。

2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。

1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。

由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。

第6章 轴心受力构件-new

第6章 轴心受力构件-new

其中焊接残余 应力数值最大。
B、分布规律
实测的残余应力分布较复杂而离散,分析时常采用其简化分布图。
中南大学 土木工程学院 欧阳震宇
第6章轴心受力构件 残余应力分布规律
0.361fy fy 0.3fy 1 f y 0.3fy 0.805fy 0.3fy 0.3fy
+
+
(a)热扎工字钢
fy 0.75fy
图6.3.3 欧拉及切线模量临界应力 与长细比的关系曲线
中南大学 土木工程学院 欧阳震宇
第6章轴心受力构件
初 始 缺 陷
力学缺陷:残余应力、材料不均匀等。 几何缺陷:初弯曲、初偏心等;
6.3.3 力学缺陷对轴心受压构件弯曲屈曲的影响
1.残余应力的产生和分布规律 A、产生的原因
①焊接时的不均匀加热和冷却; ②型钢热扎后的不均匀冷却; ③板边缘经火焰切割后的热塑性收缩; ④构件冷校正后产生的塑性变形。
y
Ncr 2 EI I e 2 E I e cr 2 2 A l A I I
(6.3.8)
柱屈曲可能的弯曲形式有两种:沿强轴(x轴) 和沿弱轴(y轴)因此:
b
对x x轴屈曲时: EI ex 2t ( b)h 2 4 Etx E E 2 Ix 2tbh 4
第6章轴心受力构件
§6.3
实腹式轴心受压构件
6.3.1 轴心受压构件的整体失稳形式
理想轴心受压构件(理想直,理想 轴心受力)当其压力小于某 个值(Ncr)时,只有轴向压缩变形和均匀压应力。达到该值时,构 件可能弯曲或扭转,产生弯曲或扭转应力。此现象称:构件整体失 稳或整体屈曲。意指失去了原先的直线平衡形式的稳定性。 轴心压力N较小 干扰力除去后,恢复到 原直线平衡状态 干扰力除去后,不能恢复到原直 线平衡状态,保持微弯状态 干扰力除去后,弯曲变形仍然迅 速增大,迅速丧失承载力

《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件

《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件
绕非对称轴: x lox ix
Suzhou University of Science & Technology
y
x
x
绕对称轴y轴: 一般为弯扭屈曲,其临界力低
y
于弯曲屈曲,以换算长细比λyz代替λy
1
yz
1 2
2y
2z
2y 2z 2 4 1 e02
i02
2y 2z
2
2021/8/30
19
第5章 轴心受力构件
3. 初偏心的影响
Suzhou University of Science & Technology
由于构造、杆件截面尺寸、加工、安装等原因,作用于杆端的 轴心压力实际上不可避免的会偏离截面的形心而造成初偏心。
2021/8/30
20
第5章 轴心受力构件
4. 杆端约束的影响
Suzhou University of Science & Technology
四边简支板单向均匀受压时的临界力为:
σ cr
χkπ 2 12(1
E υ2
)(
t b
)2
四边简支单向均匀受压薄板的屈曲
式中:k 屈曲系数,k mb
a
2
a mb
v 0.3 —材料的泊松比
χ — 嵌固系数或弹性约束系数,大于1.0
2021/8/30
31
第5章 轴心受力构件
箱形截面:
h0
tw
Suzhou University of Science & Technology
(c)
tw
b0 tw
(d)
D
tt
b0 /t或h0 /tw 40 235 /f y

第5章 轴心受力构件

第5章 轴心受力构件

An1 b n1 d0 t
螺栓错列布置可能沿正交截面(I -I)破坏,也可能沿齿状截面 (Ⅱ- Ⅱ)破坏,取截面的较小面 积计算:
2 An 2c4 n2 1 c12 c2 n2 d 0 t
Steel Structure
对于高强螺栓的摩擦型连接,可以认为连接传力所依靠的摩擦力均匀分 N 布于螺孔四周,故在孔前接触面已传递一半的力。 N
试计算此拉杆所能承受的最大拉力及容许达到的最大计算长度。
Steel Structure
【解】 查型钢表附表13,2∟100×10角钢:ix= 3.05cm,iy=4.52cm。 f=215N/mm2,角钢的厚度为10mm,在确定危险截面之前先把它按中面展 开如图5.8 (b) 所示。 (1)容许承受的最大拉力 齿状净截面(I—I)的面积为:
缀条用斜杆组成或斜杆与横杆共同
组成,它们与分肢翼缘组成桁架体 系;缀板常用钢板,与分肢翼缘组
成刚架体系。
Steel Structure
5.2 轴心受压构件的强度和刚度
◆ 在进行轴心受力构件的设计时,应同时满足第一类极限状态和
第二类极限状态的要求。 ◆ 对于承载能力的极限状态,受拉构件一般以强度控制,而受压 构件需同时满足强度和稳定的要求。 ◆ 对于正常使用的极限状态,是通过保证构件的刚度-限制其长 细比来达到的。 ◆ 轴心受拉构件的设计需分别进行强度和刚度的计算; 而轴心受压构件的设计需分别进行强度、稳定和刚度的计算。
Steel Structure
『关键知识』 1.轴心受压构件的整体稳定计算; 2.轴心受压构件的局部稳定计算;
3.实腹式和格构式轴心受压构件的设计方法;
4.轴心受压柱铰接柱脚的设计。 『重点讲解』

轴心受压构件的整体稳定性

轴心受压构件的整体稳定性
在杆的两端的最大剪力: 规范规定:
2、缀条设计 内力: V1:分配到一个缀材面的剪力。当每根柱子都有两个缀材面时,此时V1为V/2; n 承受剪力V1的斜缀条数,单缀条体系,n =1;双缀条超静定体系,通常简单地认为每根缀条负担剪力V2之半,取n =2; 缀条夹角,在30~60之间采用。 斜缀条常采用单角钢。由于角钢只有一个边和构件的肢件连接,考虑到受力时的偏心作用,计算时可将材料强度设计值乘以折减系数r =0.85。
第三节 实腹式轴心受压构件的局部屈曲
组合截面板件的局部屈曲现象:宽厚比太大
一、均匀受压板件的弹性屈曲应力(x单方向受压) 在弹性状态屈曲时,单位宽度板的力平衡方程是: 式中 w 板件屈曲以后任一点的挠度; Nx 单位宽度板所承受的压力; D 板的抗弯刚度,D=Et3/12(12),其中t是板的厚度, 是钢材的泊松比。
二、工字形组合截面板件的局部屈曲
对于局部屈曲问题,通常有两种考虑方法: 方法1:不允许板件屈曲先于构件整体屈曲,目前一般钢结构就是不允许局部屈曲先于整体屈曲来限制板件宽厚比。 方法2:允许板件先于整体屈曲,采用有效截面的概念来考虑局部屈曲对构件承载力的不利影响,冷弯薄壁型钢结构,轻型门式刚架结构的腹板就是这样考虑的。
二、刚度计算: 保证构件在运输、安装、使用时不产生过大变形
1、受拉构件。
2、受压构件。
1)双轴对称截面
2)单轴对称截面 绕非对称轴: 绕对称轴:采用换算长细比,对于单角钢和双角钢截面可采用简化公式。
第二节 实腹式轴心受压构件的弯曲屈曲
强度破坏:应力超过设计强度;应力针对某个截面
稳定问题:达到某荷载值时变形将急剧增加,过渡到不稳定的状态;变形针对整个结构。 提高稳定性措施:增大截面惯性距,增强约束,减小计算长度; 轴压构件三种屈曲形态:

2.2轴心受力构件设计

2.2轴心受力构件设计
应力塑性 重分布
轴心受力构件强度计算式:
(5.1)
对普通螺栓连接构件,构件净截面面积An应取正截面 (Ⅰ-Ⅰ)和齿状截面(Ⅱ-Ⅱ或Ⅲ-Ⅲ)较小面积计算
摩擦型高强螺栓连接的构件,连接传力的摩擦力均匀 分布于螺孔四周,故孔前传递了一半的力,最外列螺 栓处危险净截面强度计算式应为:
(5.2)
生凹凸鼓出变形,这种现象称为板
件失去稳定,或称板件屈曲。
5.3.2 局部稳定
钢构件承载力往往由整体稳定承载力控制,板 件宽而薄对整体稳定有利,但存在局部稳定 (local buckling)问题 轴心受压构件组成板件(腹板、翼缘等)厚度 与板件宽度相比较小,必须考虑局部稳定问题 构件的局部稳定问题就是保证这些板件在构件 整体失稳前不发生局部失稳或者在设计中合理 利用板件的屈曲后性能(post-buckling behavior)
Afiy Fra bibliotekl0y(2)求截面两个主轴方向所需的回转半径
l0x ix
钢结构设计原理

Design Principles of Steel Structure
对于型钢截面,根据A、ix、iy查型钢表,可选择型钢的型号(附 录1)。
(3)确定截面各板件尺寸 对于焊接组合截面,由 A 和 h、b ,根据构造要求、局部 稳定和钢材规格等条件,确定截面所有其余尺寸。
轴心受力构件的设计:
承载能力的极限状态:
轴心受拉构件—强度控制 轴心受压构件—强度和稳定控制
正常使用的极限状态:
通过保证构件的刚度——限制其长细比
二、轴心受力构件的强度及刚度
2.1 轴心受力构件的强度
轴心受力构件在轴心力作用下,截面内会产生均匀的 拉或压应力,规范规定轴心受力构件的强度应以净截面的 平均应力不超过钢材的屈服强度为准则。轴心受力构件的 强度计算公式:

第四章 轴心受力构件

第四章 轴心受力构件

第四章轴心受力构件§4-1 概述1、工程实例(假设节点为铰接,无节间荷载作用时,构件只受轴心力作用)(1)桁架(2)塔架(3)网架、网壳2、分类⑴按受力来分:①轴心受拉构件②轴心受压构件到某临界值时,理想轴心受压构件可能以三种屈曲形式丧失稳定。

(1) 弯曲屈曲构件的截面只绕一个主轴旋转,构件的纵轴由直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。

如图4-2 (a)就是两端铰接工字形截面构件发生的绕弱轴的弯曲屈曲。

(2) 扭转屈曲失稳时构件除支承端外的各截面均绕纵轴扭转,图4-2 (b)为长度较小的十字形截面构件可能发生的扭转屈曲。

(3) 弯扭屈曲单轴对称截面构件绕对称轴屈曲时,在发生弯曲变形的同时必然伴随着扭转。

图4-2 (c)即T 形截面构件发生的弯扭屈曲。

图4-2 轴心受压构件的三种屈曲形式欧拉临界力和欧拉临界应力临界应力其中:——单位剪力时的轴线转角,;通常剪切变形的影响较小,忽略其对临界力或临界应力的影响。

E N E σ1222211γλπλπσ⋅⋅+⋅⋅==EAEAN cr cr1γ)(1GA βγ=这样,※上述推导基于材料处于弹性阶段,即,或。

(二)初始缺陷对轴心受压构件稳定承载力的影响 1. 残余应力的影响残余压应力对压杆弯曲失稳的影响: 对弱轴的影响比对强轴的影响要大的多。

稳定应力上限,弱轴:强轴:其中:,0<<1.0。

2.初弯曲的影响图4-3 考虑初弯曲的压力—挠度曲线图示压力—挠度曲线有如下特点:1有初弯曲时,挠度v 不是随着N 按比例增加;N 较小时,挠度增加较慢,N 趋于时,挠度增加较快,并趋向于无限大;2相同压力N 的作用下,压杆的初挠度值越大,杆件的挠度也越大;Ecr N EAlEI N =⋅=⋅=2222λππEcr cr E AN σλπσ=⋅==22pcr f E≤⋅=22λπσpp f E λπλ=≥322kEx crx ⋅⋅=λπσkEycry⋅⋅=22λπσ翼缘宽度翼缘弹性区宽度=k k E N3由于有的存在,轴心压杆的承载力总是低于,因此是弹性压杆承载力的上限。

建筑结构——轴心受力构件计算

建筑结构——轴心受力构件计算

求出初选截面面积及回转 ixT和iyT 。
A N
f
ixT
l0 x
(21.9) (21.10)
ixT
l0 x
(21.11)
b.根据 A,ixT和iyT 在型钢表中选一适当的型钢截面。
(2) 组合截面 如果在型钢表中不能够找到比较适当的规格时,可采用组合截面。
a. 初定截面轮廓尺寸 h ixT
1
b iyT
表21.1
表21.2
(4)屈曲分析 a. 如(图21.7)所示两 端 铰支的理想细长压杆,当N力较小时,杆件只有
轴心压缩变形,杆轴保持平直。这时如有外力F干扰,使它微弯,当F力撤去 后,杆件又恢复原来的直线状态,这时杆件处于稳定的平衡状态。
b. 随着N力逐渐加大到某一数值时,如有外力F干扰,杆件微弯,撤除 F力后,杆件仍保持微弯状态,不再恢复到原来的直线状态。这种平衡状态 叫随遇平衡。
l0
2EI l
l0 l , 称为计算长度系数。其值见表21.3
(21.5)
表21.3
1.实际轴心受压构件的实用计算方法
(1)柱子曲线
轴心受压杆件失稳时临界应力与cr 长细比
之间的关系曲线称为
柱子曲线,《钢结构设计规范》将柱子曲线归纳为a,b,c,d四组。 详见表21.4
(本表只列出常用的a、b、c三种类型)。
2C1.3 轴心受力构件
1.轴心受力构件的强度 (1)概述
承载能力是以截面的平均应力达到钢材的屈服强度为极限状态。当构 件截面有削弱时,截面的应力分布不再是均匀的,如图(21.4a)
图21.4 有孔洞拉杆的截面应力分布
构件孔洞附近有应力集中现象。但最后截面上各点的应力均可达到屈服强度,如

钢结构原理-第4章轴心受力构件

钢结构原理-第4章轴心受力构件

《钢结构原理》 第4章 轴心受力构件
4.4.4.2 初弯曲的影响
假设构件变形 为正弦曲线:
x
y0 v0 sin l v0为初始挠度
《钢结构原理》 第4章 轴心受力构件
平衡微分方程:
d2y
x
EI dx2 NyNv0sin l
可得:Yy0y1N v0NEsinlx
vm
v0
v
《钢结构原理》 第4章 轴心受力构件
对于有孔洞的构件,在孔洞附近存在着高额应力集 中现象,孔洞边缘的应力较早地达到屈服应力而发展塑 性变形。由于应力重分布,净截面的应力最终可以均匀 地达到屈服强度fy。
孔洞处截面应力分布 (a) 弹性状态应力 (b)极限状态应力
《钢结构原理》 第4章 轴心受力构件
施工中的钢屋架及支撑
济南遥墙机场候机大厅 管桁架及柱
《钢结构原理》 第4章 轴心受力构件
输电塔
广播电视塔
网架
《钢结构原理》 第4章 轴心受力构件
4.1.3 轴心受力构件的截面形式
(a)
y
y
y
x
x
x
x
x
x
y
y
y
y
x
x
y
y
x
x
y
y
x
x
y
(b) x
y x
y
y
x
x
y
y
x
x
y
y
x
x
y
y
x
x
y
y
x
x
y
(c) x
《钢结构原理》 第4章 轴心受力构件
4.4.4.1 纵向残余应力的影响 残余应力性质:截面内自相平衡的初始应力 产生原因:焊接、轧制、加工切割等 测量方法:锯割法

轴心受压构件的强度计算

轴心受压构件的强度计算

第一节一、普通箍筋柱二、螺旋箍筋柱以承受轴向压力为主的构件称为受压构件。

凡荷载的合力通过截面形心的受压构件称之为轴心受压构件(compression members with axial load at zero eccentricity)。

若纵向荷载的合力作用线偏离构件形心的构件称之为偏心受压构件。

受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整个结构的损坏,甚至倒塌。

按箍筋作用的不同,钢筋混凝土轴心受压构件可分为两种基本类型:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(tied columns),如图;另一种为配有纵向钢筋及螺旋箍筋或焊环形箍筋的螺旋箍筋柱(spirally reinforced columns),如图。

一、普通箍筋柱(一)构造要点1、截面形式:正方形、矩形、工字形、圆形;2、截面尺寸:根据正压力、柱身弯距来确定,截面最小边长不宜小于250mm;3、纵筋:(1)纵向受力钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm,根数不少于4根。

(2)构件的全部纵向钢筋配筋率不宜超过5%。

构件的最小配筋率不应小于0.5%,当混凝土强度等级为C50及以上时不应小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。

(3)纵向受力钢筋应伸入基础(foundations)和盖梁(caps),伸入长度不应规定的锚固长度。

4、箍筋:(1)箍筋应做成封闭式,以保证钢筋骨架的整体刚度。

(2)箍筋间距应不大于纵向受力钢筋直径的15倍且不大于构件横截面的较小尺寸(圆形截面采用0.8倍直径)且不大于400mm。

纵向受力钢筋搭接范围的箍筋间距,当绑扎搭接钢筋受拉时不大于主钢筋直径的5倍且不大100mm;当搭接钢筋受压时不大于主钢筋直径的10倍且不大于200mm。

纵向钢筋截面面积大于混凝土截面面积3%时,箍筋间距不应大于纵向钢筋直径的10倍且不大于200mm。

(3)箍筋直径不小于8mm且不小于纵向钢筋直径的1/4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴心受力构件的强度和刚度计算
1.轴心受力构件的强度计算
轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。

轴心受力构件的强度计算公式为
f A N
n
≤=
σ (4-1) 式中: N ——构件的轴心拉力或压力设计值;
n A ——构件的净截面面积;
f ——钢材的抗拉强度设计值。

对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。

因此,验算最外列螺栓处危险截面的强度时,应按下式计算:
f A N n
≤=
'
σ (4-2)
'N =)5
.01(1
n
n N - (4-3)
式中: n ——连接一侧的高强度螺栓总数;
1n ——计算截面(最外列螺栓处)上的高强度螺栓数;
0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度
f A
N
≤=
σ (4-4)
式中: A ——构件的毛截面面积。

2.轴心受力构件的刚度计算
为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。

轴心受力构件的刚度是以限制其长细比来保证的,即
][λλ≤ (4-5)
式中: λ——构件的最大长细比;
[λ]——构件的容许长细比。

3. 轴心受压构件的整体稳定计算
《规范》对轴心受压构件的整体稳定计算采用下列形式:
f A
N
≤ϕ (4-25)
式中:ϕ——轴心受压构件的整体稳定系数,y
cr
f σϕ=。

整体稳定系数ϕ值应根据构件的截面分类和构件的长细比查表得到。

构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件

⎬⎫
==y y y x x x i l i l //00λλ
(4-26)
式中:x l 0,y l 0——构件对主轴x 和y 的计算长度;
x i ,y i ——构件截面对主轴x 和y 的回转半径。

双轴对称十字形截面构件,x λ或y λ取值不得小于5.07b/t (其中b/t 为悬伸板件宽厚比)。

(2)截面为单轴对称的构件
以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。

对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。

在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。

因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ
[]
2
/122202022222)/1(4)()(2
1
z
y z y z y
yz i e λ
λλλλλ
λ--+++=
)/7.25//(2
202ωωλl I I A i t z +=
单角钢截面和双角钢组合T 形截面绕对称轴的换算长细比可采用简化方法确定。

无任何对称轴且又非极对称的截面(单面连接的不等边单角钢除外)不宜用作轴心受压构件。

对单面连接的单角钢轴心受压构件,考虑折减系数后,可不考虑弯扭效应。

当槽形截面用于格构式构件的分肢,计算分肢绕对称轴(y 轴)的稳定性时,不必考虑扭转效应,直接y λ用查出y ϕ值。

4.工字形和H 形截面轴心受压构件的局部稳定
在单向压应力作用下,当板件进入弹塑性状态后,临界应力可用下式表达
2
2
2)()1(12b
t E k cr νπχησ-= (4-36) 式中: χ——板边缘的弹性约束系数;
η——弹性模量折减系数,根据轴心受压构件局部稳定的试验资料,可
取为
E f E f y y /)/0248.01(1013.022λλη-=
(4-37)
局部稳定验算考虑等稳定性,保证板件的局部失稳临界应力不小于构件整体稳定的临界应力(y f ϕ),即
y f b
t
v E ϕχβπη≥-22
2)()1(12
(4-38)
由式(4-38)即可确定板件宽厚比的限值。

(1)工字形和H 形截面的受压翼缘
工字形截面的腹板一般较薄,对翼缘板几乎没有嵌固作用,翼缘可视为三边简支一边自由的均匀受压板,取屈曲系数k =0.425,弹性约束系数χ=1.0。

由式(4-38)可以得到翼缘板外伸部分的宽厚比b /t 与长细比λ的关系
y
f t b 235
)1.010(λ+≤ (4-39)
式中:λ——构件两方向长细比的较大值。

当λ<30时,取λ=30;当λ>100
时,取λ=l00。

(2)工字形和H 形截面的腹板
腹板可视为四边支承板,屈曲系数k =4。

当腹板发生屈曲时,翼缘板对腹板将起一定的弹性嵌固作用,取约束系数χ=1.3。

由式(4-38)经简化后得到腹板高厚比w t h /0的表达式
y
w f t h 235
)
5.025(0λ+≤ (4-40) 同理,可得其他截面构件的板件宽厚比限值。

轴心受力构件的强度和刚度验算
1.图1(a )所示为一支架,其支柱的压力设计值为N ,柱两端铰接,截面无孔眼削弱。

已知:钢材等级(f ),容许长细比[]λ。

支柱选用材料的规格(y x i i A ,,),整体稳定系数ϕ值表。

验算此支柱的承载力。

图1
解:
(1)强度验算:强度因截面无孔眼削弱,可不验算强度。

(2)局部稳定验算:轧制工字形钢的翼缘和腹板均较厚,可不验算局部稳定。

(3)刚度验算。

长细比
[]λλ<=
x
x
x i l 0 []λλ<=
y
y y i l 0
(4)整体稳定验算:
y λ远大于x λ,故由y λ计算得592.0=ϕ,于是根据构件的截面分类和构件的长细比查表
得整体稳定系数ϕ值。

2223
205)(2.20010
135592.0101600mm N f mm N A N =<=⨯⨯⨯=ϕ
2.图2所示一上端铰接,下端固定的轴心受压柱,承受的压力设计值为N 。

已知:柱的长度,计算长度系数μ,钢材等级(f )以及A ,x i ,y i 。

容许长细比[]λ。

柱截面的尺寸如图所示。

截面绕x 轴和y 轴分别属于b 类和c 类截面。

已知b 类截面的整体稳定系数表与c 类截面的整体稳定系数表,局部稳定验算公式:y w f h /235)5.025(0λ+=,
y f b /235)1.010(λ+=。

验算此柱的整体稳定,刚度和局部稳定。

图2
解:
(1)计算长细比
y y y x x x i l i l /,
/00==λλ
(2)计算整体稳定系数
由题目所给的表中可以计算出y x ϕϕ,;取min ϕ (3)整体稳定验算:
f A N <)ϕ
整体稳定满足要求。

(4)刚度验算:
[]λλ<y
刚度满足要求。

(5)局部稳定验算: 翼缘宽厚比:
y f t b 235
)
1.010(λ+≤ 腹板高厚比:
y
w f t h 235
)
5.025(0λ+≤ 局部稳定满足要求。

3.如图3所示支柱上下端均为铰接且设置支撑。

支柱长度为9m ,在两个三分点处均有侧向支撑,以阻止柱在弱轴方向的过早失稳。

已知:构件的设计压力为N ,容许长细比[]λ,支柱材料的规格(A ,x i ,y i ),钢材的等级(f )。

截面绕x 轴属于a 类截面,绕y 轴属于b 类截面,且知a 类截面的整体稳定系数表与b 类截面的整体稳定系数表。

验算此支柱的整体稳定和刚度。

图1
解:
(1)验算支柱的刚度
先计算长细比y y y x x x i l i l /,
/00==λλ
][λλ<x ,][λλ<y
刚度满足要求。

(2)验算此支柱的整体稳定
由题目所给的a 类截面的整体稳定系数表与b 类截面的整体稳定系数表中可以计算出
y x ϕϕ,;取min ϕ
进行整体稳定性验算:
f A N <)ϕ
整体稳定性满足要求。

相关文档
最新文档