勾股定理单元复习完整ppt课件
合集下载
勾股定理数学优秀ppt课件
![勾股定理数学优秀ppt课件](https://img.taocdn.com/s3/m/9a953da55ff7ba0d4a7302768e9951e79b896900.png)
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
北师大版八年级数学上册第一章勾股定理复习与小结课件
![北师大版八年级数学上册第一章勾股定理复习与小结课件](https://img.taocdn.com/s3/m/3f25923a1fd9ad51f01dc281e53a580216fc503e.png)
P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
《勾股定理》PPT实用课件
![《勾股定理》PPT实用课件](https://img.taocdn.com/s3/m/79b9fa99960590c69ec376bd.png)
C A B B A
C
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
左图 右图
B的面积
C的面积
4 16
9 9
13 25
S A S B SC
结论2 以直角三角形两直角边为 边长的小正方形的面积的和,等于以 斜边为边长的正方形的面积.
议一议:
(1)你能用直角三角形的两直角边的长a、b和 斜边长c来表示图中正方形的面积吗?
探索勾股定理
情景引入
相传2500年前,毕达哥拉斯有一次在朋友 家做客时,发现朋友家的用砖铺成的地面 中反映了直角三角形的某种数量关系。
C A B
探究活动一: (1)观察图1
C A B 图1 A B
正方形A中含有9 个 小方格,即A的面积是 9 个单位面积。
C
正方形B的面积是
9 个单位面积。
正方形C的面积是
a b
b c
a a c b a b c a
b c
a c b c b a
b
a
因为
2 , S1 S 2 (a b)
2 2
1 1 而 S1 a b 4 ab , S 2 c 2 4 ab , 2 2
所以
1 1 2 a b 4 ab c 4 ab. 2 2
已知两直角 边求斜边
?
20
C
15
我国古代两种证法:
1、公元3世纪我国汉代数学家赵爽在为《周髀算经》 作注时给出的“弦图”:
c b a
我国有记载的最早勾股定理的证明,是三国时,我国古 代数学家赵爽在他所著的《勾股方圆图注》中,用四个 全等的直角三角形拼成一个中空的正方形来证明的。每 个直角三角形的面积叫朱实,中间的正方形面积叫黄实, 大正方形面积叫弦实,这个图也叫弦图。2002年的 国际数学家大会将此图作为大会会徽.
课件八年级数学人教版下册_勾股定理复习课课件
![课件八年级数学人教版下册_勾股定理复习课课件](https://img.taocdn.com/s3/m/af1acdfaeff9aef8951e062c.png)
ABCD的面积。
A
D
B C
7.观察下列表格:
列举
3、4、5
……
5、12、13
7、24、25
13、b、c
猜想
32=4+5 52=12+13 72=24+25
北
o
西
A
南东Leabharlann 答:AB=30海里B
5 . 如 图 , 在 四 边 形 ABCD 中 , ∠BAD =900,∠DBC = 900 , AD = 3,AB = 4,BC = 12, 求CD;
D
A
C B
6.已知,如图,四边形ABCD中,
AB=3cm , AD=4cm , BC=13cm ,
CD=12cm,且∠A=90°,求四边形
解答题
3.已知:如图,在Rt△ABC中,∠C=90°, BC=6, AC=8
求:斜边上的高CD.
解:由勾股定理知
AB2=AC2+BC2
C
=82+62=100
∴AB=10
?
由三角形面积公式
B
D
A
½ ·AC ·BC=
½∴C·DA=B4·.8CD
4. 一艘轮船以16海里/时的速度离开港口向 东南方向,另一艘轮船在同时同地以12海 里/时的速度向西南方向航行,它们离开港 口一个半小时后相距多远?
A、24cm B、36cm C、48cm D、60cm 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )
2 ②三个角之比为3:4:5;
2
2
2
在西方又称毕达哥拉斯定理耶!
13.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( C )
(精选幻灯片)勾股定理ppt课件
![(精选幻灯片)勾股定理ppt课件](https://img.taocdn.com/s3/m/dd085138a55177232f60ddccda38376baf1fe024.png)
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
北师大版八年级数学上册《勾股定理》课件(共18张PPT)
![北师大版八年级数学上册《勾股定理》课件(共18张PPT)](https://img.taocdn.com/s3/m/b02de5c077a20029bd64783e0912a21614797fee.png)
合作探究
探究三:利用勾股定理逆定理判定△ABC的 形状或求角度
1. 在△ABC中, A , B , C的对边分别为 a,b,c,且 (ab)(ab)c2,则( ) (A) ∠A 为直角 (B)∠C为直角 (C) ∠B为直角 (D)不是直角三角形
合作探究
探.直角三角形的边、角之间分别存在着什 么关系? (教师引导,小组讨论、总结)
7.举例说明,如何判断一个三角形是直 角三角形. (教师引导,小组讨论、总结)
合作交流
8.通过回顾与思考中的问题的交流,由同 学们自己建立本章的知识结构图.
(小组内展示自己总结的知识框图,相 互交流完善知识框图;每个小组选取一名代 表,展示本组的知识框图.)
合作探究
探究一:利用勾股定理求边长 已知直角三角形的两边长分别为3、4,
求第三边长的平方.
解:(1)当两直角边为3和4时,第三边 长的平方为25; (2)当斜边为4,一直角边为3时,第三 边长的平方为7.
合作探究
探究二:利用勾股定理求图形面积 1.求出下列各图中阴影部分的面积.
0.36 0.64 (1)
截面如图所示.正方形DEFH的边长为2 m,坡角∠A=30°,∠B=90°,BC =6 m.当正方形DEFH运动到什么位置, 即当AE= m时,有DC2=AE2+ BC2.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
勾股定理复习课件
![勾股定理复习课件](https://img.taocdn.com/s3/m/0a995cf627284b73f342503e.png)
4
44
4
∴AC2+AD2=CD2, ∴∠CAD=90°.
12+(3)2=5. 44
∴S 四边形 ABCD=S△ABC+S△ACD=12AB·BC+12AD·AC=12×1×34+12×3×54=94
第十七章 勾股定理
素养提升
专题一 方程思想——折叠问题
例 1 如图, 将一个长方形纸片 ABCD 沿对角线 AC 折叠, 点 B 落在 点 E 处, AE 交 DC 于点 F, 已知 AB=4 cm, BC=2 cm. 求折叠后重合 部分(△ACF)的面积.
如图, 过点 C 作 CD⊥AB 于点 D,
由勾股定理, 得 AB= AC2+BC2= 92+122=15.
根据等积法 12AC·BC=
12AB·CD,
则 CD=
36. 5
第十七章 勾股定理
专题二: 勾股定理的实际应用
例 3 如图, 在公路 l 旁有一块山地正在开发, 发现需要在 C 处进 行爆破. 已知点 C 与公路上的停靠点 A 的距离为 300 m,与公路上 的另一停靠点 B 的距离ቤተ መጻሕፍቲ ባይዱ 400 m,且 AC⊥CB, 为了安全起见, 以爆 破点 C 为圆心, 250 m 为半径的圆内不得有人进入. 则在进行爆破 时, 公路 AB 段是否有危险?需要暂时封锁吗?
相关题 2 [广州中考]在 Rt△ABC 中, ∠C=90°, AC=9, BC=12, 则
点 C 到 AB 的距离是( A ).
A.356
B.1225
C.94
D.3 4 3
分析:
先根据题意画出图形, 再结合勾股定理求出直角三角形的斜边长, 最
第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册
![第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册](https://img.taocdn.com/s3/m/99277db7b04e852458fb770bf78a6529657d3509.png)
巩固练习
1.如图,一个圆柱形油罐,要从A点环绕油罐建梯子,正好到A 点的正上方B点,请你算一算梯子最短需多少米? ( 已知油罐 的底面周长是12米,高是5米).
解:如图,将油罐侧面展开,
此时AB= 122 52 =13(m).
2.如图,已知在△ABC中,AB=17 , AC=10 , BC边上的高AD=8, 求:(1)BC边的长;(2)△ABC的面积.
A
思考:如何判定一个三角形是直角三角形呢?
1.有一个内角为直角的三角形是直角三角形.
2.两个内角互余的三角形是直角三角形.
3.如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角
形是直角三角形.
A
勾股定理的逆定理
c
几何语言:∵a2+b2=c2, b
∴△ABC是直角三角形.
C
a
B
典型例题
S阴影=S△CAD-S△ABC
=
1 2
AC·AD-
1 2
AB·BC
=24
互逆命题
勾股定理
题设:一个三角形 是直角三角形.
勾股定理 的逆定理
题设:一个三角形 的三边长a,b,c
满足a2+b2=c2.
结论:两条直角边的平 方和等于斜边的平方.
(a2+b2=c2)
结论:这个三角形 是直角三角形.
若两个命题的题设、结论正好相反,则这两个命题叫 做互逆命题.
知识框图 勾股定理
互逆定理
勾股定理的逆定理
直角三角形边 长的数量关系
直角三角形的判定
复习回顾
回顾思考:
1.直角三角形三边的长有什么特殊的关系? 2.赵爽证明勾股定理运用了什么思想方法? 3.已知一个三角形的三边长,怎样判断它是不是直角三 角形? 你作判断的依据是什么? 4.证明勾股定理的逆定理运用了什么方法? 5.一个命题成立,它的逆命题未必成立. 请举例说明.
《勾股定理》PPT优秀课件
![《勾股定理》PPT优秀课件](https://img.taocdn.com/s3/m/1cf4a65b876fb84ae45c3b3567ec102de2bddf9c.png)
探究活动
分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.
图1
图3
图2
方法一:
而
所以
即
,
,..ຫໍສະໝຸດ 因为,方法二:
,
化简得:
方法三:
,
化简得:
1.求下列图中表示边的未知数x、y、z的值.
议一议:
(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,斜边为c,那么
即 直角三角形两直角边的平方和等于斜边的平方。
表示为:Rt△ABC中,∠C=90°
16 9
?
?
(3)你是怎样得到正方形C的面积的?与同伴交流.
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图” :
证法四:(伽菲尔德证法1876年)
如图,Rt△ABE≌Rt△ECD,可知∠AED=90°;
证法五:(欧几里得证法公元前3世纪)
“新娘的轿椅”或“修士的头巾”
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、ABED都是正方形,CN⊥DE,连接BK、CD。
分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.
图1
图3
图2
方法一:
而
所以
即
,
,..ຫໍສະໝຸດ 因为,方法二:
,
化简得:
方法三:
,
化简得:
1.求下列图中表示边的未知数x、y、z的值.
议一议:
(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,斜边为c,那么
即 直角三角形两直角边的平方和等于斜边的平方。
表示为:Rt△ABC中,∠C=90°
16 9
?
?
(3)你是怎样得到正方形C的面积的?与同伴交流.
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图” :
证法四:(伽菲尔德证法1876年)
如图,Rt△ABE≌Rt△ECD,可知∠AED=90°;
证法五:(欧几里得证法公元前3世纪)
“新娘的轿椅”或“修士的头巾”
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、ABED都是正方形,CN⊥DE,连接BK、CD。
勾股定理全章复习课ppt课件
![勾股定理全章复习课ppt课件](https://img.taocdn.com/s3/m/6843787e0812a21614791711cc7931b765ce7b36.png)
7.下列线段不能组成直角三角形的是( D )
A.a=8,b=15,c=17
B.a=9,b=12,c=15
C.a= ,b= ,c=
D.a:b:c=2:3:4
B
A.锐角三角形 C. 钝角三角形
B. 直角三角形 D. 等边三角形
9
9.如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,
均收到已触礁搁浅的船C的求救信号, 6分钟后同时到达C地.已
y
E
F
D
C
根据勾股定理列出方程即可解决此
类型问题.
A
x B
13
小结
1、你学到哪些数学知识?
理解原命题、逆命题与逆定理的概念及关系 掌握勾股定理及其逆定理并能运用其解决实际问题
2、你学到哪些数学思想方法?
在运用定理解决问题中,体会分类、方程与转化的思想方法
14
课堂检测
1.已知直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.下列各组数中,不能作为直角三角形边长的是( )
A
A
利用勾股定理解决 实际问题:先转化 成数学问题, 找到 直角三角形, 最后 利用勾股定理解决 问题。
7
6.如图,长方体的长为6,宽为4,高为8,点B离点C的距离为2,一只妈蚁 如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
展开(分类)
∴最短路径为10 8
知识运用
四、 勾股定理逆定理及其实际应用
型
5
3.已知一个直角三角形的两条边长是3cm和4cm,求第三条边的长.
答案: 5 cm或 cm.
4.已知在△ABC中, AB=15cm,AC=13cm,高AD=12cm,求BC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
7
基础知识
逆命题与逆定理
所有命题都有逆命题,但不是所有的定理都有逆定理 逆定理一定是逆命题,但是逆命题不一定是逆定理
.
8
基础知识
勾股数
满足a2 +b2=c2的三个正 整数 ,称为勾股数
常见的勾股数有
3、4、5 5、12、13 6、8、10
7、24、25
8、15、17
3n、4n、5n …… ……
3.若△ABC中 ,AB=5 ,BC=12 ,AC=13 ,则AC边
上的高长为
;
分类
思想
4.已知一个直角三角形的三边长分别为 6cm , 8 cm, X cm ,则 这个三角形的最大边长是
cm;
.
16
5.在三角形ABC中, ∠A ∠B ∠C 的对边分别 是a、b、c,下列说法错误的是( B )
A、如果 ∠C -- ∠B = ∠A,那么△ABC是直角三角形
D
转化 思想
13
A
12 3┐
B4 C
.
20
必会题型
如图,有一块田地的形状和尺寸如图所示, 试求它的面积。
A
转化 思想
4
13
5
B
3
∟
C
12
D
.
21
必会题型
如图,四边形ABCD中,AB = BC, ∠ABC = ∠CDA = 90°,BE ⊥AD于点E,且四边形ABCD的面积是25, 求 BE的长
转化 思想
__________
勾股定理单元复习
.
1
知识框架
勾股定理
勾股定理逆定理
如果△是直角三角形
那么a2 + b2 = c2
______性__质__定理
.
如果a2 + b2 = c2
那么△是直角三角形
判定定理
2
基础知识
勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,
那么 a2 + b2 = c2
即 直角三角形两直角边的平方和等于斜边的平方.
例如:已知直角三角形两边之和和第三边的长,判断 三角形的形状。折叠问题使用较多
方程 思想
.
14
1.已知一个直角三角形的三边长分别为 3cm , 4 cm,
X cm ,则 X 是
cm;
分类
思想
2.已知一个直角三角形的三边长分别为 6cm , 8 cm,
X cm ,则 这个三角形的最大边长是
cm;
.
15
.
9
基础知识
勾股数
如何快速寻找勾股数
列举
猜想
3、4、5 5、12、13
32 = 4 + 5 52 = 12 + 13
7、24、25
72 = 24 + 25
……
13、b、c
132 = b + c
.
10
数学思想
转化 思想
分类 思想
方程 思想
.
11
数学思想
分类 思想
1.直角三角形中,已知两边长是直角边、斜边不知道时, 应分类讨论。
如果你喜欢我,那我们就坐同桌吧
如果你喜欢我,那我也试着喜欢你好啦
如果你喜欢我,请不要告诉我
如果你喜欢我喜欢的人,那就是图谋不轨
.
6
必会题型
大家来写逆命题:
两点之间,线段最短
不平行的两条直线一定垂直
三角形的内角和为180度
等边三角形的三个角都相等
对角线互相垂直的平行四边形就是正方形
…… ……
逆命题:
2.当已知条件中没有给出图形时,应认真读句画图,避
免遗漏另一种情况。
.
12
数学思想
转化 思想
1.当我们遇到的问题是不容易解决的,可以先将问题转 化为已经学过的知识,再想办法解决。
例如:不规则图形的面积,转化成几个直角三角形的
面积和;空间问题,通过展开转化成平面问题
.
13
数学思想
1.利用已知几部分之间的关系,构造方程来解决。
B
F
C
A
E
.
D
22
必会题型
如图,正方形的网格当中,有一个三角形,每个小 正方形格子的边长都为1.
B
(1)求出三条边的长度 (2)试判断三角形的形状 A (3)求出三角形的面积
C
.
23
必会题型
如图,点O是矩形ABCD对角线的中点,将BC边沿
着CE翻折后,B点刚好落在O点上。如果BC长为3,
求折痕CE的长。
.
17
A CD
6 或 10
分类 思想
DC
B
A
B
Байду номын сангаас
.
18
7.在三角形ABC中,AB = 10 , AC = 17 , BC边上的 高线 AD = 8 ,求BC
分类 思想
A
17
8
10
B
C
.
19
必会题型
如图,四边形ABCD中,AB=3 ,BC=4 , CD=12 , AD=13 , ∠B=90°,求四边形ABCD的面积
D′
C′
A′
B′
D
C
A
B
.
29
必会题型
如图:正方形ABCD的边长为6,点E为边BC的中点,
点P在对角线BD上运动,连接PE、PC,那么 PE+PC
的最小值是多少?
A
D
P
B
C
.
E
30
必会题型
如图:B是台风中心,正以每小时60km的速度,往北 偏东30°的方向运动,已经距离台风中心方圆150km 内的地方都会受台风的影响,A城在B地正东方向 320km处,受台风影响吗?
.
3
基础知识
勾股定理逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
.
4
基础知识
原命题与逆命题
如果你喜欢数学,那么就要认真听讲!
题设
结论
逆命题 如果你(在数学课上)认真听讲,那么你就是喜欢数学
.
5
必会题型
大家一起来造句:
如果你喜欢我,那么……
如果你喜欢我,那你就应该好好学习
B
.
A
31
必会题型
如图:B是台风中心,正以每小时60km的速度,往北 偏东30°的方向运动,已经距离台风中心方圆150km 内的地方都会受台风的影响,A城在B地正东方向 320km处,受台风影响吗?
B
.
A
32
必会题型
如图:为了方便小区居民的交往,政府准备在AB两个 小区之间修一条笔直的小路。经测量,A北偏东60°、 B北偏西45°方向的C处,有一个半径为0.7km的圆形 公园,问计划的小路会不会穿过公园?
D
C
方程 思想
.
O
A
B E
24
必会题型 •
E
D
C
方程
F
思想
.
A
B 25
必会题型
如图,把长方形纸片ABCD折叠,使顶点A与顶点C重 合在一起,EF为折痕。若AB=9,BC=3,试求以折痕EF为 边长的正方形面积
E
D
C
A
GF
.
B
26
必会题型
如图,折叠矩形ABCD的一边AD,点D落在BC边上
的点F处,已知AB=8CM,BC=10CM,分别求CF和EC的
长.
A
10
D
8-X
方程 8
E
思想
10
8-X X
B
.
6
F4 C
27
必会题型
如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到 点B处吃食,要爬行的最短路程是多少?
2 O 蛋糕 B
周长的一半
C6
B
8
8
A
A
.
28
必会题型
如图:正方体的棱长为5cm,一只蚂蚁欲从正方体底 面上的顶点A沿正方体的表面到顶点C′处吃食物,那 么它需要爬行的最短路程的长是多少?