锰锌铁氧体磁芯介绍

合集下载

变压器与电感原材料

变压器与电感原材料

low profile (扁平特性)适合高密度装配EP core具有高对称性,适合高频平衡变压器
T、UT、 ET、UU TYPE
高磁导率型 低泄漏磁通 不易绕制
磁性材料应用:
二 . 磁芯外形特点比较
型式成本考虑
POT
RM
EE
EER
PQ
EP
Toroidal
磁芯成本






很低
线架成本





4600~ 5100
7000~ 15000
16000
16000
7000
9000
初始磁导率μi
250~ 15000
15000
10000
4000
14~250
22~90
最高工作温度
125℃
200℃
150℃
300℃
200℃
200℃
铁芯损耗
最低


最高


温度稳定性
一般


一般

一般
加工性






价格

组成约为:Fe2O3 71%, MnO 20%, 其它为:ZnO 电阻率高(10 ohm-cm) 铁心损耗低 居里温度高 形状:EE,EI,ER,PQ,RM,POT等型式。 用途:功率变压器、EMI共模滤波器、储能电感等
磁性材料介绍:
1.铁氧体磁芯
B)镍锌系
组成约为:Fe2O3 50%, NiO 24%, 其它为:ZnO 电阻率很高(107 ohm-cm) 工作频率高 铁心损耗较锰锌系高 居里温度高 型式:DR,R,环形等。 用途:常模滤波器、储能电感等

高导锰锌铁氧体磁环

高导锰锌铁氧体磁环

高导锰锌铁氧体磁环【导言】高导锰锌铁氧体磁环是一种具有优异磁导率和低损耗的磁性材料,广泛应用于电力传输、电子设备和通信领域。

本文将从多个方面对高导锰锌铁氧体磁环进行深度探讨,涵盖其基本概念、制备技术、性能优势以及应用领域。

通过本文的阅读,读者将全面了解高导锰锌铁氧体磁环,并对其在各行业的应用有更为深刻的理解。

【正文】一、什么是高导锰锌铁氧体磁环高导锰锌铁氧体磁环是一种具有高导磁性能和低损耗的磁性材料。

它由含有Mn、Zn、Fe等元素的铁氧体粉体制备而成,经过特殊处理形成环形结构。

该材料具有良好的导磁性能和磁饱和感应强度,并且在高频范围内保持较低的磁滞损耗和铁损耗。

高导锰锌铁氧体磁环能够有效地传导磁场,因此在电力传输、电子设备和通信领域有着广泛的应用。

二、制备技术高导锰锌铁氧体磁环的制备技术主要包括磁流变、粉末冶金和烧结等方法。

其中,磁流变方法是一种常见的制备技术,通过将磁性材料的粉末悬浮在流变介质中,通过外加磁场控制流变行为,从而获得高密度和高导磁性能的磁环。

粉末冶金方法则是指将铁氧体粉末与有机粘结剂混合,然后压制成型,在高温下进行烧结,最终形成高导锰锌铁氧体磁环。

三、性能优势高导锰锌铁氧体磁环具有以下几个方面的性能优势:1. 高导磁性能:高导锰锌铁氧体磁环具有较高的导磁性能,能够传导磁场并保持较低的能量损耗。

2. 低损耗:高导锰锌铁氧体磁环在高频范围内具有较低的磁滞损耗和铁损耗,能够提供稳定的磁性能。

3. 良好的热稳定性:高导锰锌铁氧体磁环能够在高温下保持良好的性能稳定性,适用于高温环境中的应用。

4. 高饱和磁感应强度:高导锰锌铁氧体磁环具有较高的饱和磁感应强度,能够提供较大的磁场输出。

四、应用领域高导锰锌铁氧体磁环在多个领域有着广泛应用:1. 电力传输:高导锰锌铁氧体磁环用于电力变压器中,能够改善变压器的能效和稳定性,提高电网的传输效率。

2. 电子设备:高导锰锌铁氧体磁环用于电感器、滤波器、功率变换器等电子设备中,能够提供稳定的电磁性能和低损耗的功率传输。

电感磁芯

电感磁芯

材料特性:(锰锌铁氧体系列)锰锌铁氧体材料简介锰锌铁氧体是应用最广泛的软磁铁氧体材料,其中功率铁氧体具有高饱和磁通密度,具有良好的低损耗/频率关系和低损耗/温度关系,主要应用于开关电源变压器,功率扼流圈,功率因素校正电路;高导铁氧体具有窄而长的磁滞回线,起始磁导率高的,矫顽力小等特点,主要应用于通信变压器 (LAN,ADSL,ISDN),共模滤波器,饱和电感,信号及脉冲变压器。

锰锌高磁导率铁氧体材料特性Mn-Zn Power ferrite Materical Characteristics::::锰锌铁氧体系列 / 锰锌功率铁氧体材料特性::::材料特性:(锰锌铁氧体系列)锰锌功率铁氧体材料特性锰锌功率铁氧体材料特性Mn-Zn Power Ferrite Materical Characteristics华磁系列材料与国外厂商材料对照表Table for Materials between Huaci and other factories注:1、以上仅列出了我公司材料牌号与世界主流厂商材料对照数据,因国内外厂家众多不能一一列出,其它材料请与本书中的材料特性表对照。

2、以上名家所对应材料牌号,只能说明是相近材料并不能够等同。

具体使用中应以实特测试结果为准。

本表仅作为选材参考数据。

::::锰锌铁氧体系列 / HC30材料特性曲线::::材料特性:(锰锌铁氧体系列)HC30材料特性曲线直流磁场下的B-H曲线B-H Curves at DC Magnetic Field 初始磁导率的温度特性Initial Permeability vs.Temperature初始磁导率的频率特性 Initial Permeability vs. Frequency 功率损耗的温率特性 Power Loss vs. Temperature::::锰锌铁氧体系列 / HC70材料特性曲线::::材料特性:(锰锌铁氧体系列)HC70材料特性曲线 动态磁化曲线 Dynamic Magnetzation Curves 初始磁导率的温率 Initial Permeability vs.Temperature复数磁导率的频率特性Complex Permeability vs.Frequency比损耗系数的频率特性Relative Loss Factor vs.Frequency镍锌铁氧体的使用频率在1MHz,100MHz之间,其物理特性有高电阻率、高居里温度、性能特性有高BS、高磁导率Ui、低矫顽力Hc、低温度系数、低损耗、良好的高频特性等优点,使得其在高频抗电磁干扰方面得到了广泛::::镍锌铁氧体系列 / F3材料特性曲线:::: 材料特性:(镍锌铁氧体系列)F3材料特性曲线::::镍锌铁氧体系列 / F5B材料特性曲线:::: 材料特性:(镍锌铁氧体系列)F5B材料特性曲线。

锰锌和镍锌铁氧体(图)

锰锌和镍锌铁氧体(图)

锰锌和镍锌铁氧体磁环:
铁氧体锰锌磁环
1.在抑制高频干扰时,宜选用镍锌铁氧体;磁导率为1MHZ-300MHZ,镍锌铁氧体的阻值很大。

2.在抑制低频干扰时,宜选用锰锌铁氧体;磁导率在1KHZ-10MHZ,阻值在150kΩ以下。

3.己知的磁芯可以绕一些线后量电感量,从而判断导磁率,越大就越低频。

铁氧体的磁导率越高,其低频时的阻抗越大,高频时阻抗越小。

镍锌铁氧体NXO材料的初始导磁率μ比较低约10-2500,使用频率从五百千赫至几百兆赫。

具高
电阻率,高居里温度。

锰锌铁氧体MXO材料的初始导磁率μ约从400-10000,使用频率从几十赫至几百千赫。

用于上限频率f1低于500kHz-1MHz的情况下。

超过这个频率,必须使用NiZn(镍锌NXO)材料。

磁环体积决定了频率低端的最大承受功率;
线间介质决定了频率高端的最大承受功率;
绕线长度决定了最短工作波长;
线圈的电感量决定了最低工作波长;
磁环的失磁温度决定了功率耐受能力;
.。

锰锌铁氧体功率型和高导型材质

锰锌铁氧体功率型和高导型材质

锰锌铁氧体功率型和高导型材质1. 锰锌铁氧体的基本概念锰锌铁氧体是一种
具有特殊磁性和电性能的材料,由铁氧体和少量的锰和锌元素组成。

它具有高
磁导率、低磁滞、低铁损耗等特点,被广泛应用于电子电器领域。

2. 锰锌铁氧体功率型材质锰锌铁氧体功率型材质是指在一定频率下能够产生较大磁感应强度和能量转换效率的材料。

它的主要特点是具有高饱和感应强度、
低磁滞和低铁损耗。

这种材料常被用于制造电感器、变压器、电动机等功率电
子器件中。

3. 锰锌铁氧体高导型材质锰锌铁氧体高导型材质是指具有较高导电性能的锰锌铁氧体材料。

它的主要特点是具有较低电阻率和高导电性,能够有效地传导电流。

这种材料常被用于制造高频电感器件、滤波器、变压器等高频电子器件中。

4. 功率型和高导型材质的区别功率型和高导型材质的区别主要在于其应用领域和特性。

功率型材质主要用于制造功率电子器件,其特点是能够产生较大的磁
感应强度和能量转换效率。

而高导型材质则用于制造高频电子器件,其特点是
具有较低的电阻率和高导电性,能够传导高频电流。

总结锰锌铁氧体是一种具有特殊磁性和电性能的材料,分为功率型和高导型两种材质。

功率型材质主要用于制造功率电子器件,具有高饱和感应强度、低磁
滞和低铁损耗的特点。

高导型材质则用于制造高频电子器件,具有较低的电阻
率和高导电性。

这些材质在电子电器领域中发挥着重要的作用。

高导锰锌铁氧体磁芯

高导锰锌铁氧体磁芯

高导锰锌铁氧体磁芯
高导锰锌铁氧体磁芯是一种具有高磁导率、低能耗和稳定性好的磁芯材料。

它主要由锰锌铁氧体材料制成,广泛应用于各种大气压下用的直流、低频和高频电磁设备中。

这种磁芯在高频、高磁通密度工作条件下具有较低的功率损耗,因此适用于开关电源变压器、LCD及PDP电源转换器和外部电源适配器等大功率设备。

高导锰锌铁氧体磁芯具有以下特点。

1.高磁导率:高导锰锌铁氧体磁芯的磁导率较高,有助于提高设备的效率和性能。

2.低能耗:高导锰锌铁氧体磁芯的能耗较低,有助于降低设备的运行成本。

3.稳定性好:高导锰锌铁氧体磁芯具有较好的稳定性,能够保证设备在长时间运行过程中的性能稳定。

4.广泛应用:高导锰锌铁氧体磁芯可广泛应用于各种大气压下用的直流、低频和高频电磁设备中,如开关电源变压器、LCD及PDP电源转换器和外部电源适配器等。

在一些高导锰锌铁氧体磁芯产品中,如EE35高导锰锌铁氧体磁芯,采用了双槽立式2+2骨架,有助于提高磁芯的稳定性和性能。

锰锌铁氧体介绍

锰锌铁氧体介绍

锰锌铁氧体介绍锰锌铁氧体是一种由Mn Zn Fe O元素构成的软磁材料。

它是一种重要的磁性材料,广泛被应用于电子、信息、通信等领域。

锰锌铁氧体具有高饱和磁感应强度、低磁滞损耗、磁谐振频率高、热稳定性好、稳定的电性能等特性,因此在电子元器件中具有广泛应用价值。

一、锰锌铁氧体的组成和制备锰锌铁氧体由四种元素组成,分别为锰(Mn)、锌(Zn)、铁(Fe)和氧(O),化学式为MnZnFe2O4。

Mn、Zn、Fe三种金属离子以及氧离子形成的四方晶体结构,其晶体结构采用的是尖晶石结构。

锰锌铁氧体的制备方法有烧结法、化学共沉淀法、水热合成法等多种。

烧结法是最常用的制备方法之一。

在烧结法中,需要先将所需的金属氧化物粉末按照一定的比例混合均匀,然后在高温下进行烧结,得到锰锌铁氧体的制品。

二、锰锌铁氧体的物理和磁性能锰锌铁氧体的物理和磁性能与其晶体结构、物理尺寸和烧结条件等因素密切相关。

下面介绍一下锰锌铁氧体的一些基本物理和磁性能参数:1. 饱和磁化强度:锰锌铁氧体的饱和磁感应强度一般在0.5-1.2T之间,与其化学成分和制备工艺等因素有关。

2. 矫顽力和磁滞损耗:锰锌铁氧体的磁滞损耗一般较低,其矫顽力和磁滞损耗与其尺寸、磁场频率和温度等因素有关。

3. 磁导率和磁谐振频率:锰锌铁氧体的磁导率和磁谐振频率与其晶体结构、磁场频率和温度等因素有关,一般在几百 kHz至几 GHz之间。

4. 热稳定性:锰锌铁氧体具有较好的热稳定性,其磁性能在高温下变化较小,一般可在200°C左右使用。

5. 电学性能:锰锌铁氧体具有较好的电学性能,其电阻率高、介电常数低和压电常数小等特点,具有广泛的应用前景。

三、锰锌铁氧体的应用领域锰锌铁氧体具有较好的电磁性能,广泛应用于电子元器件、电动机、变压器、磁性记录材料、高频电感器、微波元件、天线等领域。

具体应用如下:1. 电子元器件:锰锌铁氧体可用于磁盘马达、电源滤波器、线圈等电子元器件中,其高频特性和高温特性表现良好。

锰锌铁氧体 磁芯 低温极限

锰锌铁氧体 磁芯 低温极限

锰锌铁氧体磁芯低温极限
锰锌铁氧体磁芯是一种常用的软磁材料,具有良好的工频磁性能和低成本等特点。

它在不同温度下的磁性能会有所变化,而其低温极限通常是指其磁性能维持稳定的最低温度。

一般来说,锰锌铁氧体磁芯的低温极限较高,一般可达到零下40摄氏度或更低。

在低温环境下,锰锌铁氧体磁芯的磁性能会受到影响,可能导致磁化强度下降和磁滞损耗增加等现象。

因此,在低温应用中,需要根据具体需求选择合适的磁芯材料或采取适当的措施来保证磁性能的稳定性。

为了满足低温应用需求,一些针对低温环境设计的特殊锰锌铁氧体磁芯也被开发出来。

这些特殊设计可以降低低温下的温度系数和磁滞损耗,提高磁性能的稳定性。

锰锌铁氧体原材料

锰锌铁氧体原材料

锰锌铁氧体原材料1 前言锰锌铁氧体原材料是一种磁性材料,也被称为LED磁性材料,用于制作LED磁传感器、带有磁性特性的高铁件和其他电子元件等。

它由由锰锌铁氧体( FeMnZn)组成,这些原料具有高磁阻率、低损耗、低噪声和耐高温等特性。

本文旨在介绍锰锌铁氧体原材料的组成、制备和特点。

2 锰锌铁氧体原料组成锰锌铁氧体原料主要由三种重要原料组成:铁(Fe)、锰(Mn)和锌(Zn)。

它们的理化性质如表1所示:表1 锰锌铁氧体原料组成原料理化性质原料名称密度t/m3 比热容J/Kg·K 熔点℃相对磁导率10-4H/mFe 7.877 0.420 1538 722Mn 7.43 0.180 1519 890Zn 7.14 0.387 420 8003 原料制备锰锌铁氧体的制备主要经历三个步骤:破碎、粉碎和烧结。

(1)破碎:这是原料制备的第一步,目的是将原料切割成更小的颗粒,这一步可以使原料更容易处理。

(2)粉碎:粉碎是在制备原料的第二步。

这一步是将原料切碎成更细小的颗粒,以便更容易烧结。

(3)烧结:烧结是将原料粉末用高温烧制至合乎要求的形态和性能的过程。

在烧结过程中,烧结温度为1400~1600℃,可使原料粉末形成致密的锰锌铁氧体组装体。

4 特点锰锌铁氧体是一种高磁阻率的材料,它具有高介电常数(8-9)、低损耗、低噪声和耐高温等特性。

由于其具备的特性,锰锌铁氧体原料常用于制备低损耗和高磁性的电子元件,如LED磁传感器、高铁件和其他电子元件。

此外,锰锌铁氧体原料还可用在频率搜索技术中,因为它可以提高其磁性特性,使其可以对低频信号更有效地识别。

锰锌软磁铁氧体磁芯术语及定义

锰锌软磁铁氧体磁芯术语及定义

1.初始磁导率iμ 初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 i μ=01μ0H lim →H B式中0μ为真空磁导率(4л×710-H/m )H 为磁场强度(A/m )B 为磁通密度(T )2.有效磁导率eμ 在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表征磁芯的性能。

e μ=20N L ⋅μ﹒e e A L式中 L 为装有磁芯的线圈的电感量(H )N 为线圈匝数Le 为有效磁路长度(m )e A 为有效截面积(2m ) 0μ为真空磁导率(4л×710-H/m )3. 饱和磁通密度Bs(T)磁化到饱和状态的磁通密度。

见图1.4.剩余磁通密度Br(T)从饱和状态去除磁场后,剩余的磁通密度。

见图1.5.矫顽力Hc(A/m)从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁通密度减为零,此时的磁场强度称为矫顽力。

见图1.6.损耗因数 tanδ损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和tanδ =tan h δ+tan e δ+tan r δ式中tan h δ为磁滞损耗因数tan e δ为涡流损耗因数tan r δ为剩余损耗因数7.相对损耗因数 tanδ/μ相对损耗因数是损耗因数与磁导率之比tanδ/i μ(适用于材料)t anδ/e μ(适用于磁路中含有气隙的磁芯)8.品质因数Q品质因数为损耗因数的倒数:Q=1/tanδ9.温度系数μα(1/K ) 温度系数为温度在T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: μα=12112T T 1-⋅-μμμ (T2>T1)式中1μ 为温度为1T 时的磁导率2μ 为温度为2T 时的磁导率10.相对温度系数rμα(1/k) 温度系数和磁导率之比:r μα=122212T T 1-⋅-μμμ (T2>T1)11.居里温度Tc(℃)在该温度下材料由铁磁性(或亚铁磁性)转变成顺磁性。

见图2.12.减落因数FD 在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即 F D =2112211T T log μμμ⋅-(T2>T1)式中 1μ 为退磁后1t 分钟的磁导率2μ 为退磁后2t 分钟的磁导率13.电阻率ρ(Ω/m )具有单位截面积和单位长度的磁性材料的电阻。

锰锌铁氧体磁环

锰锌铁氧体磁环

Thanks!
应用
锰锌铁氧体磁环广泛用于开关模式电源 (SMPS),射频(RF)变压器,电感器,脉冲变压 器,高频变压器,和噪音滤波器等。MnZn系铁 氧体广泛制作开关电源变压器、回扫变压器、 宽带变压器、脉冲变压器、抗电磁波干扰滤波 电感器及扼流线圈等,是软磁铁氧体中产量最 大的一种材料(按重ຫໍສະໝຸດ 计约占60%)。锰锌铁氧体磁环
整理
概述
锰锌铁氧体磁环是软磁铁氧体的一种。属 尖晶石型结构。由铁、锰、锌的氧化物及其盐 类,采用陶瓷工艺制成。它具有低矫顽力,高 的起始导磁率,由于在高频率下的低磁损。一 般在1千赫至10兆赫的频率范围内使用。 可制作电感器、变压器、滤波器的磁芯、 磁头及天线棒。
特点
锰锌铁氧体磁环一般磁导率μ 比较高, 晶粒较大,结构也比较紧密,常呈黑色。而镍 锌铁氧体磁环一般磁导率μ 比较低,晶粒细而 小,并且是多孔结构,常呈棕色,特别是在生 产过程中烧结温度比较低时尤为突出。具有高 的起始磁导率,较高的饱和磁感应强度,在无 线电中频或低频范围有低的损耗,它是1兆赫 兹以下频带段范围磁性能电优良的铁氧体材料。 常用的MnZn系铁氧体,其起始磁导率μi=400 到20000,饱和磁感应强度400到530mT。

锰锌软磁铁氧体磁芯参数-应用于变压器

锰锌软磁铁氧体磁芯参数-应用于变压器
初始磁导率µi
4
6000 5000 4000 3000
磁 芯 损 耗 Pc( kw/m)
3
10
50
0k
Hz
10
3
Hz 0k 30 Hz 0k 20 Hz 0k 10
10
2
2000 1000 0 0 40 80 120 160 200 240 温度T(℃)
10
1
25
kH
z
50
kH
z
60 C 100 C 10
ISO9001:2000 Certified
锰锌软磁铁氧体
MnZn MnZn Ferrite Cores Selection Guide
江门市华林磁电有限公司
Jiangmen Hualin Magnetoelectric Co., Ltd.
1/49


Contents
☆锰锌铁氧体材料特性 MATERIAL CHARACTERISTICS………………………………………………3 ☆术语及定义 TERMS & DEFINITIONS…………………………………………………………………10 ☆CI 型 ☆EE 型 ☆EED 型 ☆EER 型 ☆EI 型 CI CORES…………………………………………………………………………………………13 EE CORES……………………………………………………………………………………… 14 EED CORES……………………………………………………………………………………21 EER CORES……………………………………………………………………………………22
JLH-5
温度T(℃)
8/49
JLH-12、JLH-15 材料特性曲线图 Curve Graph of JLH-12、JLH-15 Material Characteristics

软磁锰锌铁氧体磁芯

软磁锰锌铁氧体磁芯

软磁锰锌铁氧体磁芯全文共四篇示例,供读者参考第一篇示例:软磁锰锌铁氧体磁芯是一种广泛应用于电子领域的磁性材料,具有优异的磁性能和磁导率,被广泛应用于变压器、感应器、电源电感器、电扇驱动器等领域。

软磁锰锌铁氧体磁芯的磁性能与成本、加工性能等因素密切相关,选择合适的软磁锰锌铁氧体磁芯可以有效提升电子产品的性能和可靠性。

接下来,我们将从软磁锰锌铁氧体磁芯的制作工艺、磁性能、应用领域等方面进行深入探讨。

软磁锰锌铁氧体磁芯主要由锰锌铁氧体磁性粉末、粘结剂、助剂等原料组成,通过混料、成型、烧结、磁化等工艺步骤制成。

原料的选择至关重要。

锰锌铁氧体磁性粉末是制作软磁锰锌铁氧体磁芯的关键原料,其磁性能直接影响到磁芯的性能指标。

粘结剂的选择也非常重要,它能够使磁性粉末紧密结合,提高磁芯的机械强度和热稳定性。

助剂则可以调节磁芯的导磁率、磁饱和磁感应强度等性能指标。

磁芯的成型是影响其性能的重要环节。

常见的成型工艺有压制成型、注塑成型等。

压制成型是将混合好的原料放入金属模具中,在高压下压制成型,在模具中形成磁芯的基本形状。

注塑成型则是将混合好的原料通过注射机注入塑料模具中,加热软化后成型。

成型工艺的选择应根据产品的形状、尺寸、量产要求等因素进行综合考虑,以保证磁芯的精度和可靠性。

烧结是软磁锰锌铁氧体磁芯制作的关键工艺步骤。

烧结过程中,磁性粉末在高温下发生化学反应,形成致密的磁性结构,提高磁芯的导磁率和磁饱和磁感应强度。

烧结温度、时间、气氛等参数的控制十分重要,对于磁芯的性能和稳定性有着重要影响。

在烧结过程中要注意防止氧化等不良影响因素的介入,以保证磁芯的纯净度和稳定性。

软磁锰锌铁氧体磁芯的磁性能也是评价其品质的重要指标。

软磁锰锌铁氧体磁芯具有高导磁率、低损耗、低磁滞、高磁导率等优良性能,能够有效降低电子产品中的磁损耗,提高能效和稳定性。

通过控制磁芯的成分、结构和工艺参数,可以有效提升其磁性能,满足不同应用领域的需求。

软磁锰锌铁氧体磁芯在电子领域有着广泛的应用,例如在变压器中作为电磁感应器件使用,能够有效降低电流损耗和热损耗,提高能源利用率和性能稳定性。

锰锌软磁铁氧体磁芯

锰锌软磁铁氧体磁芯

锰锌软磁铁氧体磁芯
锰锌软磁铁氧体磁芯是一种由铁、锰、锌的氧化物及其盐类,采用陶瓷工艺制成的磁性材料。

它具有低矫顽力、高初始磁导率,以及在高频率下的低磁损,一般在1千赫至10兆赫的频率范围内使用。

锰锌软磁铁氧体磁芯可用于制作电感器、变压器、滤波器的磁芯、磁头及天线棒等,广泛应用于开关模式电源(SMPS)、射频(RF)变压器、电感器、脉冲变压器、高频变压器,以及噪音滤波器等。

随着科技的不断发展,锰锌软磁铁氧体磁芯的应用前景将更加广阔。

锰锌铁氧体磁芯介绍

锰锌铁氧体磁芯介绍

锰锌铁氧体磁芯介绍
1、锰锌功率铁氧体材料(用于开关电源、节能灯等大功率设备)
TDK PC30(国产R2KB),相对磁导率2000,最高工作频率100kHz。

TDK PC40(国产R2KB1),相对磁导率2000,最高工作频率500kHz。

TDK PC50(国产R2KB2),相对磁导率2000,最高工作频率可达1MHz。

一般电子市场中绕制开关电源变压器的,都是这类材料,国产材料一般只说“磁导率2000”,好一点的相当于PC40,差一点的相当于PC30,相当于PC50的较少见。

廉价节能灯中的磁环和电感,一般是相当于PC30的材料,因为其工作频率一般在50kHz以下。

2、一般锰锌铁氧体材料(用于收音机中波磁棒、AM中周等)
R400,最常见的材料,相对磁导率400。

改进的材料,例如R750、R800等,其相对磁导率比MXO-400高,高频损耗小,绕制的线圈Q值高,但绕制匝数要比MXO-400 材料少,需要实测。

目前很多中波磁棒都是此类改进材料,使用时不宜盲目按照过去的参数绕制线圈,需要实测一下电感系数,方法是用漆包线在磁棒一端密绕数十匝,测出电感量,根据电感量与线圈匝数的平方成正比,可以计算出达到预定电感量所需匝数。

MnZn铁氧体关键磁参数及工艺

MnZn铁氧体关键磁参数及工艺

第一章MnZn铁氧体的关键磁参数1.1 引言铁氧体磁性即亚铁磁性,来源于被氧离子所分隔的磁性金属离子间的超交换相互作用,它使处于不同晶格位置上的金属离子磁矩反向排列。

当相反排列的磁矩不相等时,则表现出强磁性。

很明显,铁氧体的基本特性与应用特性都与晶体结构、化学键及离子分布密切相关。

本章由MnZn铁氧体的晶体结构研究入手,探讨分析MnZn铁氧体有关的基础理论,对本文所涉及的基本电磁参数如起始磁导率µi、损耗P L、饱和磁感应强度B s、居里温度T c等进行了分析,为本文的研究提供理论依据。

1.2 MnZn铁氧体的晶体结构及磁性来源1.2.1 MnZn铁氧体的晶体结构凡是晶体结构和天然矿石—镁铝尖晶石(MgAl2O4)的结构相似的铁氧体,称为尖晶石型铁氧体。

我们研究的MnZn铁氧体就属于尖晶石型铁氧体。

尖晶石型铁氧体的晶体结构属于立方晶系,其化学分子式可以MeFe2O4(或AB2O4)表示。

其中,Me为金属离子Mg2+、Mn2+、Ni2+、Zn2+、Fe2+、Li1+等;而Fe为三价离子,也可以被其他三价金属离子Al3+、Cr3+或Fe2+、Ti4+所代替。

总之,只要几个金属离子的化学价总数为8价,能与四个氧离子化学价平衡即可,但也要注意离子的大小及其他一些问题。

尖晶石型结构的一个晶胞共有56个氧离子,相当于8MeFe2O4,其中有24个金属离子,32个氧离子。

由于晶胞中的离子很多,结构较复杂,不易全部画出。

图1-1表示了部分金属离子在晶胞中的分布。

每个晶胞实际上可以分为8个小立方,这8个小立方体又分为两类,每种各有4个;每两个共边的小立方体是同类的,每两个共面的小立方体分属于不同类型的结构。

在每个不同类型的小立方体内都有4个氧离子。

在8个小立方体中,氧离子都位于体对角线中点至顶点的中心。

由于氧离子比较大,金属离子比较小,而以氧离子作为密堆积结构,金属离子都填充在氧离子密堆积的空隙中。

氧离子之间存在两种空隙:即八面体空隙和四面体空隙,如图1-2。

高频下锰锌铁氧体磁芯的损耗特性

高频下锰锌铁氧体磁芯的损耗特性

高频下锰锌铁氧体磁芯的损耗特性摘要:随着现代电子技术的发展,高频锰锌铁氧体磁芯在许多应用中都显示出其重要性。

该文主要讨论了锰锌铁氧体磁芯的基础知识,探究了其在高频下的磁性质原理,同时也深入分析了在高频下的损耗特性。

通过对不同的损耗机制的介绍和损耗测量方法的描述,本文为减少高频下的损耗提供了一些优化策略和实际应用的例子。

关键词:锰锌铁氧体、高频、磁性质、损耗特性、优化策略前言:随着电力电子和通信技术的飞速发展,对磁性材料的性能要求也日益增高,尤其是在高频应用中。

锰锌铁氧体作为一种广泛应用的软磁材料,因其良好的磁性质和较低的损耗在高频应用中受到了广泛关注。

为了更好地理解其在高频下的性能和损耗特性,本文旨在对其进行深入探讨,希望为相关研究提供有益的参考和启示。

一、锰锌铁氧体磁芯的基础知识锰锌铁氧体(MnZnFeO)是一种常用的多晶软磁材料,其在电力电子、通信技术以及其他高频应用中发挥着关键作用。

由于其优越的磁性能和低损耗特性,它在现代电子领域中受到了广泛关注。

为了更深入地理解锰锌铁氧体的这些特性,首先需要研究其基本成分和结构,探究其在高频下的磁性质原理,并分析生产工艺对其磁性质的影响。

1.1 锰锌铁氧体的成分与结构锰锌铁氧体是由锰(Mn)、锌(Zn)和铁(Fe)组成的多晶磁性材料。

这种材料的结构由于其原子排列的特定方式而获得独特的磁性特性。

锰锌铁氧体的化学式通常为Mn_xZn_yFe_2O_4,其中x和y的值可变,以调整其磁性质。

这种材料的磁性主要来源于铁(Fe)离子的磁矩,而锰(Mn)和锌(Zn)离子主要起到调节的作用,使得材料在特定的应用中表现出优越的磁性。

在微观层面,锰锌铁氧体的结构基于尖晶石型晶体格子。

在这种格子中,Fe离子占据八面体和四面体的位置,而Mn和Zn离子则主要分布在八面体位置。

这种特定的离子排列方式决定了其磁性质,如饱和磁感应强度、磁导率和磁滞特性。

不同的生产工艺和制备条件会导致锰锌铁氧体中的离子分布和排列发生变化,从而影响其磁性质。

锰锌铁氧体磁芯变形问题

锰锌铁氧体磁芯变形问题

锰锌铁氧体磁芯变形问题
锰锌铁氧体磁芯是现代电子产品中常用的磁芯材料,用于制造变压器、电感器和电感元件等。

然而,这种材料在使用过程中存在着一些变形问题,需要我们予以关注和解决。

首先,锰锌铁氧体磁芯在高温环境下容易发生热膨胀现象,导致磁芯的尺寸变化。

这可能对电子设备的性能造成负面影响,例如磁芯的变形可能使得电感器的电感值发生变化,从而影响整个电路的工作性能。

为了解决这一问题,我们可以在设计和制造过程中使用具有低热膨胀系数特性的材料,或者采取热稳定性较好的磁芯结构,以减小热膨胀引起的变形。

其次,锰锌铁氧体磁芯还容易发生机械应力引起的变形。

机械应力可能来自于制造过程中的加工工艺、装配过程中的力施加,或者在运输和使用过程中的外部冲击。

为了解决这一问题,我们可以进行严格的质量控制和工艺优化,以减小机械应力对磁芯的影响。

此外,还可以采用增加机械支撑结构、改变装配方式等措施,以增强磁芯的结构强度和抗变形能力。

另外,锰锌铁氧体磁芯在电磁场作用下也可能发生变形。

电磁场对磁芯的影响是由其磁导率和磁化特性决定的。

为了减小电磁场引起的变形问题,我们可以在设计过程中选择合适的磁芯尺寸和形状,以减小磁芯对电磁场的敏感度;或者在制造过程中使用具有高磁导率和较小磁器件损耗的锰锌铁氧体磁芯材料。

总结起来,锰锌铁氧体磁芯的变形问题是在设计、制造、装配和使用过程中都需要考虑和解决的。

通过选择合适的材料、采取优化的工艺、加强结构支撑和考虑电磁场等因素,我们可以有效地控制和减小锰锌铁氧体磁芯的变形,并保证电子设备的正常工作。

锰锌铁磁芯

锰锌铁磁芯

锰锌铁磁芯
锰锌铁磁芯
锰锌铁磁芯是一种常见的磁性材料,它由锰锌铁氧体制成,具有高磁导率、低磁阻、高饱和磁感应强度等优良的磁性能。

锰锌铁磁芯广泛应用于电子电路、通信设备、计算机、电力电子等领域,是现代电子技术中不可或缺的重要材料。

锰锌铁磁芯的制备过程相对简单,一般采用化学共沉淀法、溶胶凝胶法、高温烧结法等方法制备。

其中,化学共沉淀法是一种较为常用的制备方法,它通过将金属离子与氧化物共同沉淀,再经过热处理得到锰锌铁氧体材料。

这种方法制备的锰锌铁磁芯具有较高的磁导率和饱和磁感应强度,但其磁阻较大,不适用于高频电路。

锰锌铁磁芯的应用范围非常广泛,它可以用于制作各种电感器、变压器、滤波器、磁性存储器等电子元器件。

在电力电子领域,锰锌铁磁芯被广泛应用于开关电源、逆变器、变频器等设备中,它可以有效地降低电路中的磁阻和损耗,提高电路的效率和稳定性。

在通信设备中,锰锌铁磁芯可以用于制作各种滤波器、耦合器、隔离器等元器件,它可以有效地抑制电磁干扰和噪声,提高通信质量和稳定性。

锰锌铁磁芯是一种非常重要的磁性材料,它具有优良的磁性能和广泛的应用前景。

随着电子技术的不断发展和应用领域的不断扩大,锰锌铁磁芯的应用前景将会更加广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、锰锌功率铁氧体材料(用于开关电源、节能灯等大功率设备)
TDK PC30(国产R2KB),相对磁导率2000,最高工作频率100kHz。

TDK PC40(国产R2KB1),相对磁导率2000,最高工作频率500kHz。

TDK PC50(国产R2KB2),相对磁导率2000,最高工作频率可达1MHz。

一般电子市场中绕制开关电源变压器的,都是这类材料,国产材料一般只说“磁导率2000”,好一点的相当于PC40,差一点的相当于PC30,相当于PC50的较少见。

廉价节能灯中的磁环和电感,一般是相当于PC30的材料,因为其工作频率一般在50kHz以下。

2、一般锰锌铁氧体材料(用于收音机中波磁棒、AM中周等)
R400,最常见的材料,相对磁导率400。

改进的材料,例如R750、R800等,其相对磁导率比MXO-400高,高频损耗小,绕制的线圈Q值高,但绕制匝数要比MXO-400材料少,需要实测。

目前很多中波磁棒都是此类改进材料,使用时不宜盲目按照过去的参数绕制线圈,需要实测一下电感系数,方法是用漆包线在磁棒一端密绕数十匝,测出电感量,根据电感量与线圈匝数的平方成正比,可以计算出达到预定电感量所需匝数。

相关文档
最新文档