新教材第二章课件2(2.2-2.3)
合集下载
新教材高中数学第2章直线和圆的方程2-22-2-2直线的两点式方程课件新人教A版选择性必修一
![新教材高中数学第2章直线和圆的方程2-22-2-2直线的两点式方程课件新人教A版选择性必修一](https://img.taocdn.com/s3/m/501b528a690203d8ce2f0066f5335a8102d266ae.png)
+
y -b2
=1,因此直线在y轴上的
截距是-b2.]
NO.2
合作探究·释疑难
类型1 类型2 类型3
类型1 直线的两点式方程
【例1】 (对接教材P63例题)(1)过点(-1,1)和(3,9)的直线在x轴 上的截距是( )
A.-32
B.-23
C.25
D.2
(2)△ABC的三个顶点分别为A(-5,0),B(3,-3),C(0,2),求这
2.一条直线的方程不能用两点式表示,同样也不能用截距 式表示,反之,若一条直线的方程不能用截距式表示,是否也不能 用两点式表示?
[提示] 当一条直线过原点且斜率存在时,不能用截距式表 示,但可用两点式表示.
xy 2.直线a2-b2=1在y轴上的截距是________.
-b2
[直线的斜截式方程为
x a2
(2)[解] ①当直线l过原点时,直线l在两坐标轴上的截距相等且为 0,此时直线l的斜率k=-34,直线l的方程为y=-34x,即3x+4y=0.
②当直线l在两坐标轴上的截距均不为0且相等时,设直线l的方程
为ax+ay=1, 由点(4,-3)在直线l上得a4+-a3=1,解得a=1. 此时直线l的方程为x+y-1=0. 综上知,所求直线l的方程为3x+4y=0或x+y-1=0.
为0
1.不能用直线的两点式方程表示的直线有什么特点? [提示] 平行于坐标轴或与坐标轴重合.
1.已知直线l过点A(3,1),B(2,0),则直线l的方程为____.
x-y-2=0 [过A(3,1),B(2,0)两点的直线方程为 0y--11=2x--33,整理得x-y-2=0.]
知识点 2 直线的截距式方程 (1)直线在 x 轴上的截距 把直线 l 与 x 轴的交点(a,0)的 横坐标a 叫做直线在 x 轴上的截距.
新教材高中数学第二章一元二次函数、方程和不等式2.3.2一元二次不等式的应用课件新人教A版必修第一册
![新教材高中数学第二章一元二次函数、方程和不等式2.3.2一元二次不等式的应用课件新人教A版必修第一册](https://img.taocdn.com/s3/m/a290145166ec102de2bd960590c69ec3d4bbdb61.png)
[解] 若 a=0,则原不等式为-x-1<0,即 x>-1,不合题 意,故 a≠0.
令 y=ax2+(a-1)x+a-1, ∵原不等式对任意 x∈R 都成立, ∴二次函数 y=ax2+(a-1)x+a-1 的图象在 x 轴的下方, ∴a<0 且 Δ=(a-1)2-4a(a-1)<0,
即aa<-0,13a+1>0 ∴a<-13.
[答案] 结合二次函数图象可知,若一元二次不等式 ax2+x- 1>0 的解集为 R,则a1>+04,a<0, ,解得 a∈∅,所以不存在 a 使不 等式 ax2+x-1>0 的解集为 R
课堂互动探究
题型一 解简单的分式不等式 【典例 1】 解下列不等式: (1)x1+-2x<0;(2)xx+ -12≤2. [思路导引] 等价转化为一元二次不等式或一元一次不等式 组求得.
(2)对于不等号右边不为零的较复杂的分式不等式,先移项再 通分(不要去分母),使之转化为不等号右边为零,然后再用上述 方法求解.
[针对训练] 1.解下列不等式: (1)23xx-+11≥0;
2-x (2)x+3>1.
[解] (1)原不等式可化为32xx+-11≠30x,+1≥0,
解得xx≤≠--1313或,x≥12,
[解] 由题意列出不等式 S 甲=0.1x+0.01x2>12, S 乙=0.05x+0.005x2>10. 分别求解,得 x<-40,或 x>30. x<-50,或 x>40. 由于 x>0,从而得 x 甲>30 km/h,x 乙>40 km/h. 经比较知乙车超过限速,应负主要责任.
课堂归纳小结 1.解不等式的过程实际上就是不断转化的过程,是同解不 等式的逐步代换,基本思路是:代数化、分式整式化、有理化、 低次化、低维化,最后转化到可解的常见一元一次不等式、一元 二次不等式上来. 2.当一元二次不等式 ax2+bx+c>0(a>0)的解集为 R 时,意味 着 ax2+bx+c>0 恒成立.由图象可知:关于这类恒成立问题只需 考虑开口方向与判别式 Δ 即可.
新教材湘教版七年级上册地理 2.2 地球的运动 课件
![新教材湘教版七年级上册地理 2.2 地球的运动 课件](https://img.taocdn.com/s3/m/c5b0e364366baf1ffc4ffe4733687e21af45ff89.png)
D 3.林老师所持的地球仪上( )
A.所有的经线都是相交的
B.0°和180°组成的经线圈最大
C.没有长度相等的纬线圈
D.共有180条经线
D 4.在演示地球公转的过程中,地球仪应( )
①顺时针围绕灯泡转动
②在与赤道平行的平面上运动
③保持地轴的空间指向不变
④同时保持自转
A.①④ B.②③ C.②④ D.③④
一、地球的自转
计算 1:时区的计算(已知某地经度,求该地所在时区)
总结:某地经度/15°=时区 ①余数小于7.5,得数是几就是几时区 ②余数大于7.5,得数加1即所求时区 ③余数等于7.5,该地位于得数和得数加1的 时区分界线上。 小练习:某地经度为129°W,那么该地位于 哪一个时区?
129°W/15°=8……9 西九区
第二章 认识地球
第二节 地球的运动
课前导入
日升日落
四季交替
时差
你知道这些我们熟悉的自然现象形成的原因吗? 它们分别和地球的哪些运动形式有关呢呢?
地球的运动形式
观察动图,地球有哪两种运动形式?
自转 公转
一、地球的自转
地球自转是地球绕地轴自西向东转动的运动方式,其周期为一天。 我们每天经历的昼夜更替,看到日月星辰的东升西落,主要是由于地球 自转运动产生的地理现象。
随堂检测
D 5.按图中所示方向转动地球仪,可以演示( )
①地球的自转方向
②地球的公转方向
③昼夜长短的变化
④昼夜更替现象
A.①② B.②③ C.③④ D.①④
A 6.造成北京、东京时间差异,最主要的原因是( )
①经度不同 ②纬度不同 ③地球自转 ④地球公转 A.①③ B.①④ C.②③ D.②④
A.所有的经线都是相交的
B.0°和180°组成的经线圈最大
C.没有长度相等的纬线圈
D.共有180条经线
D 4.在演示地球公转的过程中,地球仪应( )
①顺时针围绕灯泡转动
②在与赤道平行的平面上运动
③保持地轴的空间指向不变
④同时保持自转
A.①④ B.②③ C.②④ D.③④
一、地球的自转
计算 1:时区的计算(已知某地经度,求该地所在时区)
总结:某地经度/15°=时区 ①余数小于7.5,得数是几就是几时区 ②余数大于7.5,得数加1即所求时区 ③余数等于7.5,该地位于得数和得数加1的 时区分界线上。 小练习:某地经度为129°W,那么该地位于 哪一个时区?
129°W/15°=8……9 西九区
第二章 认识地球
第二节 地球的运动
课前导入
日升日落
四季交替
时差
你知道这些我们熟悉的自然现象形成的原因吗? 它们分别和地球的哪些运动形式有关呢呢?
地球的运动形式
观察动图,地球有哪两种运动形式?
自转 公转
一、地球的自转
地球自转是地球绕地轴自西向东转动的运动方式,其周期为一天。 我们每天经历的昼夜更替,看到日月星辰的东升西落,主要是由于地球 自转运动产生的地理现象。
随堂检测
D 5.按图中所示方向转动地球仪,可以演示( )
①地球的自转方向
②地球的公转方向
③昼夜长短的变化
④昼夜更替现象
A.①② B.②③ C.③④ D.①④
A 6.造成北京、东京时间差异,最主要的原因是( )
①经度不同 ②纬度不同 ③地球自转 ④地球公转 A.①③ B.①④ C.②③ D.②④
新教材高中数学第二章两条平行直线间的距离课件新人教A版选择性必修第一册ppt
![新教材高中数学第二章两条平行直线间的距离课件新人教A版选择性必修第一册ppt](https://img.taocdn.com/s3/m/32d920bfcf84b9d529ea7ab3.png)
得到的.当A=0或B=0时,上述公式仍然成立.
微练习
原点到直线x+2y-5=0的距离为(
B. 3
A.1
解析 d=
|-5|
12 +22
)
C.2
D. 5
= 5.
答案 D
微思考
点P(x0,y0)到x轴,y轴,直线y=a,x=b的距离分别是什么?
提示 到x轴的距离d=|y0|,到y轴的距离d=|x0|,到y=a的距离d=|y0-a|,到x=b的
(方法 2)∵直线 x=2 与 y 轴平行,
∴由图知 d=|-1-2|=3.
=3.
|-1×0+2-1|
(3)(方法 1)由点到直线的距离公式,得 d=
02 +12
=1.
(方法 2)∵直线 y-1=0 与 x 轴平行,
∴由图知 d=|2-1|=1.
反思感悟 点到直线的距离的求解方法
(1)求点到直线的距离时,只需把直线方程化为一般式,直接利用点到直线
方法总结
解此类题目有两种方法,一是利用数形结合的方法,过一定点与两定点距离
相等的点的直线有两条(三定点不共线),根据这两条直线的几何特征可求
出其直线方程.二是求此类问题的一般方法,它应用了点到直线的距离公式,
且x,y分别对应的系数一模一样的情况,如果两平行直线的方程中x,y的系数
对应不同,必须先等价化为系数对应相同才能套用公式.
微练习
两条平行线l1:3x-4y-1=0与l2:6x-8y-7=0间的距离为(
1
A.
2
3
B.
5
解析 l2 的方程可化为
d=
7
2
-1+
32 +(-4)2
新教材高中数学第2章平面解析几何两条直线的位置关系第2课时两条直线的垂直课件新人教B版选择性必修
![新教材高中数学第2章平面解析几何两条直线的位置关系第2课时两条直线的垂直课件新人教B版选择性必修](https://img.taocdn.com/s3/m/d9f4c8d40342a8956bec0975f46527d3250ca656.png)
1.判一判(正确的打“√”,错误的打“×”) (1)若两条直线垂直,则它们的斜率的乘积一定等于-1.( × ) (2)若两条直线的斜率都不存在且两直线不重合,则这两条直线都与 x 轴垂直.( √ ) (3)两条直线的斜率分别为 k1,k2,若 k1·k2≠-1,则两条直线一定不垂 直.( √ )
2.做一做
第二章 平面解析几何
2.2 直线及其方程 2.2.3 两条直线的位置关系 第2课时 两条直线的垂直
(教师独具内容) 课程标准:1.能根据斜率判定两条直线垂直.2.理解并掌握两条直线垂直 的条件.3.能利用两条直线垂直进行实际应用. 学法指导:从法向量和倾斜角两个角度结合图形探求两直线垂直的条 件. 教学重点:两条直线垂直的条件. 教学难点:利用两条直线垂直的条件解决对称问题及其他实际问题.
1.对两直线垂直与斜率的关系要注意的几点 (1)l1⊥l2⇔k1k2=-1 成立的前提条件:①两条直线的斜率都存在;② k1≠0 且 k2≠0. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于 零,则这两条直线垂直. (3)判定两条直线垂直的一般结论:l1⊥l2⇔k1k2=-1 或一条直线的斜率 不存在,同时另一条直线的斜率等于零.
2.常用对称的特例 (1)A(a,b)关于 x 轴的对称点为 A′(a,-b); (2)B(a,b)关于 y 轴的对称点为 B′(-a,b); (3)C(a,b)关于直线 y=x 的对称点为 C′(b,a); (4)D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); (5)P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); (6)Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).
所以直线 l 的方程为 4x+3y-6=0.
_新教材高中数学第二章平面解析几何2
![_新教材高中数学第二章平面解析几何2](https://img.taocdn.com/s3/m/546193c3c0c708a1284ac850ad02de80d4d8064d.png)
A.-
3 3
B.
3 3
C.- 3
D. 3
解析:∵k1=tan 30°=
3 3
,
又l1⊥l2,∴k1·Hale Waihona Puke 2=-1,∴k2=- 3 .
答案:C
3.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为
A.-8 C.2
B.0 D.10
()
解析:由已知,得4m-+m2 =-2,∴m=-8.
顺次连接A,B,C,D四点,试判断四边形ABCD的形状.” 解:由题意A,B,C,D四点在平面直角坐标系内的位置如图, 由斜率公式可得kAB=2-(5--34) =13 ,kCD=-0- 3-36 =13 ,kAD =-3-0-(-3 4) =-3,kBC=36- -52 =-12 . 所以kAB=kCD,由图可知AB与CD不重合,所以AB∥CD,由kAD≠kBC,所以AD与 BC不平行. 又因为kAB·kAD=13 ×(-3)=-1,所以AB⊥AD,故四边形ABCD为直角梯形.
(2)若l1∥l2,则有AB11BC22- -AB22BC11= ≠00, , 即32- m2m-(18m≠-02,)=0, 即mm22- ≠29m,-3=0, 即mm= ≠33或 且mm= ≠- -13, , ∴m=-1.故当m=-1时,直线l1与l2平行. (3)若l1与l2重合,则有AB11BC22- -AB22BC11= =00, , 即32-m2m-(18m=-02,)=0, ∴mm= =33或 或mm= =- -13, , ∴m=3. 故当m=3时,直线l1与l2重合.
当两条直线都没有斜率时,它们互相平行或重合;当两条直线中有一条直 线的斜率不存在,另一条直线的斜率为0时,它们互相垂直.
通用新教材2.3课件
![通用新教材2.3课件](https://img.taocdn.com/s3/m/011e183d680203d8cf2f24a8.png)
成本 低
携带 方便
易于 制作
设计 要求
自重 轻
稳固
结构 简单
体积 小
材料 5分钟
结构
Ⅻ
连接方式
Ⅸ
Ⅲ
Ⅵ
【课堂活动一】 请大家设计一个便携式小板凳,用草图呈现出来,材料选
用木板,时间控制在5分钟以内。
收集信息(资料)
可以通过用户调查、专家咨询、查阅图书资料、收听广播、收 看电视、浏览互联网等。
收集信息(资料)
用草图呈现构思
依据原则筛选
方案筛选
最终确定设计方案
在制定设计方案中,要大胆突破传统观念的束缚,始终明确: 1.运用不同的材料、结构可以产生不同的设计方案。 2.任何设计方案都有改进的可能性,好方案决不会仅有一个。
二、制定设计方案 收集信息
设计分析
方案构思
方案呈现
方案筛选
三、制作模型或原型
模型制作包括两个阶段: 1、绘制图样(手工绘、计算机绘制) 2、制作模型(缩小、简化)或者原型 (1)绘制三视图
可以针对测试、评估的数据和公众(三种人:专业人员、潜在 客户和用户)的意见对产品进一步优化。
美化外观、减轻自重、又不影响结构强度。
五、编写产品说明书
正确使用和维护可以使产品更好地满足人们的需求,并能延长 其使用寿命.
归纳知识
课堂小结
设计的一般过程
发现问题 明确问题 制定设计方案
设计实际上是一个动态发展的过程,有些阶段 或步骤可能发生变化,有些步骤之间则可能出现一 定的循环。因此我们不能将设计的过程简单化、模 式化,而应该根据设计的需要进行灵活安排。
第二章 技术世界中的设计
2.3 设计的一般过程
学习任务 1.体验设计的一般过程(上) 2.体验设计的一般过程(下)
2024新人编版七年级数学上册《第二章2.2.2有理数的除法第2课时》教学课件
![2024新人编版七年级数学上册《第二章2.2.2有理数的除法第2课时》教学课件](https://img.taocdn.com/s3/m/dacbffbe7e192279168884868762caaedc33ba69.png)
当堂训练
2.计算:
3
(1)23×(–5)–(–3)÷
128
13
(2)–7×(–3)×(–0.5)+(–12)×(–2.6)
20.7
当堂训练
3.计算:
(1)2×(–3÷
)–4×(–3)+15;
(2)–8+(–3)×[–4÷(–
)+2]–32÷(–2).
当堂训练
解:(1)原式=2×(–27)–(–12)+15
30
3 10 6 5
探究新知
解:方法一:
原式= (
1
2 1
1 2
) [ ( )]
30
3 6 10 5
1
5 1
= ( 30 ) [ 6 2 ]
1
1
= ( ) 3 =
30
10
.
按常规方
法计算
探究新知
1
2 1 1 2
( ) ( )
30
3 10 6 5
巩固练习
选择合适的方法计算:
1
1 3 2 2
( ) (
).
42
6 14 3 7
巩固练习
1 3 2 2
1
解:原式的倒数为 ( ) ( )
6 14 3 7
42
1 3 2 2
(
) (42)
6 14 3 7
7 9 28 12
14
= –54+12+15
= –27
(2)原式= –8+(–3)×(16+2)–9÷(–2)
新教材高中数学第二章直线和圆的方程2.2.2直线的两点式方程课件新人教A版选择性必修第一册
![新教材高中数学第二章直线和圆的方程2.2.2直线的两点式方程课件新人教A版选择性必修第一册](https://img.taocdn.com/s3/m/bce04fbdac51f01dc281e53a580216fc700a53bb.png)
【习练·破】
直线l过点P(1,3),且与x,y轴正半轴围成的三角形的面积等于6的直线方程是
()
A.3x+y-6=0
B.x+3y-10=0
C.3x-y=0
D.x-3y+8=0
【解析】选A.设所求的直线方程为: x y(a>1 0,b>0).因为过点P(1,3)且与两
ab
坐标轴的正半轴所围成的三角形面积等于6,所以
【思考】 (1)什么样的直线的方程不能用两点式表示? 提示:与x轴、y轴平行的直线,x轴,y轴. (2)什么样的直线的方程不能用截距式表示? 提示:与x轴、y轴平行或重合及过原点的直线.
2.线段的中点坐标公式 点P(x,y)是线段P1P2的中点,其中P1(x1,y1),P2(x2,y2),则x=_x_1_2_x_2_,y=__y_1 _2_y_2 _.
y1 y1
x表示x1 .
x2 x1
(2)×.当a=0或b=0时,在x轴,y轴上的截距分别为a,b的直线不能用方程 x y 1
ab
表示.
(3)×.例如与x轴平行的直线只有在y轴上的截距.
2.直线 x y 1在y轴上的截距是(
34
A.3
B.-3
C.4
) D.-4
【解析】选D.直线 x y即 1 x 在 yy轴1上的截距是-4.
(2)当直线l与x轴、y轴围成的三角形的面积为
1 2
时,求直线l的方程.
【思维·引】(1)第一分析直线与两点距离相等的情况,再分情况求直线方程.
(2)设出截距式方程,利用截距表示出面积、直线过已知点列出方程组解题.
【解析】(1)①当直线l∥BC时,kl=kBC=4523
.所1 以直线l的方程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习惯画法
《模拟电子技术》多媒体课件
电子工程系
二、基本共射放大电路的工作原理及波形分析
设静态时,基极电流、 集电极电流、集电极电压分 别为 IBQ、ICQ、UCEQ 则总电量 iB I BQ ib
(将UCEQ 去掉) 交流输出 uo uce
iC ICQ ic (ic ib ) uCE UCEQ uce
①何谓交流通路 输入交流信号单独作用下,交流电流流经的通路称为交流通路。 ②如何画交流通路 ⒈电容视为短路; ⒉直流电源置0;
《模拟电子技术》多媒体课件
电子工程系
3、直流通路和交流通路画法举例
①基本共射放大电路
直流通路:
交流通路:
注意
交流通路的画法?
《模拟电子技术》多媒体课件
电子工程系
②直接耦合放大电路
结论
放大电路只有有合适的静 态工作点,才能保证晶体管在 输入信号的整个周期内始终工 作在放大状态,输出电压波形 才不会产生非线性失真。
《模拟电子技术》多媒体课件
电子工程系
三、 直流通路与交流通路
1、直流通路 用于确定静态工作点 ①何谓直流通路 直流电源单独作用下直流电流流经的通路称为直流通路。 ②如何画直流通路 ⒈电容视为开路; ⒉电感视为短路; ⒊信号源视为短路,但保留其内阻。 2、交流通路 用于确定动态参数
iO 2、 电流放大倍数 Ai iI
I A O A ii i I i
《模拟电子技术》多媒体课件
电子工程系
3、 电压对电流的放大倍数(又称互阻放大倍数) U uO O A Aui Ar ui I i 4、电流对电压的放大倍数(又称互导放大倍数) iO I O Aiu Ag A iu uI U
电子工程系
练习: 画出图 示各电 路的直 流通路 和交流 通路。 设所有 电容对 交流信 号均可 视为短 路。
《模拟电子技术》多媒体课件
电子工程系ຫໍສະໝຸດ 2.2.1 放大电路组成原则
(1) 必须有为放大管提供Q点的直流电源。 (2)静态工作点合适:保证晶体管工作在放大区; 场效应管工作在恒流区。 (3)动态信号能够作用于放大管的输入回路。 对于晶体管能产生△uBE或△iB ,对于场效应管能产生△uGS 。 (4)负载上能够获得放大了的动态信号。 (5)对实用放大电路:共地、无断路或短路。
Uo Ro Io
U S 0 ,RL
衡量放大电路带负载的能力: Ro越小,带负载能力越强
《模拟电子技术》多媒体课件
电子工程系
【特别提示】 输出电 阻不应包含负载电阻RL,输入电阻不应包含信号源 、 的内阻RS。 求输出电阻时,应将交流电压信号源短路,但要保留其内 、 阻。 输入电阻Ri和输出电阻Ro均指放大电路在中频段内的交流 (动态)等效电阻。 在中频范围内,电压放大倍数、电流放大倍数、输入电阻 。 和输出电阻也可以分别表示为 uo ui uo io Ro Au Ri Ai ui ii io u 0 ,R ii
《模拟电子技术》多媒体课件
电子工程系
2.2 晶体管放大电路组成及其重要性能指标
放大的概念
以扩音机 为例 放大的对象: 变化量 放大的本质: 能量的控制和转换 输出信号的能量 直流电源的能量 放大电路的核心器件: 有源器件 放大电路的基本特征: 功率放大 放大的前提: 信号不失真 放大电路的测试信号: 正弦波
《模拟电子技术》多媒体课件
电子工程系
练习:判断下面电路能否正常放大交流信号?若不能,请改 正。注意:不能改变电路原来的共射接法和耦合方式。
判断放大 电路能否 正常放大 的第二种 方法:是 否有合理 的交直流 通路。
《模拟电子技术》多媒体课件
电子工程系
小结
1、放大的基本概念:对象、本质、核心器件、特征; 2、放大电路的性能指标:放大倍数、输入电阻、输出电阻; 3、放大电路的电路特征:交直流并存;静态工作点定义 及求 解方法。 4、直接耦合和阻容耦合的概念; 5、放大电路的组成原则:如何判断电路能否正常放大。
S L
《模拟电子技术》多媒体课件
电子工程系
2.3 放大电路的工作原理
一、基本共射放大电路的组成及各元件的作用 1、组成 晶体管T、基极电源VBB、集 电极电源VCC、基极电阻Rb、集电 极电阻Rc。 2、各元件的作用
①晶体管T:电流放大;
②基极电源VBB:使发射结正偏(UBE>Uon); ③基极电阻Rb:与VBB一起确定合适的IB; ④集电极电阻Rc:将集电极电流的变化转换成电压的变化。 ⑤集电极电源VCC: ⒈使集电结反偏; ⒉给放大电路提供能源。
直流通路
交流通路
《模拟电子技术》多媒体课件
电子工程系
③阻容耦合共射放大电路
直流通路
交流通路
【特别提示】 ●画直流通路时,一定要保持电 路的原有结构不变。 ●画交流通路时,要画成一个二 端口网络。 ●画交流通路时,只有交流信号 源的频率在中频段或高频段时, 才可将较大容量的电容视为短路。
《模拟电子技术》多媒体课件
《模拟电子技术》多媒体课件
电子工程系
放大电路示意图
2.2.2 放大电路的性能指标
A
C
输入端加 正弦测试 电压信号
RS us
B
放大电路 D
RL
放大倍数是直接衡量放大电路放大能力的重要指标,其值为输 出变化量与输入变化量的比值。 1、 电压放大倍数
uO Au uI
一、放大倍数
U Auu Au O U i
《模拟电子技术》多媒体课件
电子工程系
3、放大电路特征 交直流并存 ①直流量单独作用(静态工 作) ,产生静态分量,即直流分 量: IB、IC、UBE、UCE
②交流量单独作用,产生动态 分量,即交流分量: ib 、ic、ube、 uce(动态工作) ③电路中总电量为 两种电量的叠加:
iB I BQ ib iC ICQ ic (ic ib ) uCE UCEQ uce
i
I
i
) (本章重点研究电压放大倍数 A u
《模拟电子技术》多媒体课件
电子工程系
二、输入电阻
思考:如何求 输出电阻RO?
三、输出电阻
从放大电路的输入端看进去的等效电阻,用Ri表示。 uI Ui Ri Ri iI I i 衡量放大电路获取信号的能力:P17
从放大电路的输出端看进去的等效电阻,用Ro表示。