平方差公式试题
(完整版)平方差公式因式分解试题集锦
试卷第1页,总7页1.下列各式中能用平方差公式因式分解的是( )A. x 2+y 2B.x 2+y 2C.–x 2-y 2D. x 2-3y 答案:B 解析:试题分析:根据能用平方差公式分解的多项式的特点是:(1)有两项;(2)是“两数”或“两项”的平方差,依次分析各项即可.A 、x 2+y 2,两平方项符号相同,故此选项错误;B 、-x 2+y 2=(x+y )(y-x ),故此选项正确;C 、-x 2-y 2-=-[m 2+n 2],两平方项符号相同,故此选项错误;D 、x 2-3y 两平方项符号相反,但是次数不同,故此选项错误; 故选:B .考点:本题考查的是因式分解-运用公式法点评:解答本题的关键是掌握平方差公式分解的多项式的特点:(1)有两项;(2)是“两数”或“两项”的平方差.2.下列各式中,能用平方差公式进行因式分解的是 ( ) A.x 2-xy 2B.-1+y 2C.2y 2+2D.x 3-y 3答案:B 解析:试题分析:平方差公式:))((22b a b a b a -+=-.A 、22xy x -,C 、222+y ,D 、33y x -,均不能用平方差公式进行因式分解; B 、=+-21y )1)(1(12-+=-y y y ,本选项正确. 考点:平方差公式点评:本题属于基础应用题,只需学生熟练掌握平方差公式,即可完成. 3.下列哪个选项可以利用平方差公式进行因式分解( ) A .a 2+b 2 B .-a 2-b 2 C .-a 2+b 2 D .-(a 2+b 2) 答案:C解:A 、a 2+b 2,两平方项符号相同,故此选项错误; B 、-x 2-y 2,两平方项符号相同,故此选项错误; C 、-a 2+b 2=(b+a )(b-a ),故此选项正确;D 、-(a 2+b 2),两平方项符号相同,故此选项错误.试卷第2页,总7页4.下列各式中,能用平方差公式进行因式分解的是( ) A 、x 2-xy 2B 、-1+y 2C 、2y 2+2D 、x 3-y 3答案:B试题分析:易知平方差公式为:()()22a b a+b a b -=-。
平方差公式和完全平方公式(北师版)(含答案)
学生做题前请先回答以下问题问题1:平方差公式:_____________________;完全平方公式:①_________________;②__________________.问题2:我们记完全平方公式的口诀是什么?问题3:计算.你是怎么思考的?平方差公式和完全平方公式(北师版)一、单选题(共18道,每道5分)1.计算的结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平方差公式2.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方差公式3.计算的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:完全平方公式4.计算的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:完全平方公式(首项为负)5.计算的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:完全平方公式6.计算的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:完全平方公式7.计算的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:完全平方公式8.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平方差公式9.下列运用平方差公式计算,错误的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平方差公式10.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比( )A.增加6m2B.增加9m2C.减少9m2D.保持不变答案:C解题思路:试题难度:三颗星知识点:平方差公式11.下面计算正确的是( )A.原式B.原式C.原式D.原式答案:C解题思路:试题难度:三颗星知识点:平方差公式12.下列计算,与的值一定相等的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平方差公式13.计算的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:完全平方公式(首项为负)14.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方差公式15.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平方差公式16.若,则的值为( )A.6B.-6C.±6D.36答案:C解题思路:试题难度:三颗星知识点:完全平方公式17.若,则的值为( )A.20B.10C.-20D.±20答案:A解题思路:试题难度:三颗星知识点:完全平方公式18.若,则的值为( )A.2B.-2C.-4D.±2答案:B解题思路:试题难度:三颗星知识点:完全平方公式学生做题后建议通过以下问题总结反思问题1:计算.你是怎么思考的?问题2:计算.你是怎么思考的?问题3:计算.你是怎么思考的?问题4:平方差公式:_____________________;完全平方公式:①_________________;②__________________.我们记完全平方公式的口诀是什么?。
北师大版七下《平方差公式》(试题+参考答案)
平方差公式【目标导航】1.知道平方差公式的结构特征;2.知道平方差公式是多项式乘法的特殊情况;3.会正确运用平方差公式进行计算.【问题探究】一.探究计算下列多项式的积,你能发现什么规律?(1) (x +1)(x - 1)= ;(2) (m +2)(m - 2)= ;(3) (2011江苏连云港)分解因式:x 2-9=_ ▲ .(4) (a +b )(a -b )= .语言表述(4)式:.这个公式叫做(乘法的)平方差公式二.平方差公式的几何解释:三.例题例1先判断下列各式满足平方差公式的结构特征,然后运用平方差公式计算:(1) (3x +2)(3x -2);(2) (b +2a )(2a -b );(3) (-x +2y )(-x -2y ).例2运用平方差公式计算:(1) 102×98 (2)52115312⨯ 例3计算:(1)(2x-y)(y+2x)-2(3x-2y)(-2y-3x)-(-2x-3y)(2x-3y)(2)))()((22y x y x y x ++-(3))161)(41)(21)(21(42a a a a +++-(4) (2011江苏无锡)a(a-3)+(2-a)(2+a)【课堂操练】一.填空1.(2011常州市)分解因式:______92=-x212.(-a -b )(a -b )=3.(2011广东株洲)当x=10,y=9时,代数式x 2-y 2的值是4.=+---)21)(21(b b 5.(x -1) =21x -6.(a +b ) =22a b -二.判断:7.(0.5a-0.1)(0.5a+0.1)=1.025.02-a8.(a-b)(a+b)4422)(b a b a -=+9.2222)1()1()1(-=--a a a 10.y x y x y x y x y x --=+++884422))()(( 11.22)())((c b a c b a c b a -+=+--++ 12.5523233333)()())((b a b a b a b a -=-=-+三.选择13.下列各式:①(x-2y)(2y+x) ② (x-2y)(-x-2y) ③(-x-2y)(x+2y) ④ (x-2y)(-x+2y)其中能用平方差公式计算的是( )A. ①②B. ①③C. ②③D. ②④14.等式)43(22y x --( )=44916x y -中括号内应填入下式中的( )A.2243y x -B.2234x y -C.2243y x --D.2243y x +15.若52022-=+=-y x y x 且,则x -y 的值是( )A.5B.4C.-4D.以上都不对16.计算)())()((4422b a b a b a b a +-++-等于( )A.42aB.42bC.42a -D.42b -17.))((n m n m b a b a +-等于( )A.n m b a22- B.22n m b a - C.n m b a 22+ D.m n a b 22-2218.)43)(34()23)(32(y x x y x y y x +--+-的计算结果为( )A 221325x y - B.22213y x +C.222513y x -D.222513y x +四.应用平方差公式计算:19. 59.8×60.220. 2001×1999 21. 74197320⨯ 22. (1-mn )(mn +1) 23. )5675)(752.1(x y y x ---24. (2011福建福州)分解因式:225x -25.(2011浙江省舟山)分解因式:822-x【课后巩固】五.运用平方差公式计算:(1)2004×2002-22003(2)1.03×0.97 (3)2222482521000- (4)20062004200520052⨯- 六.计算: (5))14)(21)(12(2++-a a a(6))214)(214(22+-y x y x(7))237)(237(22y x y x --- (8))9)(3)(3(2+-+x x x(9))2)(2())((y x y x y x y x +-++-+(10)(x +2y )(x -2y )-(x -4y )(x +4y )+(6y -5x )(5x +6y )七.先化简,再求值:(11)(2011宁波市)先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5(12).(x +2)(2-x )+x (x +1) 其中x =-1.(13).(2011浙江绍兴)先化简,再求值:2(2)2()()()a a b a b a b a b -++-++,其中1,12a b =-=. 八.(14)如果0)5()3(42=+-+-+y x y x ,求22y x -的值.(15).解不等式组:(3)(3)(2)1(25)(25)4(1)x x x x x x x x +--->⎧⎨---<-⎩ ① ② 【课外拓展】(16).填空:(a -b +c )( a +b -c )=( )2-( )2(3a -4b +5c )(-3a -4b +5c )= ( )2- ( )2(17).观察下列等式:① 4×2=32-12;② 4×3=42-22;③ 4×4=52-32;④ ( )×( )=( )2-( )2;……则第4个等式为 ;第n 个等式为 .(n 是正整数)(18).平方差公式的特征:左边为两个数的和乘以这两个数的差.右边为这两个数的平方差.公式的常见变形:位置变化:)2132)(3221(a b b a -+ 符号变化:(-3x -2y )(3x -2y )指数变化:))((2121+-+--+n m n m b a b a系数变化:(4a+4b )(a-b )因数变化:309×291较复杂的变化:(3x +2y -1)(3x -2y +1)(19).运用平方差公式计算:22222212979899100-++-+-)12()12)(12)(12(3242++++)10011()2511)(1611)(911)(411(----- 参考答案:【问题探究】一.探究1.(1)x ²-1; (2)m ²-4;(3)【答案】(x -3)(x +3); (4)a ²-b ²;两数和与两数差的相乘,等于完全相同的项的平方减去绝对值相同而符号相反的项的平方所得的差.二.平方差公式的几何解释:图1(1)的阴影部分的面积为22a b -;图1(2)的阴影面积为()()a b a b +-;(2)比较两个图形,有()()a b a b +-=22a b -,此即为“平方差公式”从而验证了平方差公式(a +b )(a -b )= a ²-b ².三.例题例1(1) 解:原式=9 x ²-4(2)解:原式=(x -3)2+3(x -3)= 4a ²-b ²(3)解:原式=(2x +3)(2x -3)= x ²-4y ²例2(1)解:原式=(100+2) ×(100-2)= 100²-2²=9996(2)解:原式=(12+35)(12-35) =1431625例3 (1)= 4x²-y²-2(4x²-9y²)-2(9y²-4x²)=26x ²-18y ²(2)解:原式= x 4-y 4(3)解:原式=(1-4a ² ) (1+4a ² ) (1+16 a 4 )=1-256a 8(4)【答案】解:原式=a ²-3a +4-a 2=-3a +4【课堂操练】1. (x +3) (x -3)2. b ²-a ²3. 194. b ²-145. (-1-x )6. (-a +b )二、判断题7.(错误)8. ( 正确)9. ( 正确)10. ( 错误 )11. ( 错误 )12. ( 错误 )三、选择题13.A 14.A 15.C 16.D 17.A 18.C四、计算:19. 解:原式=(60+0.2) ×(60-0.2)= 60²-0.2²=3599.620. 解:原式=(2000+1) ×(2000-1)= 2000²-1²=3999999921. 解:原式=(20+37) ×(20-37) = 20²-(37)² =399404922. 解:原式=1-m ²23. 解:原式=(57y ) ² -(1.2x )²= 2549y ²-2536x ²24.解:原式= (x +5) (x -5)25. 解:原式=2(x+2)(x-2)【课后巩固】(1)解:原式=(2003+1)(2003-1)-2003²=-1(2)解:原式=(1+0.03) ×1-0.03)=0.91(3)解:原式=1000²(250+248)(250-248)=1(4)解:原式=2005 2005²- (2005+1)(2005-1)=2005六、(5)解:原式= 16 a 4-1(6)解:原式= 16 y ²x 4-14(7)解:原式= 94y ²x 4 -49 (8)解:原式= x 4 -81(9)解:原式= x 2 -y 2+4y 2-x 2=3 y ²(10)解:原式= x 2 -4y 2-x 2+16y 2+36y 2-25x 2=48y ²-25 x ²七(11)解:原式=a 2-4+a -a 2=a -4当a =5时,原式=5-4=1(12)解:原式=4-x ²+ x ²+x =4+x当x =-1时,原式=4-1=3(13)原式=4a ²-b ²当a=1 2,b =1时,原式=0. 八(14)解:因为(x +y -3) ²+(x -y +5) 4=0.所以x +y -3=0,x -y +5=0,故x =-1, y =4x ²-y ²= (x +y ) +(x -y )= -15(15)解:解不等式①得x>5;解不等式②得x>254所以原不等式组的解集为x>254【课外拓展】(16)a ²-(b -c )²(5c -4b ²)-(3a )²(17)4×5=62-424×n =(n +1)2-(n +1)2;(18)解:原式=(23b +12a )-(23b +12a ) =49b ²-14a ² 解:原式=(-2y -3x )(-2y +3x )=4y ²-9x ²解:原式=a 2(m -1)-b 2(n +2)解:原式=4(a+b )(a-b )=4a ²-b ²解:原式=(300+9) ×(300-9)= 300²-9²=59919解:原式=(3x)²-(2y -1)²= 9x ²-4y ²+4y -1(19)解:原式= (100+99) ×(100-99)+ (98+97)(98+97)+…+(2+1)(2-1) =5050解:原式=(2-1)(2+1)(22+1)…(232+1)=264-1.解:原式=(1+12)(1-12)(1+13)(1-13)(1+14)(1-14)…(1+110)(1-110) =32×12×43×23×54×34×…×1110×910=1120。
平方差完全平方公式(培优1)
平⽅差完全平⽅公式(培优1)平⽅差完全平⽅公式三.解答题(共26⼩题)5.计算:(1)(x﹣y)(x+y)(x2+y2)(2)(a﹣2b+c)(a+2b﹣c)6.计算:1232﹣124×122.7.计算:.8.(x﹣2y+z)(﹣x+2y+z).9.运⽤乘法公式计算.(1)(x+y)2﹣(x﹣y)2;(2)(x+y﹣2)(x﹣y+2);(3)79.8×80.2;(4)19.92.10.化简:(m+n﹣2)(m+n+2).11.(x﹣2y﹣m)(x﹣2y+m)12.计算(1)(a﹣b+c﹣d)(c﹣a﹣d﹣b);(2)(x+2y)(x﹣2y)(x4﹣8x2y2+16y4).13.计算:20082﹣20072+20062﹣20052+…+22﹣12.14.利⽤乘法公式计算:①(a﹣3b+2c)(a+3b﹣2c)②472﹣94×27+272.15.已知:x2﹣y2=20,x+y=4,求x﹣y的值._________16.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据上⾯各式的规律得:(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x+1)=_________;(其中n为正整数);(2)根据这⼀规律,计算1+2+22+23+24+…+268+269的值.17.先观察下⾯的解题过程,然后解答问题:题⽬:化简(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1.问题:化简(3+1)(32+1)(34+1)(38+1)…(364+1).18..19.(2012?黄冈)已知实数x满⾜x+=3,则x2+的值为_________.基本形式是完全平⽅公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配⽅(即“余项”分别是常数项、⼀次项、⼆次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)⽐照上⾯的例⼦,写出x2﹣4x+2三种不同形式的配⽅;(2)将a2+ab+b2配⽅(⾄少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.22.(2004?太原)已知实数a、b满⾜(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.23.(2001?宁夏)设a﹣b=﹣2,求的值.24.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.25.已知x+=4,求x﹣的值.26.已知:x+y=3,xy=2,求x2+y2的值.27.已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.28.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.29.x2﹣11x+1=0,求x2+的值.30.已,求下列各式的值:(1);(2).平⽅差完全平⽅公式参考答案与试题解析⼀.选择题(共1⼩题)1.(1999?烟台)下列代数式,x2+x﹣,,,其中整式有()A .1个B.2个C.3个D.4个考点:整式.分析:解决本题关键是搞清整共2个.故选B.点评:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的⼀部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若⼲个单项式的和,⼆.填空题(共3⼩题)2.(2011?湛江)多项式2x2﹣3x+5是⼆次三项式.考点:多项式.专题:计算题.分析:根据单项式的系数和次2x2﹣3x+5是⼆次三项式.故答案为:⼆,三.点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式⾥次数最⾼项的次数,叫做这个多项式的次数.3.(2010?毕节地区)写出含有字母x,y的四次单项式x2y2.(答案不唯⼀,只要写出⼀个)考点:单项式.专题:开放型.分析:单项式的次数是指单项式中所有字母因数的指都是四次单义,x2y2,x3y,xy3等都符合题意(答案不唯⼀).点评:考查了单项式的次数的概念.只要两个字母的指数的和等于4的单项式都符合要求.4.(2004?南平)把多项式2x2﹣3x+x3按x的降幂排列是x3+2x2﹣3x.考点:多项式.分析:按照x的次数从⼤到⼩排列即可.解答:解:按x的降幂排列是x3+2x2﹣3x.点评:主要考查降幂排列的定义,就是按照x的次数从⼤到⼩的顺序排列,操作时注意带着每⼀项前⾯的符号.三.解答题(共26⼩题)5.计算:(1)(x﹣y)(x+y)(x2+y2)(2)(a﹣2b+c)(a+2b﹣c)式.分析:(1)(x﹣y)与(x+y)结合,可运⽤平⽅差公式,其结果再与(x2+y2)相结合,再次利⽤平⽅差公式,再应⽤完全平⽅公式.解答:解:(1)(x﹣y)(x+y)(x2+y2),=(x2﹣y2)(x2+y2),=x4﹣y4;(2)(a﹣2b+c)(a+2b﹣c),=a2﹣(2b﹣c)2,=a2﹣4b2+4bc﹣c2.点评:本题主要考查了平⽅差公式与完全平⽅公式,熟记公式是解题的关键.平⽅差公式:(a+b)(a﹣b)=a2﹣b2.完2=a2±2ab+b2.6.计算:1232﹣124×122.考点:平⽅差公式.分析:先把124×122写成(123+1)×(123﹣1),利⽤平⽅差公式计算,去掉括号后再合并即可.解答:解:1232﹣124×122,=1232﹣(123+1)(123﹣1),=1232﹣(1232﹣12),实际运⽤,构造成平⽅差公式的结构形式是解题的关键.7.计算:.考点:平⽅差公式.分析:观察可得:2005=2004+1,2003=2004﹣1,将其写成平⽅差公式代⼊原式计算可得答案.解答:解:,,=,=2004.点评:本题考查平⽅差公式的实际运⽤,注意要构造成公式的结构形式,利⽤公式达到简化运算的⽬的.8.(x﹣2y+z)(﹣x+2y+z).分析:把原式化为[z+(x﹣2y)][z﹣(x﹣2y)],再运⽤平⽅差公式计算.解答:解:(x﹣2y+z)(﹣x+2y+z),=[z+(x﹣2y)][z﹣(x﹣2y)],=z2﹣(x﹣2y)2,=z2﹣(x2﹣4xy+4y2),=z2﹣x2+4xy﹣4y2.点评:本题考查了平⽅差公式,整体思想的式计算会减少运算量.9.运⽤乘法公式计算.(1)(x+y)2﹣(x﹣y)2;(2)(x+y﹣2)(x﹣y+2);(3)79.8×80.2;(4)19.92.考点:平⽅差公式.专题:计算题.分析:(1)(x+y)2﹣(x﹣y)2可以利⽤平⽅差公式进⾏计算;(2)(x+y﹣2)(x﹣y+2)转化成[x+(y﹣2)][x﹣(y﹣2)]的形式,利⽤平⽅差公式以及(3)79.8×80.2可以转化成(80﹣0.2)(80+0.2)的形式,利⽤平⽅差公式计算;(4)19.92可以转化为(20﹣0.1)2进⾏简便计算.解答:解:(1)(x+y)2﹣(x﹣y)2==4xy;(2)(x+y﹣2)(x﹣y+2),=[x+(y﹣2)][x﹣(y﹣2)],=x2﹣y2+4y﹣4;(3)79.8×80.2,=(80﹣0.2)(80+0.2),=6399.96;(4)19.92=(20﹣0.1)2=400﹣2×20×0.1+0.01,=396.01.点评:本题主要考查平⽅差公式和完全平⽅公式的运⽤,利⽤完全平⽅公式以及平⽅差公式可以使计10.化简:(m+n﹣2)(m+n+2).考点:平⽅差公式.分析:把(m+n)看作整体,m+n是相同的项,完全平⽅公式计算即可.解答:解:(m+n﹣2)(m+n+2),=(m+n)2﹣22,=m2+n2+2mn﹣4.点评:本题主要考查了平⽅差公式的应⽤.运⽤平⽅差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平⽅减去相反项的平⽅.11.(x﹣2y﹣m)(x﹣2y+m)考点:平⽅差公式.专题:计算题.分析:把x﹣2y当成⼀个整体,利⽤两数的和乘以这两数的差,等于它们的平⽅差计算即可.解答:解:(x﹣2y﹣m2.点评:本题主要考查了平⽅差公式,整体思想的利⽤⽐较关键.12.计算(1)(a﹣b+c﹣d)(c﹣a﹣d﹣b);(2)(x+2y)(x﹣2y)(x4﹣8x2y2+16y4).考点:平⽅差公式.专题:计算题.分析:根据平⽅差公式以及完全平⽅公式即可解答本题.解答:解:(1)原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=c2+b2+d2+2bd﹣2bc﹣2cd﹣a2,(2)∵x4﹣8x2y2+16y4=(x2﹣4y2)2∴原式=(x2﹣4y2)(x2﹣4y2)2=(x2(x2)2(4y2)+3x2?(4y2)2﹣(4y2)3=x6﹣12x4y2+48x2y4﹣64y6.点评:本题考查了平⽅差公式以及完全平⽅公式的运⽤,难度适13.计算:20082﹣20072+20062﹣20052+…+22﹣12.考点:平⽅差公式.分析:分组使⽤平⽅差公式,再利⽤⾃然数求和公式解题.解答:解:原式=(20082﹣20072)+(20062﹣20052)+…+(22﹣12),=(2008+2007)(2008﹣2007)+(2006+2005)(2006﹣2005)+(2+1)(2﹣1),=2008+2007+点评:本题考查了平⽅差公式的运⽤,注意分组后两数的差都为1,所有两数的和组成⾃然数求和.14.利⽤乘法公式计算:①(a﹣3b+2c)(a+3b﹣2c)②472﹣94×27+272.考点:平⽅差公式;完全平⽅公式.分析:①可⽤平⽅差公式计算:找出符号相同的项和不同的项,结合再2×47后,可⽤完全平⽅公式计算.解答:解:①原式=[a﹣(3b﹣2c)][a+(3b﹣2c)]=a2﹣(3b﹣2c)2=9b2+12bc﹣4c2;②原式=472﹣2×47×27+272=(47﹣27)完全平⽅公式,熟记公式是解题的关键.①把(3b﹣2c)看作⼀个整体是运⽤平⽅差公式的关键;②把94写成2×47是利⽤完全平⽅公式的关键.15.已知:x2﹣y2=20,x+y=4,求x﹣y的值.5考点:平⽅差公式.分析:本题是平⽅差公式的应⽤.解答:解:a2﹣b2=(a+b)(a﹣b),x2﹣y2=(x+y)(x﹣y)=20把x+y=4代⼊求得x﹣y=5.点评:运⽤平⽅差公式计算时,项,其结果是相同项的平⽅减去相反为5.16.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据上⾯各式的规律得:(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x+1)=x m﹣1;(其中n为正整数);(2)根据这⼀规律,计算1+2+22+23+24+…+268+269的值.考点:平⽅差公式.分析:(1)认真观察各式,等式右边x的指数⽐左边x的最⾼指数⼤1,利⽤此规律求解填空;(2)先根据上⾯的式⼦可得:1+x+x2+x3+…+x n=(x n+1﹣1)÷(x﹣1),从⽽得出1+2+22+…+268+269=(269+1﹣1)÷(2﹣1),再进⾏计算即可.解答:解:(1)(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x2+x+1)=x m﹣1;(2)根据上⾯的式⼦可得:1+x+x2+x3+…(269+1﹣1)÷点评:本题考查了平⽅差公式,认真观察各式,根据指数的变化情况总结规律是解题的关键.17.先观察下⾯的解题过程,然后解答问题:题⽬:化简(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1.问题:化简(3+1)(32+1)(34+1)(38+1)…(364+1).考点:平⽅差公式.分析:根据题意,整式的第⼀个因式可以根据平⽅差公式进⾏化简,然后再和后⾯的因式进⾏运算.解答:解:原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(364+1),(4分)=(32﹣1)(32+1)(34+1)(364+1),=(38﹣1)(38+1)(364+1),=(364﹣1)1).(10分)点评:本题主要考查了平⽅差公式,关键在于把(3+1)化简为(3﹣1)(3+1)的形式,18..考点:平⽅差公式.专题:计算题.分析:由平⽅差公式,(1+)(1﹣)=1﹣,(1﹣)(1+)=1﹣,依此类推,从⽽得出结果.解答:解:原式=(1﹣)(1+)(1+)(1+)(1+)(1+)=(1﹣)(1+)=1﹣.点评:本题考查了平⽅差公式的反复应⽤,是基础知识要熟练掌握.19.(2012?黄冈)已知实数x满⾜x+=3,则x2+的值为7.考点:完全平⽅公式.专题:计算题.分析:将x+=3两边平⽅,然后移项即可得出答案.解答:解:由题意得,x+=3,两边平⽅得:x2+2+=9,故x2+=7.故答案为:7.点评:此题考查了完全平⽅公式的知识,掌握完全平⽅公式的展开式的形式是20.(2007?天⽔)若a2﹣2a+1=0.求代数式的值.考点:完全平⽅公式.分析:根据完全平⽅公式先求出a的值,再代⼊求出代数式的值.解答:解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;把a=1代⼊=1+1=2.故答案为:2.点评:本题考查了完全平⽅公式,灵活运⽤完全平⽅公式先求出a的值,是解决本题的关键.21.(2009?佛⼭)阅读材料:把形如ax2+bx+c的⼆次三项式(或其⼀部分)配成完全平⽅式的⽅法叫做配⽅法.配⽅法的基本形式是完全平⽅公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配⽅(即“余项”分别是常数项、⼀次项、⼆次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)⽐照上⾯的例⼦,写出x2﹣4x+2三种不同形式的配⽅;(2)将a2+ab+b2配⽅(⾄少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.考点:完全平⽅公式.全平⽅公式的灵活应⽤能⼒,由题中所给的已知材料可得x2配⽅也可分别常数项、⼀次项、⼆次项三种不同形式;(3)通过配⽅后,求得a,b,c的值,再代⼊代数式求值.解答:解:(1)x2﹣4x+2的三种配⽅分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c22c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣。
《平方差公式》因式分解精编测试题及参考答案
《平方差公式》因式分解精编测试题及参考答案一、选择题1.下列多项式能用平方差公式分解因式的是( )A. x2+y2B.x3-y2C.-x2+y2D.-x2-y22.多项式16-x2分解因式的结果是( )A.(4-x)(4+x)B.(x-4)(x+4)C.(8+x)(8-x)D.(4-x)23.因式分解x2-9y2的正确结果是( )A.(x+9y)(x-9y)B.(x+3y)(x-3y)C.(x-3y)2D.(x-9y)24.将4a2-16分解因式的结果是( )A.(4a+16)(4a-16)B.4(a2-4)C.(2a+8)(2a-8)D.4(a+2)(a-2)5.下列单项式中,使多项式16a2+M能用平方差公式因式分解的M是( )A.aB.b2C.-16aD.-b26.下列多项式中能用平方差公式分解因式的为( )A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+97.计算752-252的结果是( )A.50B.500C.5000D.71008.把多项式a3-4a分解因式,结果正确的是( )A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-49.下列多项式中,能用平方差公式分解因式的是( )A.a2-b2B.-a2-b2C.a2+b2D.a2+2ab+b210.把4a2-1分解因式的结果是( )A.(2a-1)(2a+1)B.(a-2)(a+2)C.(a-4)(a+1)D.(4a-1)(a+1)11.已知a,b,c是三角形的三边长,那么式子(a-b)2-c2的值( )A.大于 0B.小于0C.等于0D.不能确定12.把(a+b)2-100进行因式分解,其结果是( )A.(a+b+10)2B.(a+b+10)(a+b-10)C.(a+b-10)2D.(a+b+10)(a-b-10)13.把整式4m2-4n2分解因式,下列结果正确的是( )A.4(m2-n2)B.4(m+n)(m-n)C.4(m-n)2D.(4m+4n)(4m-n)14.已知a-b+2=5,则代数式a2-b2-6b的值为( )A.3B.6C.9D.1215.已知a,b,c为△ABC的三边长,且满足ab-b2=ac-bc,则△ABC是( )A.直角三角形B.等边三角形C.等腰三角形D.不能确定二、填空题16.把9m2-36n2分解因式的结果是________.17.因式分解:ab2-4a=________.18.若x2-y2=30,且x-y=-5,则x+y的值是_____.19.在实数范围内分解因式:x4-81y4=________;x4-9=________.20.若248-1能被60与70之问的两个整数整除,则这两个整数是_______.21.已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是_______.三、计算题22.把下列各式进行因式分解b2 (2)9a2-4b2(1)a2-125(3)x2y-4y (4)-a4+16(5)-5a3b+20ab3 (6)(2x+y)2-(x+2y)2四、解答题23.已知自然数x,y满足x2-y2=45,求x和y的值.24.求证:对于任何整数m,多项式(4m+5)2-9 都能被8整除.25.若312-1可以被22和30之间的整数整除,求这个整数.参考答案一、选择题1-5 CABDD 6-10 DCCAA 11-15 BBBCC二、填空题16.9(m-2n)(m+2n)17.a(b+2)(b-2)18.-619.(x 2+9y 2)(x+3y)(x-3y),(x 2+3)(x+√3)(x-√3) 20.65,6321.等腰三角形三、计算题22(1)(a+15b)(a-15b)(2)(3a+2b)(3a-2b)(3)y(x+2)(x-2)(4)(4+a 2)(2+a)(2-a)(5)5ab(2b+a)(2b-a)(6)3(x+y)(x-y)四、解答题23.{x +y =9x −y =5或{x +y =45x −y =1或{x +y =15x −y =3 24.8(m+2)(2m+1)25.26或28。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
(七年级)初一平方差公式专项练习试题第1卷_附答案_北师大,人教版等通用版本
35.设a1=32﹣12,a2=52﹣32,……,an=(2n+1)2﹣(2n﹣1)2,(n为正整数)
(1)试说明an是8的倍数;
(2)若△ABC的三条边长分别为ak、ak+1、ak+2(k为正整数)
①求k的取值范围.
②是否存在这样的k,使得△ABC的周长为一个完全平方数,若存在,试举出一例,若不存在,说明理由.
40.计算: … 的值.
41.化简.
(1)( x- y)( x+ y) ( x2+ y2) ( x4+ y4)·…·(x16+ y16);
(2)(22+1)(24+1)(28+1)(216+1).
42.计算.
(1)(0.25 x - )(0.25 x +0.25);
(2)(x-2 y)(-2y- x)-(3x+4 y)(-3 x +4 y);
17.(m+n+p+q) (m-n-p-q)=(__________)2-(__________)2.
18.计算: _______________.
19.计算: _____________.
20.若 ,则 的值为__________.
21.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).
A.(x+1)(x-1)B.(a+b)(-a-b)C.(-x-2)(x-2)D.(b+a)(a-b)
9.已知 ,则a2-b2-2b的值为
A.4B.3C.1D.0
(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
八年级数学平方差公式和完全平方公式(含参)(人教版)(含答案)
学生做题前请先回答以下问题问题1:已知,求的值.你是怎么思考的?问题2:已知,求的值.你是怎么思考的?平方差公式和完全平方公式(含参)(人教版)一、单选题(共12道,每道8分)1.若,则的值为( )A.-2B.2C.±4D.4答案:D解题思路:试题难度:三颗星知识点:平方差公式2.若,则的值为( )A.-4B.±4C.±4yD.4答案:C解题思路:试题难度:三颗星知识点:平方差公式3.若,则的值为( )A.3B.-3C.±3D.±9答案:C解题思路:试题难度:三颗星知识点:平方差公式4.若,则的值为( )A.7B.±7C.-7D.以上都不对答案:B解题思路:试题难度:三颗星知识点:平方差公式5.若是完全平方式,则的值为( )A.2B.-2C.±2D.±1答案:C解题思路:试题难度:三颗星知识点:完全平方公式6.若是完全平方式,则的值为( )A.36B.9C.-9D.±9答案:B解题思路:试题难度:三颗星知识点:完全平方公式7.若是完全平方式,则的值为( )A.-6B.-12C.±6D.±12答案:D解题思路:试题难度:三颗星知识点:完全平方公式8.若,则的值为( )A.2B.-2C.±2D.4答案:B解题思路:试题难度:三颗星知识点:完全平方公式9.若,则的值为( )A.-1B.1C.±1D.-4答案:A解题思路:试题难度:三颗星知识点:完全平方公式10.若,则的值分别为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:完全平方公式11.计算的结果是( )A.0B.1C.-1D.2 004答案:B解题思路:试题难度:三颗星知识点:平方差公式12.计算的结果为( )A.27 501B.29 501C.39 601D.49 501答案:C解题思路:试题难度:三颗星知识点:完全平方公式。
平方差公式测试题
第十四章 整式的乘法与因式分解14.2.1 平方差公式一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列各式能用平方差公式计算的是 A .(2)(2)x y y x ++ B .(1)(1)x x +-- C .()()x y x y ---+D .(3)(3)x y x y --+【答案】C2.用乘法公式进行简单的计算(a +2b )(a -2b )的结果是 A .a 2-4b 2B .a 2-2b 2C .a 2+4b 2D .-a 2+4b 2【答案】A【解析】(a +2b )(a -2b )=a 2-4b 2.故选A . 3.当3x =,1y =时,代数式2()()x y x y y +-+的值是 A .6B .8C .9D .12【答案】C【解析】原式=x 2-y 2+y 2=x 2,当x =3,y =1时,原式=9.故选C . 4.计算24(1)(1)(1)(1)a a a a +-++的结果是A .81a -B .841a a -+C .8421a a -+D .以上答案都不对【答案】A【解析】(a +1)(a -1)(a 2+1)(a 4+1)=(a 2-1)(a 2+1)(a 4+1)=(a 4-1)(a 4+1)=a 8-1.故选A . 5.若a 2-b 2=4,a -b =1,则a +b 的值为 A .-4B .4C .1D .2【答案】B【解析】∵a 2-b 2=4,a -b =1,由a 2-b 2=(a +b )(a -b )得到,4=1×(a +b ),∴a +b =4,故选B . 6.为了运用平方差公式计算(x +2y -1)(x -2y +1),下列变形正确的是 A .[x -(2y +1)]2B .[x +(2y -1)][x -(2y -1)]C .[(x -2y )+1][(x -2y )-1]D .[x +(2y -1)]2【答案】B【解析】(x +2y -1)(x -2y +1)=[x +(2y -1)] [x -(2y -1)],故选B . 7.用简便方法计算4023×3913,变形正确的是 A .(40+23)(39+13)B .(40+23)(40-23) C .(40+13)(40-13)D .(40-23)(40-23)【答案】B【解析】运用平方差进行变形为:4023×3913=(40+23)(40-23).故选B . 二、填空题:请将答案填在题中横线上.8.计算:20182018(223)(223)+-=__________. 【答案】1【解析】根据积的乘方和平方差公式,可把原式变形化简:20182018(223)(223)+-=20182220182018[(223)(223)][(22)3](89)1+-=-=-=.故答案为:1.9.(331)(331)899a b a b +++-=,则a b +=__________. 【答案】10±10.在一个边长为11.75 cm 的正方形纸板内,剪去一个边长为8.25 cm 的正方形,剩下部分的面积等于__________cm 2.【答案】70【解析】剩下部分的面积是11.752-8.252=(11.75+8.25)(11.75-8.25)=20×3.5=70,故答案为:70. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 11.计算.(1)(0.25x -14)(0.25x +0.25); (2)(x -2y )(-2y -x )-(3x +4y )(-3x +4y ); (3)(2a +b -c -3d )(2a -b -c +3d ); (4)(x -2)(16+x 4)(2+x )(4+x 2). 【解析】(1)原式=1111()()4444x x -+=1(1)(1)16x x -+=2111616x -. (2)原式=(-2y +x )(-2y -x )-(4y +3x )(4y -3x )=2222(2)(4)(3)y x y x ---+=22812x y -. (3)原式=[(2a -c )+(b -3d )][(2a -c )-(b -3d )]=22(2)(3)a c b d ---. (4)原式=(x -2)(x +2)(x 2+4)(x 4+16)=x 8-256.12.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长; (2)m =7,n =4,求拼成矩形的面积.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
完全平方式和平方差公式1-4练习试题)
x
2 3
2
(
答
:
35)
( 1 mn 0.2)2 ( 答 : 36) 2
9. (2m2 3n2 )2 ( 答 : 38)
x2 xy
2 ;(答:40)
2x y2 2x y2 ; ( 答 : 39)
10. (2a 2 c 1 b) (c 2a 2 1 b) (答:41)
3
3
答案:
22 36 12a a2 23 4x2 4x 1 24 9 m2 16 n2 2mn
16 9 25 1 a6 b6 a3b3
4 26 2n, m2 ,4mn
27 a4 b2 4bc 4c2 28 a2 4
8
29 1 y2 4 x2 49
30 16b2 9 31 4 y 2 x2
答案:
(15) x2 25 y2 (20) 9m4 1 n2
4
(16) y2 9z2 (17) 36m2 16n2 (18) x2 1 (19) 7x 3y (21) a2 1 b2 ab (22) 36 12a a2 (23) 4x2 4x 1
4
3
(24) 9 m2 16 n2 2mn 16 9
9
3
42 9a2 4b2
43 50b2 18a2
44 1 y2 9x2 4
45 1 x2 4 y2 4
46 1 b 2 a 23
47 16x4 1 9
48 16x2 9 y2 24xy
49 1 x2 9 y2 3xy 4
50 9 m2 16 n2 2mn 16 9
51 4a2 b2 4ab 52 4x6 y4 4x3 y2
(28) a2 4 (29) 1 y2 4 x2 (30)16b2 9 (31) 4 y2 x2 49
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2.1平方差公式练习题
一、选择题
1、下列多项式乘法,能用平方差公式进行计算的是( )
A.(x+y)(-x -y)
B.(2x+3y)(2x -3z)
C.(-a -b)(a -b)
D.(m -n)(n -m)
2、在下列多项式的乘法中,能用平方差公式计算的是( )
A. )1)(1(x x ++
B. )21)(21(a b b a -
+ C. ))((b a b a -+- D. ))((2y x y x +- 3、下列计算正确的是( )
A.(2x+3)(2x -3)=2x 2-9
B.(x+4)(x -4)=x 2-4
C.(5+x)(x -6)=x 2-30
D.(-1+4b)(-1-4b)=1-16b 2
4、下列运算中,正确的是( )
A. 224)2)(2(b a b a b a -=+--
B. 222)2)(2(b a b a b a --=-+-
C. 222)2)(2(b a b a b a --=-+
D. 224)2)(2(b a b a b a -=+---
5、下列多项式乘法,不能用平方差公式计算的是( )
A.(-a -b)(-b+a)
B.(xy+z)(xy -z)
C.(-2a -b)(2a+b)
D.(0.5x -y)(-y -0.5x)
6、在下列各式中,运算结果是2236y x -的是( )
A. )6)(6(x y x y --+-
B. )6)(6(x y x y -+-
C. )9)(4(y x y x -+
D. )6)(6(x y x y ---
7、(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )
A.-4x 2-5y
B.-4x 2+5y
C.(4x 2-5y)
2 D.(4x+5y)2 8、有下列运算:①2229)3(a a = ②2251)51)(15(m m m -=++-③532)1()1()1(--=--a a a
④626442++=⨯⨯n m n m ,其中正确的是( ) A. ①② B. ②③ C.③④ D. ②④
9、有下列式子:①)3)(3(y x y x +-- ②)3)(3(y x y x ---③)3)(3(y x y x -+- ④)3)(3(y x y x ++-,其中能利用平方差公式计算的是( ) A. ①② B. ②③ C.③④ D. ②④
10、a 4+(1-a)(1+a)(1+a 2
)的计算结果是( )
A.-1
B.1
C.2a 4-1
D.1-2a 4
11、若m ,n 是整数,那么22)()(n m n m --+值一定是( )
A. 正数
B. 负数
C. 非负数
D. 4的倍数
12、用平方差公式计算))((d c b a d c b a ++--++,结果是( )
A. 22)()(d c b a --+
B. 22)()(d b c a --+
C. 22)()(d c d a --+
D. 22)()(d a b c --+
13、对于任意的正整数n ,能整除代数式(3n+1)(3n-1)-(3-n )(3+n )的整数是( )
A .3
B .6
C .10
D .9
14、若(x-5)2=x 2+kx+25,则k=( )
A .5
B .-5
C .10
D .-10
15、如果x 2+4x+k 2恰好是另一个整式的平方,那么常数k 的值为( )
A .4
B .2
C .-2
D .±2
16、若a-b=2,a-c=1,则(2a-b-c )2+(c-b )2的值为( )
A .10
B .9
C .2
D .1
二、填空题
1、 9.8×10.2=________; )(23(b a + 2294)a b -=; (12x+3)2 -(12
x -3)2=______. )(37(22y x - -=449)x ; (x-y+z )
(x+y+z )=________ 2、已知622=-y x ,3=+y x ,则=-y x
3、)(2)(2(a x a x -+ 4416)a x -=
4、若a 2+2a=1,则(a+1)2=_________.
5、--+)2)(2(y x y x xy y 242--=
6、若))(())((B A B A c b a c b a +-=+-++,则=A ,=B .
三、计算题
1、运用平方差公式计算
(1) )52)(52(2
2--+-x x (2) )4)(4(-+ab ab (3) )14)(14(---a a
(4))49)(23)(23(22b a b a b a ++- (5))4)(2)(2(422++-n n n y y y
(6) )1)(1)(1)(1(42a a a a +++-
(7) ))((c b a c b a --++ (8) )34)(34(c b a c b a ---+ (9) ))()()((b a b a b a b a --++--
(10) )16
1)(41)(41(42422b a b a b a ++-
(11) (x+y-z )(x-y+z )-(x+y+z )(x-y-z ).
(12) 9982-4 (13) 20.1×19.9 (14) 2003×2001-20022
2、解方程:
(1) )17)(17()2)(2(3)12)(12(+-=-+++-x x x x x x (2) 5x+6(3x+2)(-2+3x)-54(x-
13)(x+13)=2.
3、计算:)12()12)(12)(12(42++++n 2481511111(1)(1)(1)(1)22222++
+++
4、计算:22222
11111(1)(1)(1)(1)(1)23499100----- .
5、化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.
6、解不等式(3x-4)2>(-4+3x )(3x+4).
四、解答题
1、已知2422=-y x ,6-=+y x ,求代数式y x 35+的值
2、两个两位数的十位上的数字相同,其中一个两位数的个位上的数字是6,另一个两位数的个位上的数字是4,它们的平方差是220,求这两位数.
3、已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?
4、观察下列各式的规律.
12+(1×2)2+22=(1×2+1)2;
22+(2×3)2+32=(2×3+1)2;
32+(3×4)2+42=(3×4+1)2; … …
(1)写出第2007行的式子;
(2)写出第n 行的式子,并说明你的结论是正确的.。