高中物理动量和能量知识归纳
高中物理公式大全(全集)八动量与能量
高中物理公式大全(全集)八动量与能量1.动量 2.机械能1.两个〝定理〞〔1〕动量定理:F ·t =Δp 矢量式 (力F 在时刻t 上积存,阻碍物体的动量p ) 〔2〕动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积存,阻碍物体的动能E k )动量定理与动能定理一样,差不多上以单个物体为研究对象.但所描述的物理内容差不极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时刻积存作用成效——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时刻为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如下图.那么在Δt 内:以小球为研究对象,其受力情形如下图.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-〔-mv 0cos θ〕小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要专门注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个〝定律〞〔1〕动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′〔2〕机械能守恒定律:适用条件——只有重力〔或弹簧的弹力〕做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如下图,分不以m 1和m 2为研究对象,依照动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理能够解决动量守恒咨询题,只是较苦恼一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——明白得〝摩擦生热〞(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,通过一段时刻,物块的位移为s 1,板的位移s 2,现在两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在那个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断〝生热〞,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,缺失的机械能〔〝生热〞〕等于摩擦力与相对位移的乘积。
高中物理教学总结知识点的归纳整理与复习
电磁波:电磁场的传播形式,包括无线电波、微波、红外 线、可见光等
电磁场:电场和磁场的统称,描述电磁现象的基本物理量
电磁学定律:描述电磁现象的基本定律,包括法拉第电磁 感应定律、洛伦兹定律等
电磁学应用:电磁学在科技、生活和生产中的应用,如电 磁铁、变压器、电动机等。
针对学生的薄弱环 节,进行针对性的 辅导和训练
针对考试题型和考 试要求,进行针对 性的模拟训练和考 试技巧指导
知识点复习的创新性
采用思维导图法, 帮助学生构建知 识体系
利用多媒体技术, 增强教学效果
设计有趣的实验 ,激发学生的学 习兴趣
结合实际生活, 让学生理解物理 知识的应用价值
THANK YOU
添加标题
光的传播:直线传 播、反射、折射、 全反射
光学知识点
添加标题
光的波动性:干涉、 衍射、偏振
添加标题
光的粒子性:光电 效应、康普顿效应
添加标题
光的速度:真空中 的光速、光速的测 量
添加标题
光的颜色:色散、 光谱、颜色混合
添加标题
光学仪器:显微镜、 望远镜、激光器
添加标题
光学现象:彩虹、 海市蜃楼、日食、 月食
高中物理教学知识点的复习方法
知识点复习的计划安排
制定复习计划: 明确复习目标、 内容和时间安
排
复习知识点: 按照章节、单 元进行复习, 梳理知识点之
间的关系
练习巩固:通 过做题、实验 等方式巩固知
识点
总结反思:对 复习过程中遇 到的问题进行 总结和反思, 及时调整复习
计划
知识点复习的策略选择
原子物理:包括原子结构、原子核等
光学:包括光的传播、反射、折射等
高中物理必修一知识点梳理归纳
高中物理必修一知识点梳理归纳1500字高中物理必修一主要包括运动学、力学、能量与动量、电学四个部分。
下面将对这些知识点进行梳理归纳。
一、运动学1. 物体的位置:位移、直线运动和曲线运动、速度、加速度。
2. 运动的规律:匀速直线运动、变速直线运动、匀速曲线运动、变速曲线运动。
3. 运动的描述:用图象来描述运动、用函数来描述运动。
二、力学1. 牛顿的运动定律:第一定律(惯性定律)、第二定律(物体的加速度与作用力成正比,与物体的质量成反比)、第三定律(作用力与反作用力大小相等,方向相反)。
2. 弹簧力与摩擦力:胡克定律、摩擦力的类型及计算。
3. 静力学:静平衡、平衡力的条件。
4. 动力学:动量的概念、动量守恒定律、冲量及冲量定理。
5. 万有引力:质点的万有引力、行星的运动、地球表面附近物体的重力、弹力与重力的比较。
三、能量与动量1. 功与机械能:功的定义、功的计算、功的单位、功率的定义及计算、能量的转化与守恒、动能与重力势能、机械能的守恒、机械能的应用。
2. 惯性力与非惯性力:匀速圆周运动、牛顿力学的局限性。
四、电学1. 电流与电阻:电流的概念、电路的基本组成、电阻和电阻器。
2. 电压与电功:电压的概念、电压和电动势、电功和功率。
3. 理想电源电路:理想电源的作用、电流分布、串联电路和并联电路。
4. 半导体与 PN 结:半导体的性质、PN 结的形成、PN 结的特性与应用。
以上是高中物理必修一的主要知识点梳理,通过学习这些知识点,可以建立起对物理基本概念和原理的理解,为后续物理学习打下坚实的基础。
当然,学习物理最重要的是理解和掌握物理规律和运用物理知识解决问题的能力,因此在学习过程中要注重理论与实践相结合,积累解决问题的经验。
同时,物理知识与实际生活紧密相关,学习物理过程中要善于与实际应用结合,通过观察、实验和实际操作,加深对物理知识的理解和应用能力的培养。
高中物理《动量与能量》知识点与学习方法
高中物理《动量与能量》知识点与学习方法动量与能量动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。
分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。
一、力学规律的选用原则1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。
3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。
4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。
5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。
二、利用动量观点和能量观点解题应注意下列问题(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。
(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。
(3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。
(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。
机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
高中物理动量知识模型归纳
高中物理动量知识归纳1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的根本方法是整体法与隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛顿第二定律列方程隔离法是指在需要求连接体内各局部间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进展分析的方法。
2斜面模型〔搞清物体对斜面压力为零的临界条件〕斜面固定:物体在斜面上情况由倾角与摩擦因素决定μ=tanθ物体沿斜面匀速下滑或静止μ> tanθ物体静止于斜面μ< tanθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向最高点时杆对球的作用力;最低点时的速度,杆的拉力 假设小球带电呢?假设单B 下摆,最低点的速度V B =R 2g⇐mgR=221Bmv 整体下摆2mgR=mg 2R +'2B '2A mv 21mv 21+'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'B V 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 假设 V 0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?4.超重失重模型EmL ·系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动 1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力 地面对斜面摩擦力导致系统重心如何运动? 铁木球的运动用同体积的水去补充5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
动量知识点
有关“动量”的知识点总结1、动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv。
是矢量,方向与v的方向相同。
两个动量相同必须是大小相等,方向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft。
冲量也是矢量,它的方向由力的方向决定。
2、动量定理:物体所受合外力的冲量等于它的动量的变化。
表达式:Ft=p′-p或Ft=mv′-mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。
(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力。
(3)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。
3、动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
表达式:m1v1+m2v2=m1v1′+m2v2′(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零。
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。
③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。
(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。
4、动能定理:外力对物体所做的总功等于物体动能的变化。
表达式:(1)动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的。
但它也适用于变力及物体作曲线运动的情况。
(2)功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(3)应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响。
所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷。
高中物理选必一第一章动量守恒定律(1动量2动量定理)
第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
高三物理知识点整理之动量知识点大全
《高三物理知识点整理之动量知识点大全》高中物理的学习中,动量是一个重要的知识点,它贯穿于力学的各个方面,对于理解物体的运动和相互作用有着至关重要的作用。
在高三的复习阶段,系统地整理动量知识点,有助于同学们更好地掌握这一关键内容,为高考取得优异成绩打下坚实的基础。
一、动量的定义动量是物体的质量和速度的乘积,用符号 p 表示,即 p = mv。
其中,m 是物体的质量,v 是物体的速度。
动量是矢量,它的方向与速度的方向相同。
1. 动量的单位在国际单位制中,动量的单位是千克·米/秒(kg·m/s)。
2. 动量的特性(1)瞬时性:动量是描述物体在某一时刻运动状态的物理量,不同时刻物体的动量可能不同。
(2)相对性:动量的大小和方向与参考系的选择有关。
在不同的参考系中,同一物体的速度不同,所以动量也不同。
二、冲量的定义冲量是力和时间的乘积,用符号 I 表示,即 I = Ft。
冲量也是矢量,它的方向与力的方向相同。
1. 冲量的单位在国际单位制中,冲量的单位是牛顿·秒(N·s)。
2. 冲量的特性(1)过程量:冲量是描述力在一段时间内作用效果的物理量,它与力的作用时间有关。
(2)矢量性:冲量的方向由力的方向决定。
如果力的方向不变,冲量的方向与力的方向相同;如果力的方向变化,冲量的方向可以通过矢量合成来确定。
三、动量定理1. 内容物体所受合外力的冲量等于物体动量的变化,即I = Δp。
2. 表达式Ft = mv₂ - mv₁,其中 F 是物体所受的合外力,t 是力的作用时间,mv₂是物体的末动量,mv₁是物体的初动量。
3. 理解(1)动量定理表明了力对时间的积累效应,即冲量是使物体动量发生变化的原因。
(2)动量定理是矢量式,在应用时要注意各物理量的方向。
如果物体在一条直线上运动,可以规定正方向,将矢量运算转化为代数运算。
四、动量守恒定律1. 内容如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
高中物理动量和能量问题解题技巧总结
高中物理动量和能量问题解题技巧总结在高中物理学习中,动量和能量问题是我们经常遇到的一类题型。
解决这类问题需要我们掌握一些解题技巧和方法。
本文将总结一些高中物理动量和能量问题的解题技巧,帮助学生和家长更好地应对这类题目。
一、动量问题解题技巧1. 掌握动量守恒定律:在没有外力作用的情况下,系统的总动量保持不变。
这一定律是解决动量问题的基础,我们在解题时要根据题目中给出的条件判断是否可以应用动量守恒定律。
例如,有一题如下:小明用一定质量的弹球A和另一质量相同的弹球B进行弹球实验,当弹球A以速度v向弹球B发射,两球发生碰撞后,弹球B以速度2v向后弹射。
求弹球A的速度。
解析:根据题目中给出的条件,我们可以知道碰撞前后系统的总动量保持不变。
设弹球A的速度为v',根据动量守恒定律可得:mv = m(2v) + mv'化简得:v' = -v2. 利用动量变化率求解:有些题目中给出的是物体的动量变化率,我们可以利用这一信息求解。
例如,有一题如下:一个质量为m的物体在力F作用下,速度从v1变为v2,求力F的大小。
解析:根据动量变化率的定义,动量变化率等于力的大小乘以时间。
设动量变化率为Δp,时间为Δt,根据定义可得:Δp = FΔt化简得:F = Δp/Δt二、能量问题解题技巧1. 利用能量守恒定律:在没有能量损失的情况下,系统的总能量保持不变。
我们可以根据能量守恒定律解决能量问题。
例如,有一题如下:一个质量为m的物体从高为h的位置自由下落,求它达到地面时的速度。
解析:根据能量守恒定律,物体的势能转化为动能,我们可以利用这一关系求解。
设物体达到地面时的速度为v,根据能量守恒定律可得:mgh = 1/2 mv^2化简得:v = √(2gh)2. 利用功的定义求解:有些题目中给出的是力和物体位移的关系,我们可以利用功的定义求解。
例如,有一题如下:一个质量为m的物体在力F的作用下,沿着水平方向从位置A移动到位置B,求物体所受的总功。
高三物理知识点归纳总结归纳
高三物理知识点归纳总结归纳高三物理知识点归纳总结动量1.动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v 的方向相同.两个动量相同必须是大小相等,方向一致.(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.2.动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p或Ft=mv′-mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零.②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.4.爆炸与碰撞(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.高三物理知识点归纳一、三种产生电荷的方式:1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;4、电荷的基本性质:能吸引轻小物体;二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
高中物理动量和能量知识点
高考物理知识归纳(三) ---------------动量和能量1.力的三种效应:力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量:p=mv=KmE 2 冲量:I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0(系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP '(两物体动量变化大小相等、方向相反)实际中应用有:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
相对性:所有速度必须是相对同一惯性参照系。
同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。
物理能量和动量经典总结知识点
运用动量和能量观点解题的思路动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。
试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。
试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。
冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。
能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。
应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。
因此,在用它们解题时,首先应选好研究对象和研究过程。
对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。
选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。
临界状态往往应作为研究过程的开始或结束状态。
2.要能视情况对研究过程进行恰当的理想化处理。
3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。
4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。
确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。
2.若是多个物体组成的系统,优先考虑两个守恒定律。
高中物理公式大全全集八动量与能量
八、动量与能量1.动量 2.机械能1.两个“定理”(1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p )(2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则在Δt 内:以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ)小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个“定律”(1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′(2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如图所示,分别以m 1和m 2为研究对象,根据动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——理解“摩擦生热”(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,经过一段时间,物块的位移为s 1,板的位移s 2,此时两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。
【高中物理】动量和动能的区别
【高中物理】动量和动能的区别
动量和动能都是反映物体运动状态的物理量,又都取决于运动物体的质量和速度,但
是这两个物理量有着本质的区别。
一、动量和动能的变化分别对应着力的两个不同的累积效应
动量定理叙述了冲量就是物体动量变化的量度。
动量就是表观运动状态的量,动量的
增量则表示物体运动状态的变化,冲量则就是引发运动状态发生改变的原因,并且就是动
量变化的量度。
动量定理叙述的就是一个过程,在此过程中,由于物体受冲量的促进作用,引致物体的动量发生变化。
动能定理揭示了动能的变化是通过做功过程来实现,且动能的变化是通过做功来量度的。
动能定理所揭示的这一关系。
也是功跟各种形式的能量变化的共同关系,即功是能量
变化的量度。
各种形式的能是可以相互转化的,这种转化也都是通过做功来实现的,且通
过做功来量度。
由此可见。
动量和动能的根本区别,就在于它们描述物理过程的特征和守
恒规律不同。
每一个运动的物体都具有一定的动量和动能,但动量的变化和能量的转化,
完全服从不同的规律。
因此要了解和区别这两个概念,就必须从物理变化过程中去考虑。
动量的变化整体表现着力对时间的积累效应,动量的变化与外力的冲量成正比;动能
的变化整体表现着力对空间的积累效应,动能的变化与外力搞的功成正比。
动量与冲量既
就是密切联系着的、又就是存有本质区别的物理量。
动量同意物体抵抗阻力能移动多久;
动能与功也就是密切联系着的。
又就是存有本质区别的物理量,动能同意物体抵抗阻力能
移动多离。
动量与能量守恒高三知识点
动量与能量守恒高三知识点动量与能量守恒是高中物理中的重要知识点,它们是描述物体运动的基本原理。
本文将从理论原理、实例分析以及应用等方面介绍动量与能量守恒的概念和作用。
一、动量与能量守恒的理论原理动量守恒定律是指在没有外力或者合外力为零的情况下,物体或系统的总动量保持不变。
动量的定义是物体的质量与速度的乘积,用数学公式表示为p=mv,其中p为动量,m为质量,v为速度。
根据动量守恒定律,如果物体在一个封闭系统内发生碰撞,那么碰撞前后物体的总动量将保持不变。
能量守恒定律是指在一个封闭系统中,能量总量保持不变。
能量可以分为动能和势能两种形式。
动能是指物体由于运动而具有的能量,计算公式为KE=1/2mv²,其中KE为动能,m为质量,v 为速度。
势能是指物体由于位置或状态而具有的能量,常见的包括重力势能、弹性势能等。
根据能量守恒定律,封闭系统内的能量总和在任何时刻都保持不变。
二、动量守恒实例分析1. 弹性碰撞在弹性碰撞中,碰撞前后物体的总动量保持不变。
例如,两个相互碰撞的小球A和小球B,它们之间不存在能量损失,碰撞前后它们的总动量保持不变。
假设小球A的质量为m1,速度为v1,小球B的质量为m2,速度为v2,根据动量守恒定律可得m1v1 +m2v2 = m1v1' + m2v2',其中v1'和v2'分别为碰撞后两个小球的速度。
2. 爆炸在爆炸过程中,物体内部发生剧烈的分解,将储存的内能转化为动能,物体的总动量保持不变。
例如,火箭发射时,燃料燃烧释放出巨大能量,将火箭推向空中。
此时,火箭与燃料的总动量保持不变,燃料的推力将火箭向上推进。
三、动量与能量守恒的应用1. 轨道运动在行星绕太阳的运动中,动量守恒保证了行星的运动轨道的稳定性。
太阳和行星的总动量始终保持不变,行星的速度和轨道半径相应调整以维持动量守恒。
同样地,卫星绕地球的运动也遵循动量守恒原理。
2. 交通事故分析在交通事故中,动量守恒和能量守恒的原理可以用来分析事故发生的原因和结果。
高中物理-动量守恒与能量
能量守恒类
5
(3)电路中产生的电 能
上次回顾
根据水平方向动量守恒有
0 mvx Mvx' mvx Mvx' mvxt Mvx' t mx1 Mx1' 累加后有mx Mx'
而据题意有x x' 2R,m M
xR
距水平方向动量守恒有
0 mvx Mvx' mvx Mvx'
条件不同--动量守恒要求系统外力必须为0,而机 械能守恒则要求只能有重力弹力做功,因此可以 有外力,如重力;也可以有其他的力(不做功即 可)故而机械能守恒时动量可以不守恒。 同样的,动量守恒时机械能可以不守恒。因为内 力的作用同样会产生其他形式的能。(比如系统 内的滑动摩擦力会产生热,碰撞时的撞击力也可 能会产生内能)因此要求我们能够熟练判断一道 题中的各个过程中动量与机械能的变化情况
mg(h0
R)
1 2mv2x源自1 2Mv'2x
我能口算,大 家相信么?
2.如图所示,质量为M的木板长为L(L未 知),置于光滑水平面上,木板上放一质量 为m的铁块,与木板一起以速度v向右运动, 当M与墙发生完全弹性碰撞后,原速弹回,, 已知动摩擦因数为μ.求L至少为多大时,铁 块不会掉下来
的碰撞叫做弹性碰撞. 3.非弹性碰撞:如果碰撞过程中机械能 不守恒 ,这
样的碰撞叫做非弹性碰撞. 4.完全非弹性碰撞:碰撞过程中物体的形变完全不能
恢复,以致两物体合为一体一起运动,即两物体在非弹
性碰撞后以同一速度运动,系统机械能损失最大.
有请 初大 速家 度想 怎一 么想 用如 这果 个第 式二 子个 呢球
当m M时物体会再次向右运动, 最终在无数次碰撞中最终停下
mgL 1 (M m)v2
中高中物理第九讲 动量 角动量和能量详细讲解
即冲量等于动量的增量,这就是质点动量定理。
在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为:
Fy?t?mvty?mv0y Fz?t?mvtz?mv0z tx?mv0x Fx?t?mv
4.1.2.冲量
要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F和力作用的时间?t的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F?t叫做冲量。
4.1.3.质点动量定理
由牛顿定律,容易得出它们的联系:对单个物体:
F?t?ma?t?m?v?mv1?mv0 F?t??p
动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。
它的求法跟力矩完全一样,只要把力F换成动量P即可,故B点上的动量P对原点O的动量矩J为
???
J?r?P (r?)
以下介绍两个定理:
对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理:
第1个 I1外+I1内=m1v1t?m1v10
第2个 I2外+I2内=m2v2t?m2v20
? ?
第n个 In外+In内=mnvnt?mnvn0
高中物理竞赛热学教程第四讲动量 角动量和能量
第四讲 动量 角动量和能量
§4.1 动量与冲量 动量定理
4.1. 1.动量
在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv来量度物体的“运动量”,称之为动量。
高中物理【电磁感应中的动力学、能量、动量问题】
电磁感应中的动力学、能量、动量问题考点一电磁感应中的动力学问题1.“四步法”分析电磁感应动力学问题解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:2.电磁感应中的动态分析在此类问题中,不论加速运动还是减速运动,加速度总是逐渐减小,最后达到匀速运动.具体思路如下:例1、如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r =0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2)(1)金属棒在磁场I中运动的速度大小(2)金属棒滑过cd位置是的加速度大小(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小练习1.如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R=2 Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m=0.1 kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平,已知杆ab进入磁场时的速度v0=1 m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则( )A.匀强磁场的磁感应强度为1 TB.杆ab下落0.3 m时金属杆的速度为1 m/sC.杆ab下落0.3 m的过程中R上产生的热量为0.2 JD.杆ab下落0.3 m的过程中通过R的电荷量为0.25 C考点二电磁感应中的能量问题1.电磁感应中的能量转化2、求解焦耳热Q的三种方法例2如图所示,两根光滑金属导轨平行放置在倾角为30°的斜面上,导轨宽度为L,导轨下端接有电阻R,两导轨间存在一方向垂直于斜面向上,磁感应强度大小为B的匀强磁场,轻绳一端平行于斜面系在质量为m的金属棒上,另一端通过定滑轮竖直悬吊质量为m0的小木块.第一次将金属棒从PQ位置由静止释放,发现金属棒沿导轨下滑,第二次去掉轻绳,让金属棒从PQ位置由静止释放.已知两次下滑过程中金属棒始终与导轨接触良好,且在金属棒下滑至底端MN前,都已经达到了平衡状态.导轨和金属棒的电阻都忽略不计,已知mm0=4,mgRB2L2=gh(h为PQ位置与MN位置的高度差).求:(1)金属棒两次运动到MN时的速度大小之比;(2)金属棒两次运动到MN过程中,电阻R产生的热量之比.练习2、如图所示,在粗糙绝缘水平面上有一正方形闭合线框abcd,其边长为l,质量为m,金属线框与水平面的动摩擦因数为μ.虚线框a′b′c′d′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab 边与磁场的d ′c ′边重合.现使金属线框以初速度v 0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc 边与磁场区域的d ′c ′边距离为l .在这个过程中,金属线框产生的焦耳热为( )A. 12mv 20+μmglB. B.12mv 20-μmglC. 12mv 20+2μmglD. D.12mv 20-2μmgl考点三 电磁感应中的动量问题1.动量定理在电磁感应中的应用在电磁感应中用动量定理时,通常将下面两式结合应用:BLI ·Δt =Δmv q =I Δt =n ΔΦR2.动量守恒在电磁感应中的应用在“双棒切割”系统中,在只有安培力作用下,系统的合外力为零,通常应用动量守恒求解.例 3 如图所示,两根平行光滑的金属导轨MN 、PQ 放在水平面上,左端向上弯曲,导轨间距为L ,电阻不计,水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度为B .导体棒a 和b 的质量均为m ,电阻值分别为R a =R ,R b =2R .b 棒放置在水平导轨上且距弯曲轨道底部L 0处,a 棒在弯曲轨道上距水平面h 高度处由静止释放.运动过程中导体棒和导轨接触良好且始终和导轨垂直,重力加速度为g .求: (1)从a 棒开始下落到最终稳定的过程中,a 棒上产生的内能? (2)当a 、b 棒运动最终稳定时,通过a 棒的总电荷量?练习3、如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q 最多是多少?(2)当ab 棒的速度变为初速度的34时,cd 棒的加速度a 是多少?考点四、高考常考的“切割模型”——导体棒或导体框切割磁感线运动模型模型1——导体转动切割磁感线模型 模型2——“单棒+导轨”模型 模型3——“双棒+导轨”模型 模型4——“线框切割”模型例4、[2017·海南卷](多选)如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个正方形导线框abcd,其上、下两边均与磁场边界平行,边长小于磁场上、下边界的间距.若线框自由下落,从ab边进入磁场时开始,直至ab边到达磁场下边界为止,线框下落的速度大小可能( ) A.始终减小B.始终不变C.始终增加D.先减小后增加例5、(多选)足够长的光滑金属导轨ab、cd水平放置,质量为m、电阻为R的两根相同金属棒甲、乙与导轨垂直且接触良好,磁感应强度为B的匀强磁场垂直导轨平面向里,如图所示,现用F作用于乙棒上,使它向右运动,用v、a、i和P 分别表示甲棒的速度、甲棒的加速度、甲棒中的电流和甲棒消耗的电功率,下列图象可能正确的是( )练习4、如图所示,两相互平行且足够长的光滑倾斜金属导轨,导轨与水平面间的夹角为37°,导轨宽度为1.0m,上端接一个电容器。
高中物理《动量》知识梳理1
2.(2020课标Ⅲ,15,6分)甲、乙两个物块在光滑水平桌面上沿同一直线运 动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图 中实线所示。已知甲的质量为1 kg,则碰撞过程两物块损失的机械能为
()
A.3 J 答案 A
B.4 J
C.5 J
D.6 J
3.(2020课标Ⅱ,21,6分)(多选)水平冰面上有一固定的竖直挡板。一滑冰 运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为 5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块 与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使 其再一次以大小为5.0 m/s的速度与挡板弹性碰撞。总共经过8次这样推 物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动 员。不计冰面的摩擦力,该运动员的质量可能为 ( )
高考 物理
课标专用
《动量》知识梳理
基础篇
考点一 动量、冲量与动量定理
1.(2020四川攀枝花统考三,5)某质点做匀变速直线运动,一段时间内速度
增加量为2v,动能增加量为3E(E为初始时刻的动能),则在这段时间内该质
点动量的变化为 ( )
A. EB. E源自C. 2ED. 3E
2v
v
v
2v
答案 B
2.(2022湖北,7,4分)一质点做曲线运动,在前一段时间内速度大小由v增大
B.将1、2号一起移至高度h释放,碰撞后,观察到1号静止,2、3号一起摆至 高度h,释放后整个过程机械能和动量都守恒 C.将右侧涂胶的1号移至高度h释放,1、2号碰撞后粘在一起,根据机械能 守恒,3号仍能摆至高度h D.将1号和右侧涂胶的2号一起移至高度h释放,碰撞后,2、3号粘在一起向 右运动,未能摆至高度h,释放后整个过程机械能和动量都不守恒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理知识归纳(三) ---------------动量和能量1.力的三种效应:力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量:p=mv=KmE 2 冲量:I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0(系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P 1+P 2=P 1′+P 2′(系统相互作用前的总动量等于相互作用后的总动量)m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP '(两物体动量变化大小相等、方向相反)实际中应用有:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
相对性:所有速度必须是相对同一惯性参照系。
同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v1’和v 2’必须是相互作用后同一时刻的瞬时速度。
解题步骤:选对象,划过程;受力分析。
所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。
3.功与能观点:功W = Fs cos ? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t (⇒p=t w =tFS=Fv) 功率:P =W t (在t 时间内力对物体做功的平均功率) P = F v(F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率; P 一定时,F 与V 成正比)动能: E K =m2p mv 2122= 重力势能E p = mgh (凡是势能与零势能面的选择有关)动能定理:外力对物体所做的总功等于物体动能的变化(增量)。
公式:W 合= W合=W 1+ W 2+…+W n = ?E k = E k2 一E k1 = 12122212mV mV -机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功). 守恒条件:(功角度)只有重力,弹力做功;(能转化角度)只发生动能与势能之间的相互转化。
“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
列式形式:E 1=E 2(先要确定零势面)P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)mgh 1 +121212222mV mgh mV =+ 或者 ?E p 减 = ?E k 增除重力和弹簧弹力做功外,其它力做功改变机械能;滑动摩擦力和空气阻力做功W =fd 路程⇒E 内能(发热)4.功能关系:功和能的关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程,(2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单功和能的关系贯穿整个物理学。
现归类整理如下:常见力做功与对应能的关系度⊙力学:① W =Fscos α ② W= P ·t (⇒p=t w =tFS=Fv)③动能定理 W 合=W 1+ W 2+…+W n =ΔE K =E 末-E 初 (W 可以不同的性质力做功)∣→→匀加速直线运动→→→→∣→→→变加速(a ↓)运动→→→→→∣→匀速运动→ ④功是能量转化的量度(易忽视)主要形式有: 重力的功------量度------重力势能的变化 电场力的功-----量度------电势能的变化 分子力的功-----量度------分子势能的变化 合外力的功------量度-------动能的变化除重力和弹簧弹力做功外,其它力做功改变机械能; 摩擦力和空气阻力做功W =fd 路程⇒E 内能(发热)与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关. “功是能量转化的量度”这一基本概念理解。
⑴物体动能的增量由外力做的总功来量度:W 外=ΔE k ,这就是动能定理。
⑵物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。
⑶物体机械能的增量由重力以外的其他力做的功来量度:W 其=ΔE 机,(W 其表示除重力以外的其它力做的功),这就是机械能定理。
⑷当W 其=0时,说明只有重力做功,所以系统的机械能守恒。
⑸一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
f d=Q (d 为这两个物体间相对移动的路程)。
⊙热学: ΔE=Q+W (热力学第一定律)⊙电学: W AB =qU AB =F 电d E =qEd E ⇒ 动能(导致电势能改变)W =QU =UIt =I 2Rt =U 2t/R Q =I 2RtE=I(R+r)=u 外+u 内=u 外+Ir P 电源t =uIt+E 其它 P 电源=IE=I U +I 2Rt⊙磁学:安培力功W =F 安d =BILd ⇒内能(发热) d RV L B Ld R BLV B 22== ⊙光学:单个光子能量E =h γ 一束光能量E 总=Nh γ(N 为光子数目)?光电效应221m kmmv E ==h γ-W 0 跃迁规律:h γ=E 末-E 初 辐射或吸收光子 ⊙原子:质能方程:E =mc 2 ΔE =Δmc 2 注意单位的转换换算内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。
(研究对象:相互作用的两个物体或多个物体所组成的系统) 守恒条件:①系统不受外力作用。
(理想化条件)②系统受外力作用,但合外力为零。
③系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。
④系统在某一个方向的合外力为零,在这个方向的动量守恒。
⑤全过程的某一阶段系统受合外力为零,该阶段系统动量守恒,即:原来连在一起的系统匀速或静止(受合外力为零),分开后整体在某阶段受合外力仍为零,可用动量守恒。
不同的表达式及含义:'p p=;0p =∆;21p -p ∆=∆ (各种表达式的中文含义)实际中有应用:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共注意理解四性:系统性、矢量性、同时性、相对性 系统性:研究对象是某个系统、研究的是某个过程矢量性:不在同一直线上时进行矢量运算;在同一直线上时,取正方向,引入正负号转化为代数运算。
同时性:v 1、v 2是相互作用前同一时刻的速度,v 1'、v 2'是相互作用后同一时刻的速度。
同系性:各速度必须相对同一参照系解题步骤:选对象,划过程;受力分析.所选对象和过程符合什么规律?用何种形式列方程(先要规定正方向)求解并讨论结果。
历年高考中涉及动量守量模型题: 一质量为M 的长木板静止在光滑水平桌面上.一质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时速度为V 0/3,若把此木板固定在水平面上,其它条件相同,求滑块离开木板时速度?1996年全国广东(24题) 1995年全国广东(30题压轴题) 1997年全国广东(25题轴题12分)1998年全国广东(25题轴题12分)试在下述简化情况下由牛顿定律导出动量守恒定律的表达式:系统是两个质点,相互作用力是恒力,不受其他力,沿直线运动要求说明推导过程中每步的根据,以及式中各符号和最后结果中各项的意义。
质量为M 的小船以速度V 0行驶,船上有两个质量皆为m 的小孩a 和b ,分别静止站在船头和船尾. 现小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率v (相对于静止水面)向后跃入水中. 求小孩b 跃出后小船的速度.1999年全国广东(20题12分) 2000年全国广东(22压轴题) 2001年广东河南(17题12分)2002年广东(19题) 2003年广东(19、20题) 2004年广东(15、17题)2005年广东(18题) 2006年广东(16、18题) 2007年广东(17题)碰撞模型:特点和注意点:①动量守恒;②碰后的动能不可能碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
m 1v 1+m 2v 2='22'11v m v m + (1)'K 2'K 1K 2k 12121E m 2E m 2E m 2E m 2+=+'222'12221mv 21mv 21mv 21mv 21+=+ (2 ) 2'221'212221212m p 2m p 2m p 2m p +=+ 记住这个结论给解综合题带来简便。
通过讨论两质量便可。
“一动一静”弹性碰撞规律:即m 2v 2=0 ;222v m 21=0 代入(1)、(2)式 动量守恒:m 1v 1+m 2v 2=m 1v 1'+m 2v 2' 动能守恒:21m 1v 12+21m 2v 22=21m 1v 1' 2+21m 2v 2' 2 联立可解:v 1'=12121v m m m m +-(主动球速度下限) v 2'=1211v m m m 2+(被碰球速度上限)讨论(1):当m 1>m 2时,v 1'>0,v 2'>0 v 1′与v 1方向一致; 当m 1>>m 2时,v 1'≈v 1,v 2'≈2v 1 (高射炮打蚊子) 当m 1=m 2时,v 1'=0,v 2'=v 1 即m 1与m 2交换速度当m 1<m 2时,v 1'<0(反弹),v 2'>0 v 2′与v 1同向;当m 1<<m 2时,v 1'≈-v 1,v 2'≈0 (乒乓球撞铅球) 讨论(2): 被碰球2获最大速度、最大动量、最大动能的条件为A.初速度v 1一定,当m 1>>m 2时,v 2'≈2v 1 B .初动量p 1一定,由p 2'=m 2v 2'=122211121121+=+m m v m m m v m m ,可见,当m 1<<m 2时,p 2'≈2m 1v 1=2p 1C .初动能E K1一定,当m 1=m 2时,E K2'=E K1一动静的完全非弹性碰撞。