经典例题

合集下载

因式分解经典例题

因式分解经典例题

因式分解经典例题一、提取公因式法例1:分解因式ax + ay。

解析:公因式为a,所以ax+ay = a(x + y)。

例2:分解因式3x^2-6x。

解析:公因式为3x,3x^2-6x=3x(x - 2)。

例3:分解因式5a^2b - 10ab^2。

解析:公因式为5ab,5a^2b-10ab^2=5ab(a - 2b)。

二、运用平方差公式a^2-b^2=(a + b)(a - b)分解因式例4:分解因式x^2-9。

解析:x^2-9=x^2-3^2=(x + 3)(x-3)。

例5:分解因式16y^2-25。

解析:16y^2-25=(4y)^2-5^2=(4y + 5)(4y-5)。

例6:分解因式(x + p)^2-(x + q)^2。

解析:根据平方差公式a=(x + p),b=(x+q),则(x + p)^2-(x + q)^2=[(x + p)+(x + q)][(x + p)-(x + q)]=(2x + p + q)(p - q)。

三、运用完全平方公式a^2±2ab + b^2=(a± b)^2分解因式例7:分解因式x^2+6x + 9。

解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。

例8:分解因式4y^2-20y+25。

解析:4y^2-20y + 25=(2y)^2-2×5×2y+5^2=(2y - 5)^2。

例9:分解因式x^2-4xy+4y^2。

解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。

四、综合运用多种方法分解因式例10:分解因式x^3-2x^2+x。

解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以原式=x(x - 1)^2。

例11:分解因式2x^2-8。

解析:先提取公因式2,得到2(x^2-4),再利用平方差公式x^2-4=(x + 2)(x-2),所以原式=2(x + 2)(x - 2)。

动能定理典型分类例题经典题型

动能定理典型分类例题经典题型

动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。

2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。

3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。

答案为1.95m。

4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。

答案为0.98m。

5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。

求刹车前汽车的行驶速度。

答案为10.95m/s。

6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。

设运动的阻力与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离为L×m/(M+m)。

模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。

答案为6.31m/s。

基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。

答案为6.31m/s。

基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。

已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。

答案为3.46m/s和6.71m/s。

典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。

人工智能决策树例题经典案例

人工智能决策树例题经典案例

人工智能决策树例题经典案例一、经典案例:天气预测决策树在天气预测中有广泛应用,下面是一个关于是否适宜进行户外运动的示例:1. 数据收集:- 温度:高(>30℃)/中(20℃-30℃)/低(<20℃)- 降水:是/否- 风力:高/中/低- 天气状况:晴朗/多云/阴天/雨/暴雨- 应该户外运动:是/否2. 构建决策树:- 根据温度将数据分为三个分支:高温、中温、低温- 在每个分支中,继续根据降水、风力和天气状况进行划分,最终得到是否适宜户外运动的决策3. 决策树示例:温度/ / \高温中温低温/ | | \ |降水无降水风力适宜/ \ | | / \是否高中低| |不适宜适宜- 如果温度是高温且有降水,则不适宜户外运动- 如果温度是高温且无降水,则根据风力判断,如果风力是高,则不适宜户外运动,如果风力是中或低,则适宜户外运动 - 如果温度是中温,则不论降水和风力如何,都适宜户外运动- 如果温度是低温,则需要考虑风力,如果风力是高,则适宜户外运动,如果风力是中或低,则不适宜户外运动4. 参考内容:决策树的构建和应用:决策树通过对输入特征进行划分,构建了一棵树形结构,用于解决分类或回归问题。

构建决策树主要包括数据预处理、特征选择、划分策略和停止条件等步骤。

特征选择可以使用信息增益、基尼指数等算法,划分策略可以使用二叉划分或多叉划分,停止条件可以是叶子节点纯度达到一定阈值或达到预定的树深度。

决策树的应用包括数据分类、特征选择和预测等任务。

天气预测案例中的决策树:将天气预测问题转化为分类问题,通过构建决策树,可以得到识别是否适宜户外运动的规则。

决策树的决策路径可以用流程图或树状图表示,帮助理解和解释决策过程。

决策树的节点表示特征值,分支表示判断条件,叶子节点表示分类结果。

决策树的生成算法可以基于启发式规则或数学模型,如ID3、C4.5、CART等。

决策树的优缺点:决策树具有可解释性强、易于理解和实现、能处理非线性关系等优点。

100个数论经典例题

100个数论经典例题

100个数论经典例题1. 证明:无理数的十进展开不可能是一个重复的数字序列。

2. 证明:一个正整数为完全平方数的充分必要条件是它的每个质因子的指数都是偶数。

3. 证明:有理数的不循环小数展开是独一无二的。

4. 如果两个整数m和n的最大公约数是1,那么m/n的分数形式是既简单又唯一的。

5. 证明:对于任意自然数n,n²+n+41都是一个质数。

6. 证明:对于任意自然数n,3n²+3n+7都是一个质数。

7. 求1²+2²+3²+...+n²的值,并给出证明。

8. 求1³+2³+3³+...+n³的值,并给出证明。

9. 证明:无穷多个素数是等差数列的形式。

10. 设p是一个素数,证明:x²≡-1(mod p)的解的个数为0或2。

11. 给定一个正整数n,求所有满足φ(x)=n的正整数x,其中φ(x)表示小于x且与x互质的正整数的个数(欧拉函数)。

12. 证明:若p是任意一个素数,则对于任意自然数n,(n+p)!≡n!pⁿ(mod p²)。

13. 证明:若p是任意一个素数,则对于任意自然数n,n!≡-1(mod p)当且仅当p=2或p≡1(mod 4)。

14. 对于任意一个素数p和整数a,证明:x²≡a(mod p)有解的充分必要条件是a^(p-1)/2≡±1(mod p)。

15. 证明:对于任意自然数n,存在无限多个三元组(x,y,z)使得x⁴+y⁴=z³。

16. 证明:对于任意正整数k,存在无限多个素数p,使得p≡1(mod k)。

17. 求2²+4²+6²+...+50²的值,并给出证明。

18. 求1+2+3+...+99+100的值,并给出证明。

19. 给定正整数a、b、n,求aⁿ+bⁿ的最大公因数,并给出证明。

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题单选题1、已知z =2+i ,则z−i 1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z =2−i ,所以z−i 1+i =2−i−i 1+i =2(1−i )×(1−i )(1+i )×(1−i )=2×(1−2i+i 2)2=−2i .故选:D.2、设(−1+2i)x =y −1−6i ,x,y ∈R ,则|x −yi|=( )A .6B .5C .4D .3答案:B分析:根据复数实部等于实部,虚部等于虚部可得{x =−3y =4,进而求模长即可. 因为(−1+2i )x =y −1−6i ,所以{2x =−6−x =y −1,解得{x =−3y =4, 所以|x −yi |=|−3−4i|=√(−3)2+(−4)2=5.故选:B.3、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z 1和z 2的模相等,例如z 1=1+i ,z 2=√2i ,则z 1和z 2是共轭复数是错误的;对于②z 1和z 2都是复数,若z 1+z 2是虚数,则其实部互为相反数,则z 1不是z 2的共轭复数,所以②是正确的;对于③复数z 是实数,令z =a ,则z =a 所以z =z ,反之当z =z 时,亦有复数z 是实数,故复数z 是实数的充要条件是z =z 是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.4、在复平面内,复数z =1+i 1−i +1−i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:由复数的运算求出z ,则可得其对应的点的坐标,从而得出结论.z =(1+i)2(1−i)(1+i)+1−i 2=2i 2+1−i 2=12+12i , 则z 在复平面内对应的点为(12,12),在第一象限,故选:A .5、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i ,满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi11z =11z =|z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.6、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解.根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.7、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D8、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC.-3-iD.-3+i答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn+2=02n+2=0,解得{m=3,n=−1,∴z=3−i故选:B多选题9、已知复数z=21+i,则正确的是()A.z的实部为﹣1B.z在复平面内对应的点位于第四象限C.z的虚部为﹣iD.z的共轭复数为1+i答案:BD分析:根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可.因为z=21+i =2(1−i)(1+i)(1−i)=1−i,所以z的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限,共轭复数为z=1+i,故AC错误,BD正确.故选:BD10、复数z=1−i,则()A.z在复平面内对应的点的坐标为(1,−1)B.z在复平面内对应的点的坐标为(1,1)C.|z|=2D.|z|=√2答案:AD分析:利用复数的几何意义,求出复数对应的点坐标为(1,−1),即可得答案;z=1−i在复平面内对应的点的坐标为(1,−1),|z|=√2.故选:AD.11、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.12、已知复数z1=−2+i(i为虚数单位),复数z2满足|z2−1+2i|=2,z2在复平面内对应的点为,则()A.复数z1在复平面内对应的点位于第二象限B.1z1=−25−15iC.(x+1)2+(y−2)2=4D.|z2−z1|的最大值为3√2+2答案:ABD分析:利用复数的几何意义可判断A选项;利用复数的除法运算可判断B选项;利用复数的模长公式可判断C选项;利用复数模长的三角不等式可判断D选项.对于A选项,复数z1在复平面内对应的点的坐标为(−2,1),该点位于第二象限,A对;对于B选项,1z1=1−2+i=−2−i(−2+i)(−2−i)=−25−15i,B对;对于C选项,由题意可得z2−1+2i=(x−1)+(y+2)i,因为|z2−1+2i|=2,则(x−1)2+(y+2)2=4,C错;对于D选项,z1−1+2i=−3+3i,则|z1−1+2i|=√(−3)2+32=3√2,所以,|z2−z1|=|(z2−1+2i)−(z1−1+2i)|≤|z2−1+2i|+|z1−1+2i|=2+3√2,D对.(), M x y故选:ABD.13、若复数z 满足:z (z +2i )=8+6i ,则( )A .z 的实部为3B .z 的虚部为1C .zz =√10D .z 在复平面上对应的点位于第一象限答案:ABD分析:根据待定系数法,将z =a +bi (a,b ∈R )代入条件即可求解a =3,b =1,进而即可根据选项逐一求解. 设z =a +bi (a,b ∈R ),因为z (z +2i )=8+6i ,所以zz +2iz =8+6i ,所以(a 2+b 2−2b )+2ai =8+6i ,所以a 2+b 2−2b =8,2a =6,所以a =3,b =1,所以z =3+i ,所以z 的实部为3,虚部为1,故A ,B 正确;zz =|z |2=10,故C 不正确;z 在复平面上对应的点(3,1)位于第一象限,故D 正确.故选:ABD .填空题14、i 2 021=________.答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i15、设复数z ,满足|z 1|=1,|z 2|=2,z 1+z 2=√3−i ,则|z 1−z 2|=____________.答案:√6解析:根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出|z 1−z 2|的值.设z 1,z 2在复平面中对应的向量为OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,z 1+z 2对应的向量为OZ 3⃗⃗⃗⃗⃗⃗⃗ ,如下图所示:因为z 1+z 2=√3−i ,所以|z 1+z 2|=√3+1=2,所以cos∠OZ 1Z 3=12+22−221×2×2=14, 又因为∠OZ 1Z 3+∠Z 1OZ 2=180°,所以cos∠Z 1OZ 2=−cos∠OZ 1Z 3=−14,所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=OZ 12+OZ 22−2OZ 1⋅OZ 2⋅cos∠Z 1OZ 2=1+4+1=6, 所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,又|z 1−z 2|=|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,所以答案是:√6.小提示:名师点评复数的几何意义:(1)复数z =a +bi (a,b ∈R )一一对应↔复平面内的点Z (a,b )(a,b ∈R ); (2)复数z =a +bi (a,b ∈R ) 一一对应↔平面向量OZ ⃗⃗⃗⃗⃗ . 16、在复平面内,复数z 对应的点的坐标是(3,−5).则(1−i)z =___________.答案:−2−8i ##−8i −2分析:根据给定条件求出复数,再利用复数的乘法运算计算作答.在复平面内,复数z 对应的点的坐标是(3,−5),则z =3−5i ,所以(1−i)z =(1−i)(3−5i)=−2−8i .所以答案是:−2−8i解答题17、已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i (其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m <0,解得m >1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m −4i|,解得m =3.综上可得:m =−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。

经典倒水问题例题

经典倒水问题例题

经典倒水问题例题经典的倒水问题是一个常见的数学问题,也是逻辑思维和推理能力的一种锻炼。

这个问题可以通过逻辑推理和数学计算来解决。

下面我将给出一个具体的例题,并详细说明解题思路。

例题:有两个容量分别为3升和5升的水桶,请问如何用这两个水桶得到4升的水?解题思路:1.首先,我们可以将5升的水桶装满水。

2.然后,将5升的水桶中的水倒入3升的水桶中,此时5升的水桶中剩余2升水。

3.接下来,将3升的水桶倒空。

4.将2升的水从5升的水桶倒入3升的水桶中。

5.此时,5升的水桶中还剩下2升水。

6.将3升的水桶填满水。

7.用满水的3升水桶将另一个3升水桶倒满,此时5升的水桶中剩下了1升水。

8.将3升的水桶倒空。

9.将1升水从5升的水桶倒入3升的水桶中。

10.此时,3升的水桶中已经有1升水。

11.将5升的水桶填满水。

12.用满水的5升水桶将另一个3升水桶倒满,此时5升的水桶中剩下了4升水,即得到了4升的水。

解题分析:通过以上步骤,我们成功地用两个水桶得到了4升的水。

这个问题的关键在于善于运用倒水和比较容量的操作。

通过逐步倒水和比较容量的过程,我们可以灵活地利用不同容量的水桶来实现所需容量的水。

同时,这个问题也考验了我们的逻辑思维和推理能力,需要我们根据已知条件进行合理的推断和决策。

总结:经典的倒水问题是一道锻炼逻辑思维和推理能力的数学问题。

通过合理运用倒水和比较容量的操作,我们可以巧妙地利用不同容量的水桶来实现所需容量的水。

这个问题的解题过程需要我们善于观察和分析,灵活运用数学知识和逻辑思维来找到解题的方法。

通过解决这类问题,我们能够提高我们的逻辑思维、推理能力和问题解决能力,对我们的日常生活和学习都具有积极的影响。

7道经典资料分析例题

7道经典资料分析例题

一、根据以下资料,回答101~105题2011年全国共举办展览6830场,比2010年增加9.2%;展出面积为8120万平方米,比2010年增长8.5%;50人以上专业会议64.2万场,比2010年增加17.4%;万人以上节庆活动6.5万场,比2010年增长3%;出国境展览面积60万平方米,比2010年增长13.8%,实施项目1375个,参展企业4万家;提供社会就业岗位1980万人次;直接产量3016亿元,比2010年增长17.7%,占全国GDP的0.64%,占全国第三产业的13%。

根据统计分析,2011年北京、上海、广州三城市增长幅度较大,三个城市共举办展览1380场,比2010年增长33.8%,占全国的20%;展览面积为2523万平方米,比2010年增长13.4%,占全国展览面积的31%,在世界商战百强排行榜中,中国占14席,其中北京4席,上海4席,广州3席,香港2席,深圳1席。

从展会的类型分析,经贸的占70%,消费品的占25%。

文化展示类的占5%,从组展商分析,国有、集体、股份、联营等占30%,民营及其他内资企业占25%,港澳及外商投资企业占5%,行业商(协)会占25%,政府或事业单位占15%。

2011年Z省共举办展会696场(列全国第一),展览面积为734万平方米,50人以上企业会议2.85万场,万人以上节庆活动452场,出国境参加面积25.9万平方米,出省参展面积34.5万平方米,提供社会就业岗位122万人次,会展业的直接收入327亿元,占全省GDP的1%,占全身第三产业的23%。

101.2011年,从展会的类型分析,消费类的比文化展示类的多多少场:A.1707B.1528C.1366D.1124102.2011年全国第三产业产值约为多少亿人民币?A.47125B.32584C.28956D.23200103.2010年平均每场展览展出面积约为多少平方米?A.11000B.12000C.13000D.14000104.2011年北京、上海、广州三城市举办的展览场次占全国的比重与2010年相比约:A.增加了4个百分点B.减少了4个百分点C.增加了8个百分点D.减少了8个百分点105.根据上述资料,下列表述正确的是:A.2010年全国万人以上节庆活动场次不到6万B.在世界商展百强排行榜中,中国上榜城市中有一半为北方城市C.从组展商分析,2011年国有、集体、股份、联营以及政府或事业单位比例超过一半D.2011年,Z省出国境参展面积占全国比重超过40%二、根据以下资料,回答106~110题2012年某市开展了市民阅读情况调查。

七年级数学经典例题

七年级数学经典例题

七年级数学经典例题一、有理数运算。

1. 计算:(-2)+3-(-5)- 解析:- 根据有理数的运算法则,减去一个数等于加上这个数的相反数。

- 所以(-2)+3 - (-5)=(-2)+3+5。

- 先计算(-2)+3 = 1,再计算1 + 5=6。

2. 计算:-2^2-( - 3)^3÷(-1)^2023- 解析:- 先计算指数运算。

-2^2=-4(这里注意指数运算的优先级,先计算指数2^2 = 4,再加上负号)。

- (-3)^3=-27,(-1)^2023=-1。

- 则原式=-4-(-27)÷(-1)。

- 接着计算除法-27÷(-1) = 27。

- 最后计算-4 - 27=-31。

二、整式的加减。

3. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

- 对于a的同类项3a和-5a,合并得3a-5a=-2a。

- 对于b的同类项2b和-b,合并得2b - b=b。

- 所以化简结果为-2a + b。

4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1- 解析:- 先去括号,根据去括号法则,括号前是正号,去掉括号不变号;括号前是负号,去掉括号要变号。

- 原式=2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。

- 再合并同类项,2x^2-3x^2=-x^2,4y^2-5y^2=-y^2,-3xy+3xy = 0。

- 化简结果为-x^2-y^2。

- 当x=-2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。

三、一元一次方程。

5. 解方程:3x+5=2x - 1- 解析:- 移项,把含有x的项移到等号一边,常数项移到等号另一边,移项要变号。

- 得到3x - 2x=-1 - 5。

- 合并同类项得x=-6。

最值经典例题

最值经典例题

最值经典例题
以下是一些经典的最值例题:
1. 一个电器店卖出了一台电视机和一台冰箱,电视机的价格是4000元,冰箱的价格是3000元。

求两台电器的总价格最大值
和最小值。

2. 一个小贩把西瓜从一辆拖拉机上放下来,每个西瓜的重量在2到10千克之间。

如果他放下了6个西瓜,求这6个西瓜的
总重量的最大值和最小值。

3. 一间物流公司需要运送一批货物,货物的重量范围是100到500千克之间。

如果货物总重量不得超过1000千克,求这批
货物的最大数量和最小数量。

4. 一个小球从一栋建筑的顶部落下,其下落的高度在20到
200米之间。

如果小球每次弹起的高度不得超过10米,求小
球弹起的次数的最大值和最小值。

5. 一个邮局有三种类型的邮票,价格分别为1元、2元和5元。

如果小明买了8张邮票,求他使用的邮票数量的最大值和最小值。

这些例题可以帮助学生练习应用最值的概念解决问题。

小学数学经典题型30例

小学数学经典题型30例

小学数学经典题型30例1. 计算题例题1求下面数列的和:1+2+3+4+…+10解答1这是一个等差数列,首项为1,公差为1,共有10个项。

根据等差数列求和公式,求和结果为:1+2+3+4+...+10 = (10 + 1) * 10 / 2 = 552. 算术题例题2某箱子里有20个苹果,小明拿走了其中的4个苹果,那么还剩下多少个苹果?解答2用箱子里的苹果数减去小明拿走的苹果数,即可得到剩下的苹果数:20 - 4 = 163. 排列组合题例题3小明有3个篮球,他想穿不同颜色的袜子,他有红、黄、蓝三种颜色的袜子,分别有2双。

那么他有几种搭配的方式?解答3根据排列组合的原理,分别计算每种颜色袜子的搭配方式,再相乘得到总的搭配方式:红色袜子的搭配方式:2黄色袜子的搭配方式:2蓝色袜子的搭配方式:2总的搭配方式:2 * 2 * 2 = 84. 几何题例题4长方形的长为5cm,宽为3cm,求它的面积和周长。

解答4面积可以通过长和宽相乘得到,周长可以通过长和宽相加,再乘以2得到:面积 = 5 * 3 = 15周长 = (5 + 3) * 2 = 165. 比例题例题5某商店陈列了40本书,其中5本是数学书,9本是科学书,剩下的是其他类型的书。

问其他类型的书有多少本?解答5首先计算已知的数学书和科学书的总数,然后用商店陈列的总书数减去这两个总数即可得到其他类型书的本数:数学书的本数 + 科学书的本数 = 5 + 9 = 14其他类型书的本数 = 40 - 14 = 26……(继续列举其他题目)以上就是小学数学经典题型的30个例子。

通过解答这些题目,可以帮助孩子们巩固数学基础,提升思维能力和解决问题的能力。

如果孩子们能够熟练掌握这些题目的解题方法,将会在数学学习中更加得心应手。

希望这份文档对你有所帮助!。

高中数学经典例题100道

高中数学经典例题100道

高中数学经典例题100道(共44页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠ (4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆ [ ]分析 作出4图形.答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B .答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素.∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意. 例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a+3},求a 的值.S 这个集合是集合A 与集合S A 的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去. 在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是( ). A .过直线外一点作与该直线垂直的直线 B .过直线外一点与该直线平行的平面 C .过平面外一点与平面平行的直线 D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =. 又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=, a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ① 在Rt △BHD 中有:BHBD =αcos ② 在Rt △ABD 中有:BA BD =βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK . 说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB交FE的延长线于M,连结GM,作MEBP⊥于P,作BH⊥于H,可得⊥BN//交MG于N,连结PN,再作PNCGBH平面GFE,BH长即为B点到平面EFG的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7如图所示,直角ABCSA==.SB∆所在平面外一点S,且SC(1)求证:点S与斜边AC中点D的连线SD⊥面ABC;(2)若直角边BCBA=,求证:BD⊥面SAC.分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SACSD⊥.∆中,D为AC中点,∴AC取AB中点E,连DE、SE.∵BCBC⊥,∴ABED//,ABDE⊥.又ABAB⊥.SE⊥,∴AB⊥面SED,∴SD∴SD⊥面ABC(AB、AC是面ABC内两相交直线).(2)∵BCBA=,∴ACBD⊥.又∵SD⊥面ABC,∴BDSD⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥.证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥. 解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB . ∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形. ∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形. 综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥. 由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角. 作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算. 典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒∠90ACB,S为平面ACB外一点,=∠60SCA,求SC与平面ACB所成角.SCB=︒=∠典型例题十五例15判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点A垂直于直线a的所有直线都在过点A垂直于α的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a , 同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b a b a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a aa a ab a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵.典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用. 证明:连结11C A ,由于11//C A AC ,AC EF ⊥, ∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = , ∴D C A EF 11平面⊥. ① ∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂, ∴111C A BB ⊥.∵四边形1111D C B A 为正方形, ∴1111D B C A ⊥,1111B BB D B = , ∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥. 同理11BD DC ⊥,1111C C A DC = , ∴D C A BD 111平面⊥. ② 由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===, ∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心. ∵PA 、PB 、PC 两两垂直,∴a CA BC AB 2===,ABC ∆为正三角形, ∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂, ∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求. 过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂, ∴E B BC 1⊥. 又B B A BC =1 , ∴111BCD A E B 平面⊥. 即线段E B 1的长即为所求,。

高中数学经典例题集

高中数学经典例题集

高中数学经典例题集1.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:(1)若m//α,n//α,则m//n;(2)若m//α,n//α,m,n⊂β,则α//β;(3)若m//n,n⊂α,则m//α;(4)若α//β,m⊂α,则m//β.其中恰当命题的个数为2.已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:①若α⊥β,m⊥α,则m∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥则n⊥α;④若m∥α,m⊂β,则α∥β.其中所有真命题的序号是n,3.若m,n,l是互不重合的直线,α,β,γ是互不重合的平面,给出下列命题:①若α⊥β,α⋂β=m,m⊥n,则n⊥α或n⊥β;②若α//β,α⋂γ=m,β⋂γ=n,则m//n;③若m不垂直于α,则m不可能垂直于α内的无数条直线;④若α⋂β=m,m//n,且n⊄α,n⊄β,则n//α且n//β;⑤若α⋂βm,=β⋂n,γ=αl⋂α⊥γβ=,α⊥γ,β⊥γ,且则m⊥n,m⊥l,n⊥l.其中恰当命题的序号就是.4.设、m、n表示不同的直线,α,β,γ表示不同的平面,则下列四个命题正确的是.①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若αβ=l,βγ=m,γα=n,则m∥l∥n;④若αβ=m,βγ=l,γα=n,且n∥β,则m∥l.5.已知a、b是不同的直线,α、β、γ是不同的平面,给出下列命题:①若α∥β,a⊂α,则a∥β;②若a、b与α所成角相等,则a∥b;③若α⊥β、β⊥γ,则α∥γ;④若a⊥α,a⊥β,则α∥β其中恰当的命题的序号就是.6.如图,空间中两个有一条公共边ad的正方形abcd和adef.设m、n分别是bd和ae的中点,那么①ad⊥mn;②mn∥平面cde;③mn∥ce;④mn、ce异面以上4个命题中正确的是7.得出以下四个命题①平行于同一平面的两条直线平行;②旋转轴同一平面的两条直线平行;③如果一条直线和一个平面平行,那么它和这个平面内的任何直线都平行;④如果一条直线和一个平面垂直,那么它和这个平面内的任何直线都垂直.其中正确命题的序号是(写出所有正确命题的序号).8.关于直线m,n与平面α,β,存有以下四个命题:①若m//α,n//β且α//β,则m//n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n//β且α//β,则m⊥n;④若m//α,n⊥β且α⊥β,则m//n;(把你认为正确命题的序号都填上)9.将边长为2abcd沿较短对角线bd卷成四面体abcd,点e,f分别为ac,bd的中点,则下列命题中正确的是。

初中数学大题经典例题

初中数学大题经典例题

初中数学大题经典例题
以下是一些初中数学经典例题:
1. 已知正方形的周长为20cm,求面积。

解:设正方形的边长为a,则周长为20cm,即4a=20,解得a=5。

正方形的面积为a^2=5^2=25,所以面积为25平方厘米。

2. 求解方程3x+5=14。

解:将等式两边都减去5,得到3x=9,然后再将等式两边都除以3,得到x=3。

所以方程的解为x=3。

3. 甲乙两人同时从A、B两地相向而行,甲每小时走5千米,乙每小时走7千米,相遇在距A地点15千米的地方,求AB两地的距离。

解:设AB两地的距离为x,则甲和乙相向而行,速度之和为5+7=12千米/小时,所以他们相遇的时间为15/12=1.25小时。

因此,甲离A 地点行进的路程为5×1.25=6.25千米,乙离B地点行进的路程为7×1.25=8.75千米,所以AB两地的距离为6.25+8.75=x,即x=15千米。

4. 有一个三角形,其中一条边长为3cm,另外两边长分别为4cm 和5cm,求这个三角形面积。

解:由勾股定理可知,3、4、5构成一个直角三角形。

所以这个三角形的底为3cm,高为4cm,面积为1/2×3×4=6平方厘米。

5. 已知某地每个人平均每天消耗1千瓦时的电能,在一天内,该地有10000个人,求这个地方一天消耗的电能量。

解:该地每个人平均每天消耗1千瓦时的电能,因此10000个人
平均每天消耗10000×1=10000千瓦时的电能。

所以这个地方一天消耗的电能量为10000千瓦时。

经典力学例题

经典力学例题

1、平面任意力系例;无重水平梁地支撑和载荷如图所示,已知力F 和强度为q=F/b 地均不载荷.求 支架A 和B 地约束力.【解析】平面任意力系平衡条件.【答案】取梁分析E F X =0,F A X +F COS 30° =0E F Y =0,F ay +F B -Fsin30o -qb=0 E MA(F)=0,Fbsin30° +qb5/2b -2F B b =0解得;F*—F = ay F B =2、摩擦平衡问题静滑动摩擦力地方向与物体运动趁势方向相反,大小在零与最大静摩擦力之间;即0W F sW F max一般静摩擦力由平衡条件确定,最大静摩擦力;F max =f s FN 称为库伦摩擦定律,即静摩擦定律,其中f s 是摩擦系数.动滑动摩擦力地方向与相对滑动方向相反,大小F‘ =fFN 称为库伦动摩擦定律.即动滑动摩擦定律,f 是动摩 擦系数.例;材料不同地两块A 和B 叠放在水平面上.巳知物块A 重0.5KN,物块B 重0.2KN 物块A 、B 间地摩擦系 数f 1=0.25,物块B 与地面间地摩擦系数f 2=0.2,拉动物块B 所需要地最小力为?答案;F=(F A +F B )X f 2例3.自重为P=100KN 地T 字型钢架ABD,置于垂面内.如图.巳知q=20kn/m,F=400KN.M=20KN.M, L=1m.求固定端 地约束力.例4;求图示结构地固定端A 和 连杆支座B 地支座反力.解.利用平面任意力系地平衡条件求解;由图得;E Fx=0, -Fcos30 ° +1/2q*3L+Fax=0MA-3qL.L/2-M+Fsin30° .3L=0 解得;Fx= Fy= M A = E Fy=0, -Fsin30 ° -p+Fay=0 E M A (F)=0,解;利用物体系统地平衡I、问题求如图.取CB为研究对象,Emc=0,2RB-10=0——► RB=5KN取整体为研究对象E y=0,Y A+RB-2X20=0 ------- ► Y A=35KN工X=0,X A+50=0------ ►X A=—50E M A=0,M A+5 X 4-10-40 X 1-50 X 2=0〃-►M A=130KN2、材料力学基础概念材料力学地任务1、强度;构件抵抗破坏地能力,即在规定地使用条件下.构件不会发生断裂或显著地永久形变.2、刚度;构件抵抗变形地能力,即在规定地使用条件下,变型不超过允许地限度.3、稳定性;构件保持原有地平衡形式地能力,即在规定地使用条件下,构件能始终保持原有地平衡形式它地任务就是在满足刚度、强度和稳定性地前提下,从经济方面为构件选择适宜地材料,确定合理地形状和尺寸,为构件地设计提供基本理论和计算方法.杆地几何特征是纵向(长度方向)尺寸远大于横向(垂直与长度方向)尺寸.轴、梁和柱均属于杆.轴线为直线地杆称为真杆,轴线为曲线地杆称曲杆,等截面地直杆简称等直杆,横截面大小不等地杆称为变截面杆.杆件地四种基本形变;1、拉伸与压缩.2、剪切.3、扭转4、弯曲.12、轴杆地拉伸与压缩轴杆地拉伸与压缩地强度计算.例;图示桁架.杆1、2地横截面均匀为图形,直径分别为d1=30mm、d2=20mm、两杆材料相同,许用应力【Q】=160MPa,该桁架在节点A 处受垂直方向地载荷F作用,求F地最大允许直.如图所示三个力构成矢量三角形,有勾股定理可知;FN1 - FN2 二巨sin45° sin30G sinlOS0假设杆1、2都能够满足强度要求,则有Q1=F N1/A1=F N1/3.14* (D1/2) *(D"2)W[160]MPa F N1W113040NQ2=F N2/A2=F N2/3.14* (D2/2) *(D2/2)W[160]MPa F N2W50240N 有F1和F2强度得到F地最大允许值得、si<FW血砰得F力为97KN 例2;某铣床工作台进给液压缸如图所示,缸内工作油缸P=2MPa,内经D=75mm,活塞杆直径d=18mm,已知活塞杆材料地许应力【Q】=50MPa. 试校该活塞杆地强度.解;利用轴向拉伸或压缩时地强度解题.F=PA=2*1000000*3.14(D/2)*(D/2)=2*1000000*3.14* ( 75/2 ) (75/2)*0.000000=8831.25NQ=F/[3.14(d/2)*(d/2)]=8831.25/(3.14*81*0.000000)=34.7MPa<[q]=50M Pa故活塞杆满足强度要求13、拉伸或压缩时地变形例3,钢杆AC、BD吊一横梁AB (重量与变型不计),F=20NK,_T 钢杆横截面积A=1CM2,E=200GPa,试求两杆地应力及F力作用点G 地位移.由与载荷作用于梁地中部,由力矩平衡定理可知,FNAC=FNBD=F/2=20/2=10KN又因为AC和BD地两杆材料和横截面积都相同,则由应力公式可知Q=F/AQac=Qbd=F/2/A=10*1000/1*0.0000=100MPa(2).杆在载荷F地作用力下产生形变△L ac =F/2/LAC/EA=20/2*1000*2/200*1000000000*1*0.0001=0.00△L bd =F/2/Lbd/EA=20/2*1000*1/200*100000000*1*0.0001=0.0005m 例4.如图所示一三角架,杆AB为园钢杆,【Q】1=120MPa.直径d=24mm; 杆BC为正方形截面杆[Q]2=60MPa,边长a=20mm.求三脚架地许可荷载[p].利用平衡条件得到.N1=N2=P杆1【P1】=[N1]=[Q]*A1=34.6KN杆2【P2】=[N2]=[Q]*A2=24KN取[P]=24KN13、剪切当构件受到两个大小相等,反向相反,力地作用线相互平行且距离很近地两个力作用时.两力间地横截面发生相对错动,这种变形称为剪切. 受剪切上地内力称剪力.工程上采用实用算法,假设应力在剪切内均匀分布,设剪切面积为A,则应力为T=Fs/A强度地条件是;t=Fs/AW[t]挤压地实用计算螺栓、螺钉、键、柳钉等连接件,除了承受剪切以外,在连接件和被连接件地接触面上还相互压紧一这一现象称为挤压.作用在挤压面单位面积上地挤压力习惯上称挤压应力,用Qbs表示,挤压应力在挤压面上地分布比较复杂,所以和剪切一样,也采用使用计算,为保证构件正常,满足挤压强度条件;Qbs二Fbs/AbsW [Qbs]试中Fbs为挤压面上挤压力.Abs为挤压面积,[Qbs]为材料许用挤压应力.挤压面积根据接触面积而定,一般有两种,(1)平面接触时,挤压面积等于实际承压面积;(2)柱面接触时(如柳钉,销轴等)挤压面积为实际面积在其直径平面上地投影,即Abs=dt式中d为柳钉或销轴直径;t为接触柱面地高度,例;木接头如图所示,已知a=b=12cm. h=35cm,c=4.5cm, F=40KN.试求切应力和挤压力.剪切面地面积为A=bh=12*0.02*35*0.02=0.042m2挤压面地面积为A j「bc=12*0.02*4.5*0.01=5.4*10-3m2 则切应力t=F/A=40000N/0.042M2=0.952MPa挤压应力Q jy=F/A jy=40000N/5.4*0.001M2=7.41MPa例;一螺栓将拉杆与厚为8mm地两快板相连接,如图零件材料相同.其许应力均为【Q】=80MPa.【T】=60MPa,【Q jy】=160MPa.若拉杆厚度t=15m m,拉力F=120K N.试求螺栓直径d及拉杆厚度 b.利用剪切和挤压地实用计算求解;螺栓受到地挤压面积A=dt=15d*0.000000 tf拉杆欲满足强度要求.则Q拉W【Q】=80MPaQ y=F/AQ &=F/A图示钢板地厚度L=5mm,其极限切tb=400MPa,试问要加多大地冲压力,才能是钢板上冲出一个直径d=18mm地圆孔.利用剪切地实用计算求解, (1)受剪切力地面积为;A=3.14・d・t (2)剪断所需地冲剪力为;F=T・3.14 d仁400X3.14X18X5=113Kn b例;两块钢板个厚t】二8哑,t2=10哑,用直径相同飞柳钉搭界受拉力P=200KN地作用,如图,设柳钉地许应力分别为【t】=140MPa,[Qbs]=320MPa, 试求柳钉地直利用挤压实用计算求解;Pbs=P/5=40KND2 N 40*1000*4/3.14 - 140=19.1mm Qbs=40 X 1000/d - 8 W【Q】bs=320MPaDN15.63mm.取 d=20mm13,扭矩-外力偶据、扭矩和扭矩图杆件在垂直轴线地两个平面内受到等值,反向地力偶作用时,杆件个截面绕轴线作相对转动,这种变形称为扭矩.为;已知传动地功率p (kw),转速n (转/分),则外力偶据M=9550P/n (N • m)MO待续...12 / 12。

幂函数的典型例题

幂函数的典型例题

∴a
的取值范围是
,,,
1U

1
2 3

U
4
.
解法 2:画出 y x2 的图象,认真观察图象,可得:越接近 y 轴,y 值越大,即
小,y 值越大,
a 1 0
∴ 要使 a 1 2 3 2a2 ,
即 3 2a 0

解得:
总以结上升两华种:方法都是运用函数的单调性,但显然第| a二种1方||法3 更 2好a.|而这种方法的应
f (x) 是 R 上的奇函数.
(3)Q
1
0 ,且 m2 m 1 是正奇数,
m2 m 1
函数 f (x) 在 (∞,∞ ) 上单调递增.
3
4
5

2
又∵函数图象过(0,0)和(1,1)点,∴m2-2m-3>0,得 m>3 或 m<-1,
|x|越
,,,
1
U


用, 要途
2
5 5
5 5
∴ m=
(舍去) 即:m=
.
2
2
类型四、讨论函数性质
1
(x 2) 2
例 5.求函数 y=
的定义域.
2
(3 x) 3
x2
解:原函数可化为 y=
3 (3 x)2
x 3

2 x

0 0
∴x
[-2,3)∪(3,+∞).
总结升华:正确判断函数的定义域是完成函数的图象,讨论函数的性质的前提,必须加以重视.

6.讨论函数
y

(x2

2x


3)

周长和面积经典问题

周长和面积经典问题

面积经典问题
【经典例题1】用15米长的木栏沿着围墙围一个种花草的长方形或者正方形的苗圃,其中一面利用围墙,如果每边的长度都是整数,那么有几种围法,怎样围才能使围成的面积最大?
【经典例题2】一个正方形的花坛,四周有1米宽的水泥路。

如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?
【经典例题3】一张长方形纸片,在长边上剪下5厘米,宽边上剪下2厘米,余下的部分正好是一个正方形,已知正方形的面积比原来长方形面积少66平方厘米,求正方形面积。

【经典例题4】一块正方形的玻璃,一边截去12厘米,另一边截去8厘米,剩下的长方形面积比原来的正方形减少1764平方厘米,原正方形玻璃的边长是多少厘米?
【经典例题5】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个,第四个,第五个正方形,求第五个正方形的面积。

【经典例题6】如图,是一个楼梯的截面图,高280厘米,每阶台阶的宽和高都是20厘米,这楼梯的截面积是多少平方厘米?
【答案】
【经典例题1】用15米长的木兰沿着围墙围一个种花草的。

分式的通分经典练习例题

分式的通分经典练习例题

分式的通分经典练习例题1. 例题一已知分式 $\frac{1}{2}$、$\frac{2}{3}$,求其最小公倍数和通分结果。

解答:最小公倍数是两个数的公共倍数中最小的那个数,可通过找到它们的公倍数并选择最小的一个来确定。

对于分式,可以通过将其转化为分子和分母的最小公倍数的倍数来完成通分。

是两个数的公共倍数中最小的那个数,可通过找到它们的公倍数并选择最小的一个来确定。

对于分式,可以通过将其转化为分子和分母的最小公倍数的倍数来完成通分。

先求最小公倍数:- 分式 $\frac{1}{2}$ 的分子为 1,分母为 2。

它的倍数为:2, 4, 6, 8, 10, ...- 分式 $\frac{2}{3}$ 的分子为 2,分母为 3。

它的倍数为:3, 6, 9, 12, 15, ...可以观察到,它们的最小公倍数是 6。

通分结果:- $\frac{1}{2}$ 通分得到分子为 1,分母为 2 的分式。

- $\frac{2}{3}$ 通分得到分子为 2,分母为 3 的分式。

因此,最小公倍数为 6,通分结果分别为 $\frac{3}{6}$ 和$\frac{4}{6}$。

例题一解答如下:最小公倍数:6通分结果:$\frac{3}{6}$ 和 $\frac{4}{6}$2. 例题二已知分式 $\frac{3}{4}$、$\frac{5}{6}$,求其最小公倍数和通分结果。

解答:同样,先求最小公倍数:- 分式 $\frac{3}{4}$ 的分子为 3,分母为 4。

它的倍数为:4, 8, 12, 16, 20, ...- 分式 $\frac{5}{6}$ 的分子为 5,分母为 6。

它的倍数为:6, 12, 18, 24, 30, ...可以观察到,它们的最小公倍数是 12。

通分结果:- $\frac{3}{4}$ 通分得到分子为 9,分母为 12 的分式。

- $\frac{5}{6}$ 通分得到分子为 10,分母为 12 的分式。

高中数学经典例题100道

高中数学经典例题100道

例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形. 答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p=________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点A、平面α,过点A有两条直线AB、AC都垂直于α,由于AB、AC为相交直线,不妨设AB、AC所确定的平面为β,α与β的交线为l,则必有lAC⊥,又由于AB、AC、l都在平面β内,AB⊥,l这样在β内经过A点就有两条直线和直线l垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥, ∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC , ∴BC SA ⊥.∵90=∠B ,即BC AB ⊥,A SA BA = , ∴⊥BC 平面SAB . ∵⊂AN 平面SAB . ∴AN BC ⊥.又∵SB AN ⊥,B BC SB = , ∴⊥AN 平面SBC . ∵⊂SC 平面SBC , ∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN . ∵⊂MN 平面AMN . ∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC . ∴MN 为AM 在平面SBC 内的射影. ∵SC AM ⊥, ∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=. 分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD . ∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH=θcos ① 在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BABD=βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点. ∵EF BD //,⊄BD 平面GFE , ∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离. ∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC = ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH , ∴OK EF ⊥.又∵GH OK ⊥,H EF GH = , ∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直. 证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥. 取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线). (2)∵BC BA =,∴AC BD ⊥. 又∵SD ⊥面ABC ,∴BD SD ⊥. ∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n . ∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥. 由作图知m 、n 为α内两条相交直线. ∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距。

数学模型经典例题

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。

(15分) 解:一、模型假设:1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。

2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。

3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。

(3分) 二、建立模型:以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定:()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和由假设3可得,()f θ、()g θ中至少有一个为0。

由假设2知()f θ、()g θ是θ的连续函数。

(3分) 问题归结为:已知()f θ和()g θ是θ的连续函数,对任意θ,()()0f g θθ=,且设()()00,00g f =>。

证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。

(3分)由f g 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在()000θθπ<<使000()0,()()h f g θθθ==即。

最后,因为00()()0f g θθ=,所以00()()0f g θθ==。

(3分)图 5二、给出7支队参加比赛的循环比赛赛程安排,要求各参赛队的每两场比赛之间的休息场次尽可能均衡,并列出表格说明。

解:设(1,2,7)i A i =表示7支参赛队。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题广西百色田阳县民族中学黎春梅1.学习了《合作带来共赢》后,小明想,现代的社会是竞争的社会,人人都希望在竞争中脱颖而出,成为胜利者。

那么是不是人人都明白合作竞争才能成功呢?小明带着这个问题去问老师,老师让他做一个调查,请帮他完成下面的题目:(1)拟一个调查题目:如《合作与竞争能力的关系》、《如何正确处理合作与竞争的关系》(2)设计一个调查方案:如①分好小组,选定小组长②确定调查的时间、地点、对象③明确调查的问题④提出调查应注意的问题(3)针对存在的问题,提出合理化建议:如:①宣传合作竞争的意义,树立合作竞争带来共赢的意识②倡导一种全新的竞争理念③要遵守竞争“双赢”规则④处理好自己与他人的关系。

2.进入中学时代,青春期开始,为加强对同学们的青春期教育,七年级2班决定围绕“青春期---我们健康成长”这一主题在教室后面出一期宣传专栏。

假如你是班中一员,请你完成下列任务:(1)请你说出这期宣传专栏的重要意义:让同学们认识青春期加强生理教育的重要性,掌握必要的青春期知识,引导同学们健康科学地生活,减少不必要的烦恼和心理负担,掌握解决青春期各种问题烦恼的方法。

(2)在专栏中你认为可以安排哪些内容:从吃、穿、运动等方面介绍青春期保健知识;青春期各种问题烦恼;介绍解决青春期各种问题烦恼的方法;等3.在学校门口,小刚对小敏说:“祝你一路顺风,半路失踪”,小敏不甘示弱,对小刚说:“二根毛,你神经病。

”(1)此现象反映了校园文化中存在什么问题?答:此现象反映了校园文化环境中存在着“不文明用语”。

(2)请你就如何改善校园文化环境提出自己的几点合理化建议:①学校加强文明礼貌的宣传教育,提高学生的文明礼貌水平②学生参加各种文体活动,在活动中培养良好的人际交往技巧③教育学生在日常生活中的言语举止要文明④对使用不文明用语的学生进行批评教育。

4.苗园中学在评选“校园之星”时,对参评的同学设置了“情境问答”和“参评感言”等环节,请你以参评选手的身份完成下列两个环节:环节一:情境问答:(答案应体现正确的导向)①路上遇到长辈时:有礼貌,向长辈问好②考试中同学想与你对答案时:拒绝,考试结束后向他说明理由③乘坐公共汽车时:讲秩序,自觉购票并主动让座④与父母发生矛盾时:尊重父母,及时与父母沟通⑤放学太晚而又轮到自己做值日时:第二天早点到学校做值日或告知父母做完值日再早点回家⑥被老师误解而受到批评时:当面不与老师争辩,事后向老师解释清楚环节二:请你写出你参加这次“校园之星”评选活动的感言:通过参加“校园之星”评选活动,我感悟到了自身思想道德素质的提升和养成良好的行为习惯要从日常工作生活做起,从小事做起,从自身做起,我们要自觉地规范自己的行为,努力成为一个高尚的人,一个对社会对国家有用的人。

5.班集体应该是一个团结向上蓬勃发展的团体。

每个学生都应该努力将自己的班级建设成一个优秀的班集体。

同学们让我们都行动起来吧,发挥自己的能力和特长,为建设优秀的班集体贡献出自己的力量。

阅读完材料,完成下列活动设计(1)活动形式:座谈会、讨论会(2)活动主题:如“将班集体建成温暖的家”“我的家,我的集体”(3)请你设计几个座谈、讨论话题:如①班集体的作用;②怎样才算是一个好的班集体③我们应该怎样建设一个好看班集体④建设良好班集体给我们的启示等(4)参加班集体建设,你一定有很多感慨,请你把感触最深的内容写出来。

如我们的责任、班集体的巨大作用等。

6.为了端正同学们的学习态度,激发同学们的学习热情,以适应初中生活,我校2班决定召开一次“改变学习态度,做学习的主人”班会,请你参加,并完成下列任务:⑴查一查,搜集一些劝宵的格言、名言与同学们互相交流答:知识改变命运;少壮不努力,老大徒伤悲;黑发不知勤学早,白首方悔读书迟。

⑵议一议,请你对那些旷课、逃学同学的行为进行评析答:这些行为是错误的。

这是不遵守学校纪律的表现;也是不履行义务教育的义务;是对自己不负责任的表现。

⑶说一说:“头悬梁,锥刺股”的事例,对我们有什么启示?答:启示:珍惜时间,提高学习效率;珍惜受教育的权利,自觉履行受教育的义务;树立正确的学习态度,自觉刻苦学习。

⑷温馨提示:对那些学习成绩不理想的同学,你认为他们应该从哪些方面入手?答“明确学习目的,树立远大理想;学会独立思考,自主学习;提高学习效率,珍惜学习时间。

7.学习了“文明娱乐,健康休闲”这一内容后,同学们开展了一次调查,下面是同学们收集到的调查结果:①小玉喜欢集邮,他发现同桌有一封信,信封上有她喜欢的邮票,就悄悄地撕下来。

②小李喜欢唱歌,常在同学们睡觉的时候唱歌③小王喜欢英语,遇见同学老师常用英语对话,锻炼自己的口语能力。

④小明爱好计算机,经常利用网络收集学习资料⑤小赵迷恋网络游戏,经常旷课逃学到网吧上网(1)明辨是非:你认为哪些是高雅的情趣?为什么?答:③④是高雅的情趣。

因为这些行为符合科学文明的要求,体现了一个人对美好生活的追求和健康的心理。

(2)善意提醒:这些高雅的情趣会对我们的学习和生活带来哪些影响?答:使我们劳逸结合,提高学习效率,丰富我们的生活,发展我们的兴趣、爱好、特长,促进我们的全面发展。

(3)宣传有方:为了倡导健康文明的休闲方式,请你设计几种活动形式答:主题班会、演讲比赛、座谈会、讨论会、黑板报等。

8.某班篮球比赛总是与奖牌无缘。

甲同学球技非常突出,但在比赛中总喜欢单打独斗,不与同学配合。

乙同学比赛总会装病或请假,能退则退。

(1)针对同学中存在的问题,该班开展了“竞争与合作哪个更有利于个人成长和班级进步”的讨论会,请你围绕下列观点,参与讨论。

观点一:竞争有利于个人成长和班级进步。

理由:竞争能激发人的上进心,互相勉励共同进步,激发斗志,推动整个集体向前发展(竞争的作用)观点二:合作才有利于个人成长和班级进步。

理由:合作有利于扩大知识面,提高学习效率,有利于培养同学团结互助和协作能力,增强集体凝聚力。

(合作的作用)(2)你认为中学生在学习生活中应该怎样做?答:既要竞争,也要合作,要善于竞争,也要善于合作。

(3)为帮助甲、乙同学,请你给他们各提一条建议:答:对甲同学:在篮球比赛中,应该与同学合作,发挥团队精神,为集体争光。

对乙同学:提高竞争意识,积极参加比赛,在比赛中锻炼和提高自己的能力。

9.一只蜜蜂无法度过寒冷的冬天,一群蜜蜂则不同。

据说蜂箱中的蜜蜂在过冬天的时候,往往要抱成一团,最外面的一层是工蜂,它们拼命的扇动翅膀,象厚厚的衣服一样,阻隔着外面的寒冷。

在这样严严实实的包裹下,里面的温度往往恒定在13度,舒适如春。

被工蜂包裹在里面的,不仅有蜂王和雄蜂,还有其他的工蜂。

饿了,它们依靠夏天采集的蜂蜜来获取足够的能量。

但到了一定时间,它们还需要出来,同外面的工蜂“换岗”。

阅读材料,七年级1班决定召开一次主题班会,假如你是其中一员,请你完成下列任务:⑴请你设计这次主题班会。

答:①确定主题:正确认识到合作或学会合作②目的:帮助同学们正确认识合作的重要性,树立合作的意识③准备:将同学分组、分工,一组搜集相关资料;二组对资料进行整理;三组预约有关人士;四组布置场地;五组准备发言稿④步骤:主持人宣布班会开始;展示相关资料;请有关人员对合作发表看法;分组讨论;同学代表发言;班主任作总结。

(2)请围绕这次主题班会写一份发言提纲。

答:①分析同学们在合作方面存在的问题;②指出学会合作的重大意义;③提出措施、建议;④向同学们提出号召。

10.以“珍惜青春”为主题板报,请你完成下列任务。

⑴请为这期板报设计一个大标题:珍惜青春,做青春的主人⑵假如你是这期板报的设计者,请你设计三个栏目并作简要介绍;青春箴言、青春故事、青春畅想⑶作为21世纪的生力军和美好未来的创造者,要珍惜青春,我们应该怎样做呢?开放自己的心灵世界,努力学习充实自己;从生活中的小事做起。

11.进入青春期,生理变化影响着心理变化,青春期的问题烦恼接踵而至。

针对学生们在青春期出现的问题,思想品德老师决定举行一次座谈会,请你完成下列任务:⑴请你设计座谈会的主题:青春伴我行或我的青春我做主⑵请你设计几个座谈的内容:青春期的生理变化;青春期的心理变化;青春期的烦恼表现、怎样对待青春期烦恼⑶通过参加这次活动,你有什么收获?答:这次活动可以帮助我们正确了解青春期的变化,提高对青春期的认识,有助于我们顺利度过青春期。

12.俄国大文豪列夫.托尔斯泰曾说过:“人不是因为美丽才可爱,而是因为可爱才美丽。

”这说明心灵美是最高境界的美,外表美的不足可以通过内在美来弥补,心灵美是美丽的核心,它具有宝贵而不可取代的价值。

要让自己变得美丽,我想最重要的是先从自己身上发现美,欣赏自己,给自己自信,给自己希望。

你们班的思想品德老师决定以上述材料为背景举行一次主题班会,请你完成下列任务:⑴请你设计出本次班会的主题:答:欣赏自己,提升自己;做最好的自己⑵你认为思想品德老师举行这次主题班会的目的是什么?答:帮助同学们了解自己、欣赏自己,从而对自己树立信心⑶请你设计这次主题班会的程序:①主持人宣布主题班会开始;②各组同学分组展示相关资料;③各组分组讨论,小组代表发言;④老师提建议;⑤同学们自由发言,表决心;⑥播放音乐,班会结束。

13.正确认识自己是一切活动的基础和目标,正确认识自己,是梦想之石,去击出理想之火,是理想之火去点亮创造之灯,是创造之灯去照亮成功之路,是成功之路通向四面八方而不迷失。

请你根据上述材料完成下列任务:⑴认识意义:处于青春期的我们为什么要认识自己?答:正确认识自己,不仅可以解决青春期带来的各种问题,使们们愉快地面对青春期的种种变化,也有助于我们各方面的发展。

⑵方法指导:我们可以通过怎样的方式认识自己?答:比较评价;他人评价;心理测量与评价等⑶请你设计两条宣传标语张贴在教室内:欣赏自己,提升自己;做最好的自己⑷才华展示:请你设计出本次讨论会的问题:①为什么要认识自己?②怎样认识自己?③认识自己的过程中需要注意什么?14.探究实践题:最近,七年级2班针对一些同学的看法和言论,如“集中精力学习,交往是成年人的事”、“交往浪费时间,不利于学习”等,准备在班里组织一次辩论会。

(1)请你为这次辩论会设计辩题。

答:正方辩题:青少年发展离不开交往。

反方辩题:青少年不需要交往。

(2)如果你支持青少年交往的话,你会用哪些观点证明?答:交往是人类心灵和精神的内在需要;交往是人类自身和社会发展的需要;对中学生来说正常的交往有利于我们扩大知识面,增长见识;有利于我情感、意志、人格的健康发展,有助于我们道德、审美素质等的提高。

个人的发展需要交往,离不开交往,我们要重视交往,乐于交往,学会交往。

15.探究实践题:“关心他人,快乐自己”。

关心帮助他人就是在自己开心的同时,也让别人开心,我们不妨去施爱于人,它的反作用力便会营造出互尊互爱的生存环境,我们应该生活在这样的环境中:人人为我,我为人人,冷暖相知,风雨同舟。

相关文档
最新文档