汽轮机设备结构与工作原理4

合集下载

汽轮机原理第四章

汽轮机原理第四章

(2)海勒式间接空冷系统
缺点:系统结构 复杂,设备多, 投资大;系统容 易发生冰冻;化 学水耗水大。
海勒式间接空冷机组
第一节
凝汽设备的工作原理、任务和类型
(3)哈蒙式间接空冷系统
优点:节约厂用 电、设备少、冷 却水系统与汽水 系统分开,两者 水质均可保证、 冷却水系统防冻 性能好。
缺点:空冷塔占 地大,基建投资 多;系统中要进 行两次表面式换 热,使全厂热效 率有所降低。
多区域汽向侧流动
凝汽设备的结构模型
600MW凝汽器三维结构图
600MW凝汽器三维结构图
600MW凝汽器三维结构图
凝汽器冷却管束隔板
凝汽器冷却管束隔板
凝汽器冷却管的安装
第一节
凝汽设备的工作原理、任务和类型
(2)表面式凝汽器的类型
汽流向下式 汽流方向 单流程 冷却水流程 双流程
汽流向上式
1000Dwcp (tw2 tw1 )
第二节
凝汽设备的真空与传热
循环水泵容量
循环倍率m:m Dw Dc 冷却水量与被凝结蒸汽量之比。 初投资 m
t 真空
循环水管路阻力
末级叶片长度
m=50~120
循环水泵电耗 双流程(水阻大)
开启台数
单流程(水阻小) m取较 m取较 (4.2.3) 大值 小值 直流(开式)供水 循环(闭式)供水
第二节
凝汽设备的真空与传热 A.由新蒸汽带入汽轮机
三、空气对凝汽器工作的影响
1.凝汽器的空气来源:
B.由设备不严密处漏入 管表面附近聚积形成气膜阻碍了蒸汽的凝结放热 2.危害: 凝结水过冷度增大
过冷现象:凝水温度低于凝汽器入口蒸汽温度的现象。 所低的度数称为过冷度

汽轮机的工作原理讲解

汽轮机的工作原理讲解

汽轮机的工作原理讲解
汽轮机是一种利用燃料燃烧释放的热能,通过燃气在高温和高压条件
下对涡轮叶片进行推动,从而驱动发电机产生电能的热能转换设备。

它的
工作原理基于热力学循环原理,主要包括热能转换、能量变化、动力传递
和工作过程四个方面。

1.热能转换过程:
2.能量变化过程:
高温高压的燃气通过喷嘴进入涡轮,燃气对涡轮叶片的推动力会导致
涡轮旋转。

而涡轮旋转则会转化为机械能,进而传递到轴上。

涡轮上的叶
片被高速旋转的燃气推动,能量逐渐从燃气转移到涡轮上。

3.动力传递过程:
燃气转动涡轮的运动被传递到轴上,然后再传输给发电机、泵或机械
设备等。

涡轮旋转的能量会带动连接在轴上的部件进行工作。

通常情况下,轴会与发电机驱动装置连接,涡轮运动的能量最后会被传递到发电机上,
从而产生电能。

4.工作过程:
具体而言,汽轮机的工作过程通常分为四个过程:加热过程、定容过程、膨胀过程和排气过程。

-加热过程:燃料在燃烧室中燃烧,释放出高温高压的燃气。

-定容过程:高温高压的燃气进入涡轮,将热能转化为机械能,完成
能量的转化。

-膨胀过程:涡轮旋转的机械能被传递到轴上,进而传输给发电机等部件以产生有用功。

-排气过程:燃气经过涡轮之后,被排出汽轮机系统。

总的来说,汽轮机的工作原理是通过燃料的燃烧产生高温高压气体,再利用燃气对涡轮的推动作用将热能转化为机械能,然后通过轴将机械能传递给发电机等部件,最终转化为电能或其他形式的能量输出。

汽轮机广泛应用于发电站、船舶、航空、石化等领域,是一种高效可靠的能源转换装置。

汽轮机结构及原理

汽轮机结构及原理

汽轮机结构及原理一、组成部件:1. 压气机:用于将空气压缩,提高进入燃烧室的压力。

2. 燃烧室:将燃料与压缩空气混合并燃烧,产生高温高压的燃气。

3. 喷气管:用于引导和加速燃气流出燃烧室,产生冲力。

4. 轴:将压气机、涡轮机和发电机等部件连接起来。

5. 涡轮机:通过燃气的冲力驱动,使轴产生旋转运动。

6. 发电机:通过轴的运动,将机械能转化为电能。

二、工作原理:1. 压缩空气:气体由进气口进入压气机,压气机的叶片逐渐减少叶片间的空隙,从而将气体压缩,提高气体的压力和密度。

2. 燃烧过程:压缩后的空气经过燃油喷嘴喷入燃烧室,与燃料混合并点燃。

燃烧产生的高温高压燃气通过喷气管流向后方。

3. 燃气驱动:燃气通过涡轮机,将燃气的高速和高温转化为轴的旋转运动,产生机械能。

4. 电能发电:轴的旋转运动通过发电机,将机械能转化为电能。

发电机的旋转子产生交流,通过定子的线圈而感应电流,最终输出电能。

三、工作过程:1. 进气:外部空气通过进气口进入压气机。

2. 压缩:压气机的叶片将空气逐渐压缩,提高气体的压力和密度。

3. 燃烧:压缩后的空气通过燃油喷嘴喷入燃烧室,与燃料混合并点燃。

4. 转动涡轮:燃烧产生的高温高压燃气通过喷气管流向后方,驱动涡轮机旋转。

5. 转动轴:涡轮机的旋转运动通过轴传递,使轴产生旋转运动。

6. 发电:轴的旋转运动通过发电机,将机械能转化为电能,供应电力负载使用。

7. 排气:燃烧后的废气排出机外,通过喷气管排出。

四、特点和应用:1. 汽轮机具有高效率和大功率输出的优点,广泛应用于发电厂、船舶推进系统、航空器动力装置等领域。

2. 汽轮机结构简单,可靠性高,适应性强,同时可根据实际需求进行多机组联网运行,提高整体系统的可靠性和性能。

3. 由于汽轮机使用燃汽轮机使用化石燃料,其燃烧过程会产生大量的二氧化碳和其他排放物,对环境造成污染。

因此,在环保意识增强的背景下,与其他清洁能源技术相比,汽轮机在未来的发展中面临一定限制和挑战。

汽轮机工作原理及结构

汽轮机工作原理及结构

汽轮机工作原理及结构汽轮机是一种利用高温高压气体通过叶轮机械将热能转化为机械能的能量转换设备,广泛应用于发电、动力机械和化工设备中。

汽轮机的工作原理基于热力学循环,其结构包括汽轮机本体、汽轮机轴系及配套的附件装置等。

汽轮机的热力学循环基于布雷顿循环。

该循环由四个连续的过程组成:加热过程、等压膨胀过程、冷却过程和等压压缩过程。

汽轮机的工质通常为水蒸气,其在锅炉中受热成为高温高压的气体,然后通过汽轮机本体中的高速转动的叶轮,将气体动能转化为机械能。

随着热能向外界传递,气体逐渐冷却,并通过冷却系统中的冷却器冷却,进而被压缩至初始状态的压力和温度,最后回到锅炉中再次循环。

汽轮机本体主要由高、低压缸、中间管道和包围它们的壳体组成。

高压气体先进入高压缸中,然后通过叶片进行膨胀,接着进入低压缸中继续膨胀,直至通过最后一组叶片进入中间管道。

叶片是汽轮机本体中最重要的零部件之一,通常由高强度、高耐热性能的材料制成。

叶轮是汽轮机中的动力元件,通常是由多个叶片组成,其负责将气体的动能转化为机械能,使汽轮机产生转动力矩。

为了保证叶轮的结构安全和机械性能,通常需要在叶轮上设置多个加强梁。

汽轮机轴系通常是由主轴、转速控制装置、轴承和联轴器等组成。

主轴是汽轮机中的核心部件,其承担着汽轮机的全部动能传递任务,其质量和刚度对汽轮机的总体性能有着重要的影响。

转速控制装置是汽轮机中的关键部件,其负责控制汽轮机的转速,在发电机负荷和汽轮机负载变化时调节汽轮机旋转的速度,从而保证汽轮机的平稳运转。

轴承是汽轮机中提供支撑和定位功能的部件,它负责保证汽轮机主轴的安全、平稳、可靠运转。

联轴器则用于连接汽轮机的输出轴和传动装置,实现传动和调速的功能。

汽轮机的附件装置主要包括给水装置、汽机启动装置、油系统、冷却系统和排气系统等。

这些装置对汽轮机的性能调节、保护和运行状态监测有着很重要的作用。

例如,给水装置主要负责给汽轮机提供水源,从而保障汽轮机转动所需要的蒸汽,保证汽轮机的水平运行。

汽轮机各设备作用及内部结构图

汽轮机各设备作用及内部结构图

汽轮机各设备作⽤及内部结构图汽轮机各设备的作⽤收藏01.凝汽设备主要有凝汽器、循环⽔泵、抽汽器、凝结⽔泵等组成。

任务:⑴在汽轮机排汽⼝建⽴并保持⾼度真空。

⑵把汽轮机排汽凝结成⽔,再由凝结泵送⾄回热加热器,成为供给锅炉的给⽔。

此外,还有⼀定的真空除氧作⽤。

02.凝汽器冷却⽔的作⽤:将排汽冷凝成⽔,吸收排汽凝结所释放的热量。

03.加热器疏⽔装置的作⽤:可靠的将加热器内的疏⽔排出,同时防⽌蒸汽随之漏出。

04.轴封加热器的作⽤:回收轴封漏汽,⽤以加热凝结⽔从⽽减少轴封漏汽及热量损失,并改善车间的环境条件。

05.低压加热器凝结⽔旁路的作⽤:当加热器发⽣故障或某⼀台加热器停⽤时,不致中断主凝结⽔。

06.加热器安装排空⽓门的作⽤:为了不使空⽓在铜管的表⾯形成空⽓膜,使热阻增⼤,严重地影响加热器的传热效果,从⽽降低换热效率,故安装排空⽓门。

07.⾼压加热器设置⽔侧保护装置的作⽤:当⾼压加热器发⽣故障或管⼦破裂时,能迅速切断加热器管束的给⽔,同时⼜能保证向锅炉供⽔。

08.除氧器的作⽤:⽤来除去锅炉给⽔中的氧⽓及其他⽓体,保证给⽔的品质。

同时, ⼜能加热给⽔提⾼给⽔温度。

09.除氧器设置⽔封筒的⽬的:保证除氧器不发⽣满⽔倒流⼊其他设备的事故。

防⽌除氧器超压。

10. 除氧器⽔箱的作⽤:储存给⽔,平衡给⽔泵向锅炉的供⽔量与凝结⽔泵送进除氧器⽔量的差额,从⽽满⾜锅炉给⽔量的需要。

11. 除氧器再沸腾管的作⽤:有利于机组启动前对⽔箱中给⽔加温及备⽤⽔箱维持⽔温。

正常运⾏中对提咼除氧效果有益处。

12. 液压⽌回阀的作⽤:⽤于防⽌管道中的液体倒流。

13. 安全阀的作⽤:⼀种保证设备安全的阀门。

14. 管道⽀吊架的作⽤:固定管⼦,并承受管道本⾝及管道内流体的重量和保温材料重量。

15. 给⽔泵的作⽤:向锅炉连续供给具有⾜够压⼒,流量和相当温度的给⽔。

16. 循环⽔泵的作⽤:主要是⽤来向汽轮机的凝汽器提供冷却⽔,冷凝进⼊凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却⽔。

《汽轮机》课件四、汽轮机供油系统

《汽轮机》课件四、汽轮机供油系统

1.EH油系统图
12.42~14.48MPa
高压
隔绝阀 (充气)
电液转换器
2.EH油系统常规设备
EH油箱:由不锈钢板制成,四个浸泡在油中的磁性过滤器 (吸附磁性杂质)
主油泵:通过挠性联轴器与驱动马达相连,每个油泵设计成 可连续工作,并布置在油箱的下方,以保证正吸入头。 油泵的输出流量会根据系统的用油量自动调节。
离心式主油泵不能自吸,在启停阶段要靠高压辅助油泵供油
主油泵外观
注油器
作用:向主油泵供油。如果主油泵的入口进 了空气,易断流,会造成系统工作不稳定, 因此进口需保持一定的正压。正常运行时, 这一正压由注油器提供
向润滑系统提供润滑油
注油器又称射油器,它实质上是一个 射流泵。安装在油箱液面以下,一般 有两个,为主油泵和润滑系统供油。
1-油箱;2-油位计;3-排烟孔;4-回油滤 网;5-净段滤网;6-中间挡板;7-放水管;
8-溢油管;9-人孔;10-加油口
主油泵 作用:为液压调节系统提供高压油和安全油
为注油器提供动力油
主油泵为单级双吸式离心泵,安装于前轴承箱内,直接与汽轮机主轴 (高压转子延伸小轴)联接,由汽轮机转子直接驱动。当汽轮机的转速 高于额定转速的90%时,主油泵能正常工作,主油泵正常工作时,吸入 口油压为0.09~012MPa,出口油压为1.0~2.05MPa 供油量大,出口压力稳定,轴向推力小,且对负荷的适应性好
注油器
高压辅助油泵
高压辅助油泵又称为交流启动油泵 (MSP),为立式离心泵,驱动电机安 装于主油箱顶部,通过挠性联轴器与 泵轴相连。电机支座上的推力轴承承 受全部液动推力和转子重量。油泵浸 没在最低油位线以下,因而油泵随时 处于可启动状态。
在启动时,当汽轮机的转速达到约90% 额定转速前,主油泵的排油压力较低, 无法驱动注油器,主油泵入口油量不足, 因此,在机组冲转前应启动高压辅助油 泵向调节保护系统供油。

汽轮机原理第四章 汽轮机级的二维和三维设计1

汽轮机原理第四章 汽轮机级的二维和三维设计1

2019/11/1
23
透平级内的空间汽流
一.三元流动物理模型简述
1. 粘性; 2. 可压缩性; 3. 三元性; 4. 非定常性; 5. 汽流与叶片之间的作用力; 6. 有径向梯度的离心力场; 7. 流线弯曲和流面弯曲。
2019/11/1
24
透平级内的空间汽流
1. 粘性:粘性汽流必然产生粘性力
流体与固体壁面之间的粘性摩擦力;
子午面:通过透平回转轴的平面( z 平面)
回转面:任一流线绕主轴 z 的旋转面
2019/11/1
35
透平级内的空间汽流
二.气体动力学的基本方程
长叶片内的流动由NS方程控制,在运动方 程中不考虑粘性的影响:
1. 连续方程: (rcr ) (cu ) (cz ) 0
17
长叶片级的特点
三.长叶片级速度三角形沿径向变化大
1 c1
uh
um
ut
2
1 c2
w1
uh
w2
um
ut
长叶片级的速度三角形
2019/11/1
18
长叶片级的特点
四.长叶片动叶须采用扭叶片
r↑-→ 1↑
1 um
1 c1 1
1 um c1 1
1 uh c1
2019/11/1
19
长叶片级的特点
2019/11/1
11
为什么要用长叶片
3、增加流量:
G Ac A dmel sin2
= (dh l)el sin2
结论:提高叶片的长度是提高单机功率 的可行之路,提高单机功率须 采用长叶片。
2019/11/1
12
长叶片级的特点

汽轮机原理-第四章凝气设备

汽轮机原理-第四章凝气设备

第四章汽轮机的凝汽设备提高汽轮机装置的经济性,主要有两个途径:一是提高汽轮机的内效率,另一是提高装置的循环热效率。

前一个途径我们在前面各章中已进行了讨论,这就是努力减小各项损失,改善汽轮机通流部分的设计等。

提高循环热效率也有两个方向,一是提高平均加热温度,可采用回热循环,以减少低韫加热,也可提高初参数,以及采用再热循环等;另一方向则是降低平均放热温度,而这正是凝汽设备的主要任务。

在本章中将着重介绍凝汽设备工作的基本原理,以及大功率汽轮机凝汽设备的发展。

第一节凝汽设备的组成及作用一、凝汽设备的组成凝汽设备通常由表面式凝汽器、抽气设备、凝结水泵、循环水泵,以及这些部件之间的连接管道组成,如图4-1所示。

排汽离开汽轮机之后进入凝汽器5,凝汽器内流人由循环水泵4提供的循环水作为冷却工质,将排汽凝结为水。

由于蒸汽凝结成水时,28000倍),这就在凝汽器内形成高度真空。

为保持所形成的真空,则需用抽气设备1将漏入凝汽器内的空气不断抽出,以免不凝结的空气在凝汽器内逐渐积累,使凝汽器内压力升高。

由凝汽器产生的凝结水,则通过凝结水泵6进入锅炉的给水系统。

凝汽器大都采用水作为冷却工质。

按供水方式的不同,有一次冷却供水和二次冷却供水。

供水来自江、河、湖、海等天然水源,排水仍排回其中的,称为一次冷却供水,或开式供水。

供水来自冷却水塔或冷却水池等人工水源,排水仍回到冷却水塔(水池)循环使用的,称为二次冷却供水,或闭式供水。

在特别缺水的地区,则可采用空气作为冷却工质。

图4-1凝汽设备系统组成1-抽气设备;2-汽轮机;3-发电机;4-循环水泵;5-凝汽器,6-凝结水泵表面式凝汽器在火电站和核电站中得到广泛应用,图4-2为表面式凝汽器的结构示意图,冷却水由进水管4进入凝汽器;先进入下部冷却水管内,通过回流水室5进入上部冷却水管内,再由出水管6排出。

同一股冷却水在凝汽器内转向前后两次流经冷却水管,这称为双流程凝汽器,同一股冷却水不在凝汽器内转向的,称为单流程凝汽器。

汽轮机原理-4-4抽气器

汽轮机原理-4-4抽气器
5
第四节 抽气器
三. 射水抽气器
射水抽气器的工作原理:射水抽气器的
工作原理同射汽抽气器相同,如图所示。它
主要由工作水进口1、喷嘴2、混合室3、扩 压管4和逆止阀5等部件所组成。压力水由射 水泵供给,经喷嘴形成高速射流射出,在混
合室内形成高度真空,从而将凝汽器中的汽
气混合物抽出 。汽气混合物与高速水流混合
射水泵
工作水室
与凝汽器 抽气口相连 喷嘴 喉部 扩压管
高压水在喷嘴 中降压增速,形成高 速射流,卷吸混合室 的气体并带出混合室 ,混合室内形成高度 真空。射流与空气混 合物流出混合室,进 入扩压管流出。
抽气器垂直布 置,可以利用水柱自 重流动,减小水泵耗 功。
7
第四节 抽气器
四. 水环式真空泵
国产300MW和600MW汽轮机组的抽气装置都是采用水环式真空泵。其主 要部件有叶轮和壳体。壳体内形成一个圆柱体空间,叶轮偏心地安装在壳体内。 在壳体上开有吸气口和出气口,实行轴向吸气和排气。叶轮带有前弯叶片,偏 心地安装在充有适量工作水(密封水)的椭圆形泵体内。 当叶轮旋转时,由 于离心力作用,水向周围运动, 形成一个运动着的圆环(密封水环)。由于 偏心地安装的,水环的内表面也就与叶轮偏心,叶轮轮毂与水环间形成一个月 形空间。叶轮每转一周,每两个 相邻叶片与水环间所形成的空间由小到大, 又由大到小地周期性变化。当空间处于由小 到大变化时,该空间产生真空,由进气口吸 入气体。当空间处于由大到小变化时,该空 间产生压力,吸入的气体被压缩并经排气口 排出。这样,当叶轮连续运转时,就不断地 重复上述过程,起到一个连续抽气的作用。
2
2. 抽气器的型式
第四节 抽气器
3
第四节 抽气器
二. 射汽抽气器 1.启动抽气器的结构和工作原理

汽轮机的工作原理

汽轮机的工作原理

汽轮机的工作原理
首先,蒸汽进入汽轮机。

在汽轮机内部,蒸汽经过高压缸和中压缸的膨胀做功过程,使得汽轮机内的叶片转动。

在这个过程中,蒸汽的压力和温度逐渐下降,而汽轮机内部的叶片则因为蒸汽的冲击力而转动。

接着,蒸汽在汽轮机内膨胀做功。

当蒸汽进入汽轮机后,叶片会受到蒸汽的冲击力而转动,从而带动汽轮机的转子旋转。

这个过程中,蒸汽的热能被转化为机械能,从而推动汽轮机的转子旋转。

最后,排出冷凝水。

在汽轮机内部,蒸汽的能量被转化为机械能后,会在汽轮机的出口处排出,形成冷凝水。

而冷凝水则会被输送至锅炉中重新加热,形成再循环。

总的来说,汽轮机的工作原理就是通过蒸汽的进入、膨胀做功和排出冷凝水这三个过程,将热能转化为机械能。

这种工作原理使得汽轮机成为了一种高效、可靠的能量转换装置,被广泛应用于发电、船舶和工业生产等领域。

在实际应用中,汽轮机的工作原理还会受到一些因素的影响,
比如蒸汽的温度和压力、汽轮机的设计和制造工艺等。

因此,在设计和使用汽轮机时,需要充分考虑这些因素,以确保汽轮机能够正常、高效地工作。

综上所述,汽轮机的工作原理是基于蒸汽的进入、膨胀做功和排出冷凝水这三个过程,通过将热能转化为机械能来驱动汽轮机的转子旋转。

这种工作原理使得汽轮机成为了一种高效、可靠的能量转换装置,在现代工业生产中发挥着重要作用。

汽轮机工作原理和结构

汽轮机工作原理和结构

汽轮机工作原理和结构汽轮机是一种利用燃气或蒸汽驱动转子旋转从而产生功的动力机械。

汽轮机工作原理是通过燃烧燃油或燃气与空气混合物,使得燃料释放的热能转化为热能增加的蒸汽或燃气的热能。

蒸汽或燃气通过高速喷射流,使得转子受到推力,因此转子开始旋转。

通过连接转子的轴来提供输出功率。

下面将详细介绍汽轮机的工作原理和结构。

1.汽轮机的工作原理汽轮机的工作过程可以分为四个步骤:压缩、燃烧、膨胀和排气。

a)压缩:进入汽轮机的空气被压缩到高压状态。

通常采用离心式压气机,它由若干个叶轮和固定导叶组成。

当空气经过叶轮时,由于叶片高速旋转的作用,空气被迫向前流动,流速增大且压力增加。

b)燃烧:经过压缩的空气进入燃烧室,并与燃料混合燃烧。

燃料可以是燃油或天然气。

在燃烧室中,混合物点燃并燃烧,燃料的热能转化为高温高压的蒸汽或燃气。

c)膨胀:高温高压的蒸汽或燃气被喷入汽轮机的叶片中使其转动。

蒸汽或燃气在叶片中膨胀,产生推力,从而将转子推动旋转。

蒸汽或燃气的压力和温度逐渐下降。

d)排气:蒸汽或燃气离开汽轮机后,被排入大气中。

排出蒸汽或燃气后,进入汽轮机的空气和燃料被再次压缩和加热,形成循环。

2.汽轮机的结构汽轮机主要由压气机、燃烧室、涡轮和调速装置等组成。

a)压气机:压气机是汽轮机的核心之一,用于将空气压缩到高压状态。

压气机包括若干个级,每个级别都由一个或多个叶轮和一些固定导叶组成。

叶轮通过旋转强制空气流经导叶,产生压力增加。

b)燃烧室:燃烧室是燃烧燃料的地方。

燃烧室通常是一个圆筒形的结构,内部涂有耐高温材料。

燃料喷入燃烧室中与空气混合并燃烧,产生高温高压的蒸汽或燃气。

c)涡轮:涡轮是通过高温高压的蒸汽或燃气驱动的。

涡轮包括高压涡轮和低压涡轮。

高压涡轮通常由多个级别组成,而低压涡轮由较少级别组成。

蒸汽或燃气在叶片中膨胀,产生推力,推动涡轮旋转。

d)调速装置:汽轮机在运行过程中需要不同负载下的不同输出功率。

调速装置用于控制汽轮机的转速,以保持恒定的转速或调整转速。

发电厂汽轮机真空抽气系统结构及其原理

发电厂汽轮机真空抽气系统结构及其原理

发电厂汽轮机真空抽气系统结构及其原理发电厂汽轮机真空抽气系统结构及其原理1·系统概述1·1 系统目的1·2 系统结构1·3 系统工作原理2·真空抽气系统组成2·1 主汽轮机高真空侧抽气器2·2 附加汽轮机低真空侧抽气器2·3 水封器2·4 液环真空泵2·5 真空泵辅助设备3·主汽轮机高真空侧抽气器3·1 结构与工作原理3·2 控制系统3·3 主要参数4·附加汽轮机低真空侧抽气器4·1 结构与工作原理4·2 控制系统4·3 主要参数5·水封器5·1 结构与工作原理5·2 控制系统5·3 主要参数6·液环真空泵6·1 结构与工作原理6·2 控制系统6·3 主要参数7·真空泵辅助设备7·1 冷却系统7·2 清洗系统7·3 润滑系统8·附件本文档涉及附件详见附件清单。

9·法律名词及注释9·1 根据《电力行业安全生产条例》:电力设施的安全生产是指电力工作单位和从事电力生产经营活动的其他单位、个人,以电力生产活动为主要内容,遵守法律、法规、规章、标准和工作制度,采取必要的技术、管理、技术措施,保障电力设施的安全运行、保护工作人员的生命财产安全,预防、减少和消除电力设施事故、灾难性事故。

9·2 根据《电力设备保护管理办法》:电力设备保护作为电力企业重要的安全保障措施,是通过规范、系统地运用各种技术手段,对电力设备及其运行参数进行监测、控制和调整,预防或减轻设备的事故故障,提高设备的可靠性和安全性,延长设备的使用寿命,保护设备和人员安全的综合管理措施。

9·3 根据《电力系统自动化装置安全运行管理规定》:电力系统自动化装置安全运行管理是指在电力系统自动化装置的建设、运行中,采取一系列管理措施,确保自动化装置的可靠运行和使用安全。

汽轮机的原理图

汽轮机的原理图

汽轮机的原理图
为了保证汽轮机原理图的清晰和简洁,以下不附带标题细节:
[汽轮机原理图]
1. 燃烧室:燃烧室是燃料燃烧的地方,燃料经过喷嘴进入燃烧室,在高温环境中与空气混合燃烧产生热能。

2. 高温气体流:燃烧产生的高温气体通过排气室流入高压涡轮。

3. 高压涡轮:高压涡轮是由高温高压气体推动,通过与气体的相互作用而旋转的一组叶片。

高温气体的能量转化为高速旋转的涡轮。

4. 高压排气:高压涡轮旋转后,气体的压力降低,通过高压排气孔排出。

5. 低压涡轮:低压涡轮是由高压排气产生的低压气体推动,通过与气体的相互作用而旋转的一组叶片。

6. 高速旋转轴:低压涡轮的转动通过传递给轴,使轴高速旋转。

7. 入口空气:空气经过空气滤清器和压缩机进入系统。

8. 压缩机:压缩机是将入口空气压缩的装置,提高进气压力和温度。

9. 冷却系统:冷却系统用来对涡轮和其他关键部件进行冷却,
保证系统运行稳定。

10. 出口排气:轴旋转带动发电机或其他机械装置工作,同时产生的排气通过出口排气孔排出。

11. 轴承系统:轴承系统用于支撑和保持轴的旋转平衡。

12. 润滑系统:润滑系统用于提供润滑剂,减少轴的摩擦损失和磨损,并降低系统的噪音和振动。

以上为简化的汽轮机原理图,液压、电控等其他辅助系统和部件在此图中没有具体细节展示。

汽轮机结构

汽轮机结构

(二)
排汽缸
汽轮机末级排汽倒入凝汽器的部分
1、结构:铸造结构和钢板焊接结构。
2、设有导流板以减小排汽压力损失。
3 、低压缸喷水减温装置:机组启动、空负 荷及低负荷时,蒸汽流量很小,不足以带走 低压缸内摩擦鼓风产生的热量,引起排汽温 度升高,为防止低压缸温度过高,排汽缸上 设置低负荷了喷水减温装置。
4、大机组低压缸的特点:
(1)排汽缸尺寸庞大,一般采用钢板焊接结构;
(2)在热机组低压缸的进汽温度一般超过230℃,与排汽 温度差达200 ℃,因此也采用双层结构。通流部分在内缸 中承受温度变化,低压内缸用高强度铸铁铸造,低压外缸 仍为焊接结构。庞大的外缸只承受排汽温度,温差变化小。 (3)为防止长时间空负荷运行,排汽温度过高而引起排 汽缸变形,排汽缸内设有喷水降温装臵;
4、可倾瓦
高压油顶起装臵:减少盘车启动力矩,防止启动、 停机过程中转子转动很慢时轴瓦的磨损。
三、推力轴承 (一)推力轴承的油膜形成 (二)推力轴承的结构
(三)推力间隙:
推力盘在工作瓦片和非工作瓦片之间的移动距离叫做 推力间隙。一般不大于 0.4mm 。瓦片上的乌金厚度一般为 1.5mm,其值小于汽轮机通流部分动静之间的最小间隙, 以保证即使在乌金熔化的事故情况下,汽轮机动静部分也 不会相互摩擦。
3、 法兰螺栓加热装臵:减小汽缸、法兰和螺
栓之间的温差,有效控制机组的胀差,缩短 启动时间。
法兰螺栓加热装臵均设有高、低温汽源。 4、双层汽缸:减轻单个汽缸的重量;合理利 用材料;缸壁薄、内外温差小,有利于改善 机组的启动性能和变工况适应能力。 5、双层进汽管:既要保证高压蒸汽的密封又 要保证内外缸的相对膨胀。
汽缸外部保温不良,造成收入不均
造成汽缸裂纹的主要原因:

汽轮机工作原理全文编辑修改

汽轮机工作原理全文编辑修改

比增长15.3%;核电发电量543亿千瓦时,约占全部发电量
的1.92%,同比增长2.4%。2006年全社会用电量达到28248
亿千瓦时,同比增长14.0%,增幅比2005年上升0.4个百分
点。

截至2007年底,发电设备容量达7.13亿千瓦,同比增
长14.4%。在短短一年的时间内,全国电力装机实现了从6
一、电力在国民经济中的地位
▪ 1875年,巴黎北火车站建成世界上第一 座火电厂,为附近照明供电。1879年,美国 旧金山实验电厂开始发电,是世界上最早出 售电力的电厂。80年代,在英国和美国建成 世界上第一批水电站。1913年,全世界的年 发电量达 500亿千瓦时,电力工业已作为一 个独立的工业部门,进入人类的生产活动领 域
❖ BBC (Brown Boveri Co.)
瑞士
(反动式)
❖ AA (Alsthon-Atlantague Co.)
法国
(冲动式、反动式)
❖ 其他(苏联、日本等)
❖ 我国三大动力设备厂:哈汽、上汽、东汽
工业汽轮机:杭州
燃气轮机:南京
四、汽轮机的分类和型号
▪ (1) 按工作原理分类 ① 冲动式汽轮机。主要由冲动级组成,蒸汽主要在喷嘴叶栅 (或静叶栅)中膨胀,在动叶栅中只有少量膨胀。 ② 反动式汽轮机。主要由反动级组成,蒸汽在喷嘴叶栅(或 静叶栅)和动叶栅中都进行膨胀,且膨胀程度相同。 (2) 按热力特性分 ① 凝汽式汽轮机:蒸汽在汽轮机中膨胀作功后,进入高度真 空状态下的凝汽器,凝结成水。 ② 背压式汽轮机:排汽压力高于大气压力,直接用于供热, 无凝汽器。当排汽作为其他中、低压汽轮机的工作蒸汽时, 称为前置式汽轮机。 ③ 调整抽汽式汽轮机:从汽轮机中间某几级后抽出一定参数、 一定流量的蒸汽(在规定的压力下)对外供热,其排汽仍排 入凝汽器。根据供热需要,有一次调整抽汽和二次抽汽之分。 ④ 中间再热式汽轮机:蒸汽在汽轮机内膨胀作功过程中被引 出,再次加热后返回汽轮机继续膨胀作功。 背压式汽轮机和调整抽汽式汽轮机统称为供热式汽轮机。目 前凝汽式汽轮机均采用回热抽汽和中间再热。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机设备结构与工作原理(4)81.汽轮机的滑销有哪些种类?它们各起什么作用?根据滑销的构造形式、安装位置可分为下列六种:⑴横销:一般安装在低压汽缸排汽室的横向中心线上,或安装在排汽室的尾部,左右两侧各装一个。

横销的作用是保证汽缸横向的正确膨胀,并限制汽缸沿轴向移动。

由于排汽室的温度是汽轮机通流部分温度最低的区域,故横销都装于此处,整个汽缸由此向前或向后膨胀,形成了轴向死点。

⑵纵销:多装在低压汽缸排汽室的支撑面、前轴承箱的底部、双缸汽轮机中间轴承的底部等和基础台板的接合面间。

所有纵销均在汽轮机的纵向中心线上。

纵销可保证汽轮机沿纵向中心线正确膨胀,并保证汽缸中心线不能作横向滑移。

因此,纵销中心线与横销中心线的交点形成整个汽缸的膨胀死点,在汽缸膨胀时,这点始终保持不动。

⑶立销:装在低压汽缸排汽室尾部与基础台板间,高压汽缸的前端与轴承座间。

所有的立销均在机组的轴线上。

立销的作用可保证汽缸的垂直定向自由膨胀,并与纵销共同保持机组的正确纵向中心线。

⑷猫爪横销:起着横销作用,又对汽缸起着支承作用。

猫爪一般装在前轴承座及双缸汽轮机中间轴承座的水平接合面上,是由下汽缸或上汽缸端部突出的猫爪,特制的销子和螺栓等组成。

猫爪横销的作用是:保证汽缸在横向的定向自由膨胀,同时随着汽缸在轴向的膨胀和收缩,推动轴承座向前或向后移动,以保持转子与汽缸的轴向相对位置。

⑸角销:装在排汽缸前部左右两侧支撑与基础台板间。

销子与销槽的间隙为0.06~0.08mm。

斜销是一种辅助滑销,不经常采用,它能起到纵向及横向的双重导向作用。

82.什么是汽轮机膨胀的“死点”,通常布置在什么位置?横销引导轴承座或汽缸沿横向滑动并与纵销配合成为膨胀的固定点,称为“死点”。

也即纵销中心线与横销中心线的交点。

“死点”固定不动,汽缸以“死点”为基准向前后左右膨胀滑动。

对凝汽式汽轮机来说,死点多布置在低压排汽口的中心线或其附近,这样在汽轮机受热膨胀时,对于庞大笨重的凝汽器影响较小。

国产200MW和125MW汽轮机组均设两个死点,高、中压缸向前膨胀,低压缸向发电机侧膨胀,各自的绝对膨胀量都可适当减小。

83.汽轮机联轴器起什么作用?有哪些种类?各有何优缺点?联轴器又叫靠背轮。

汽轮机联轴器是用来连接汽轮发电机组的各个转子,并把汽轮机的功率传给发电机。

汽轮机联轴器可分为刚性联轴器、半挠性联轴器和挠性联轴器。

以下介绍这几种联轴器的优缺点。

刚性联轴器:优点是构造简单、尺寸小、造价低、不需要润滑油。

缺点是转子的振动、热膨胀都能相互传递,校中心要求高。

半挠性联轴器:优点是能适当弥补刚性靠背轮的缺点,校中心要求稍低。

缺点是制造复杂、造价较大。

挠性联轴器:优点是转子振动和热膨胀不互相传递,允许两个转子中心线稍有偏差。

缺点是要多装一道推力轴承,并且一定要有润滑油,直径大,成本高,检修工艺要求高。

大机组一般高低压转子之间采用刚性联轴器,低压转子与发电机转子之间采用半挠性联轴器。

84.刚性联轴器分哪两种?刚性联轴器又分装配式和整锻式两种型式。

装配式刚性联轴器是把两半联轴器分别用热套加双键的方法,套装在各自的轴端上,然后找准中心、铰孔,最后用螺栓紧固;整锻式刚性联轴器与轴整体锻出。

这种联轴器的强度和刚度都比装配式高,且没有松动现象。

为使转子的轴向位置作少量调整,在两半联轴器之间装有垫片,安装时按具体尺寸配制一定厚度的垫片。

.什么是半挠性联轴器?85.半挠性联轴器的结构是在两个联轴器间用半挠性波形套筒连接,并用螺栓紧固。

波形套筒在扭转方向是刚性的,在弯曲方向则是挠性的。

86.挠性联轴器的结构型式是怎样的?挠性联轴器有齿轮式和蛇形弹簧式两种型式。

齿轮式挠性联轴器多用在小型汽轮机上,它的结构是两个齿轮用热套加键的方式分别装两个轴端上,并用大螺帽紧固,防止从轴上滑脱。

两个齿轮的外面有一个套筒,套筒两端的内齿分别与两个齿轮啮合,从而将两个转子连接起来。

套筒的两侧安置挡环限制套筒的轴向位置,挡环用螺栓固定在套筒上。

125MW机组电动调速给水泵就是采用这种挠性联轴器。

87.汽轮机的盘车装置起什么作用?汽轮机冲动转子前或停机后,进入或积存在汽缸内的蒸汽使上缸温度比下缸温度高,从而使转子不均匀受热或冷却,产生弯曲变形。

因而在冲转前和停机后,必须使转子以一定的速度连续转动,以保证其均匀受热或冷却。

换句话说,冲转前和停机后盘车可以消除转子热弯曲。

同时还有减小上下汽缸的温差和减少冲转力矩的功用,还可在起动前检查汽轮机动静之间是否有摩擦及润滑88.盘车有哪两种方式?电动盘车装置主要有哪两种型式?小机组采用人力手动盘车,中型和大型机组都采用电动盘车。

电动盘车装置主要有两种型式。

⑴具有螺旋轴的电动盘车装置(大多数国产中、小型汽轮机组及125MW、300MW机组采用)。

⑵具有摆动齿轮的电动盘车装置(国产50MW、100MW、200MW机组采用)。

89.具有螺旋轴的电动盘车装置的构造和工作原理是怎样的?螺旋轴电动盘车装置由电动机、联轴器、小齿轮、大齿轮、啮合齿轮、螺旋轴、盘车齿轮、保险销、手柄等组成。

啮合齿轮内表面铣有螺旋齿与螺旋轴相啮合,啮合齿轮沿螺旋轴可以左右滑动。

当需要投入盘车时,先拔出保险销,推手柄,手盘电动机联轴器直至啮合齿轮与盘车齿轮全部啮合。

当手柄被推至工作位置时,行程开关接点闭合,接通盘车电源,电动机起动至全速后,带动汽轮机转子转动进行盘车。

当汽轮机起动冲转后,转子的转速高于盘车转速时,使啮合齿轮由原来的主动轮变为被动轮,即盘车齿轮带动啮合齿轮转动,螺旋轴的轴向作用力改变方向,啮合齿轮与螺旋轴产生相对转动,并沿螺旋轴移动退出啮合位置,手柄随之反方向转动至停用位置,断开行程开关,电动机停转,基本停止工作。

若需手动停止盘车,可手揿盘车电动机停按钮,电动机停转,啮合齿轮退出,盘车停止。

90.具有摆动齿轮的盘车装置的构造和工作原理是怎样的?具有摆动齿轮的盘车装置主要由齿轮组、摆动壳、曲柄、连杆、手轮、行程开关、弹簧等组成。

齿轮组通过两次减速后带动转子转动。

盘车装置脱开时,摆动壳被杠杆系统吊起,摆动齿轮与盘车齿轮分离;行程开关断路,电动机不转,手轮上的锁紧销将手轮锁在脱开位置;连杆在压缩弹簧的作用下推紧曲柄,整个装置不能运动。

投入盘车时,拔出锁紧销,逆时针转动手轮,与手轮同轴的曲柄随之转动,克服压缩弹簧的推力,带动连杆向右下方运动;拉杆同时下降,使摆动壳和摆动轮向下摆动,当摆动轮与盘车齿轮进入啮合状态时,行程开关闭合,接通电动机电源,齿轮组即开始转动。

由于转子尚处于静止状态,摆动齿轮带着摆动壳继续顺时针摆动,直到被顶杆顶住。

此时摆动壳处于中间位置,摆动轮与盘车齿轮完全啮合并开始传递力矩,使转子转动起来。

盘车装置自动脱开过程如下:冲动转子以后,盘车齿轮的转速突然升高,而摆动齿轮由主动轮变为被动轮,被迅速推向右方并带着摆动壳逆时针摆动,推动拉杆上升。

当拉杆上端点超过平衡位置时,连杆在压缩弹簧的推动下推着曲柄逆时针旋转,顺势将摆动壳拉起,直到手轮转过预定的角度,锁紧销自动落入锁孔将手轮锁住。

此时行程开关动作,切断电动机电源,各齿轮均停止转动,盘车装置又恢复到投用前脱开状态。

操作盘车停止按钮,切断电源,也可使盘车装置退出工作。

.主轴承的作用是什么?91.轴承是汽轮机的一个重要组成部件,主轴承也叫径向轴承。

它的作用是承受转子的全部重量以及由于转子质量不平衡引起的离心力,确定转子在汽缸中的正确径向位置。

由于每个轴承都要承受较高的载荷,而且轴颈转速很高,所以汽轮机的轴承都采用液体摩擦为理论基础的轴瓦式滑动轴承,借助于有一定压力的润滑油在轴颈与轴瓦之间形成油膜,建立液体摩擦,使汽轮机安全稳定地运行。

92.轴承的润滑油膜是怎样形成的?轴瓦的孔径较轴颈稍大些,静止时,轴颈位于轴瓦下部直接与轴瓦内表面接触,在轴瓦与轴颈之间形成了楔形间隙。

当转子开始转动时,轴颈与轴瓦之间会出现直接摩擦。

但是,随着轴颈的转动,润滑油由于粘性而附着在轴的表面上,被带入轴颈与轴瓦之间的楔形间隙中。

随着转速的升高,被带入的油量增多,由于楔形间隙中油流的出口面积不断减小,所以油压不断升高,当这个压力增大到足以平衡转子对轴瓦的全部作用力时,轴颈被油膜托起,悬浮在油膜上转动,从而避免了金属直接摩擦,建立了液体摩擦。

93.汽轮机主轴承主要有哪几种结构型式?汽轮机主轴承主要有四种:⑴圆筒瓦支持轴承。

⑵椭圆瓦支持轴承。

⑶三油楔支持轴承。

⑷可倾瓦支持轴承。

94.固定式圆筒形支持轴承的结构是怎样的?固定式圆筒形支持轴承用在容量为50~100MW的汽轮机上。

轴瓦外形为圆筒形,由上下两半组成,用螺栓连接。

下瓦支持在三块垫铁上,垫铁下衬有垫片,调整垫片的厚度可以改变轴瓦在轴承洼窝内的中心位置。

上轴瓦顶部垫铁的垫片可以用来调整轴瓦与轴承上盖间的紧力。

润滑油从轴瓦侧下方垫铁中心孔引入,经过下轴瓦体内的油路,自水平结合面的进油孔进入轴瓦。

由于轴的旋转,使油先经过轴瓦顶部间隙,再经过轴颈和下瓦间的楔形间隙,然后从轴瓦两端泄出,由轴承座油室返回油箱。

在轴瓦进油口处有节流孔板来调整进油量大小。

轴瓦的两侧装有防止油甩出来的油挡。

轴瓦水平结合面处的锁饼用来防止轴瓦转动。

轴瓦一般用优质铸铁铸造,在轴瓦内部车出燕尾槽,并浇铸锡基轴承合金(即巴氏合金),也称乌金。

95.什么是自位式轴承?圆筒形支持轴承和椭圆形支持轴承按支持方式都可分为固定式和自位式(又称球面式)两种。

自位式与固定式不同的只是轴承体外形呈球面形状。

当转子中心变化引起轴颈倾斜时,轴承可以随轴颈转动自动调位,使轴颈和轴瓦之间的间隙在整个轴瓦长度内保持不变。

但是这种轴承的加工和调整较为麻烦。

96.椭圆形轴承与圆筒形轴承有什么区别?椭圆形支持轴承的结构与圆筒形支持轴承基本相同,只是轴承侧边间隙加大了,通常侧边间隙是顶部间隙的2倍。

轴瓦曲率半径增大。

使轴颈在轴瓦内的绝对偏心距增大,轴承的稳定性增加。

同时轴瓦上、下部都可以形成油楔(因此又有双油楔轴承之称)。

由于上油楔的油膜力向下作用,使轴承运行的稳定性好,这种轴承在大、中容量汽轮机组中得到广泛运用。

97.什么是三油楔轴承?在大容量机组中,如国产125MW、200MW、300MW机组都采用三油楔轴承。

三油楔支持轴承的轴瓦上有三个长度不等的油楔,从理论上分析,三个油楔建立的油膜其作用力从三个方向拐向轴颈中心,可使轴颈稳定地运转。

但这种轴承上、下轴瓦的结合面与水平面倾斜角为35度。

给检修与安装带来不便。

从有的机组三油楔支持轴承发生油膜振荡的现象来看,这种轴承的承载能力并不很大,稳定性也并不十分理想。

98.什么是可倾瓦支持轴承?可倾瓦支持轴承通常由3~5个或更多个能在支点上自由倾斜的弧形瓦块组成,所以又叫活支多瓦形支持轴承,也叫摆动轴瓦式轴承。

由于其瓦块能随着转速、载荷及轴承温度的不同而自由摆动,在轴颈周围形成多油.楔。

相关文档
最新文档