培养几何直观能力的策略

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何直观能力的培养

林小燕通过研讨,大家一致达成共识,培养学生几何直观能力要让学生形成如下三种能力:1、空间想象能力;2、直观洞察能力;3、利用几何直观解决问题的能力。什么是几何直观?新课程标准是这样定义的:主要是指利用图形描述和分析问题。

当几何直观这一概念提出之后,有老师认为新瓶子装老酒,还是一个样,花里胡哨弄个新概念做什么?的确数形结合的思想,利用画线段图解决问题的策略,老师们都在实际的教学中应用过。只不过以前老师们的使用,是停留在教学经验的层面,部分老师觉得这样做有效就自觉使用,并且长时间的使用。有的老师觉得没什么作用,可用可不用。这样的两种态度,决定了几何直观在实际教学中的应用范围的局限性与执行力。但是现在是在新课程标准中以核心概念的身份出现。课程标准是老师们教学的方针,它是国家对规范教育行为而制定的统一规则,相当于课堂教学的“法规”,在推广之前经过了讨论与实验,所以在标准出台之后只存在修订的问题,它的可操作性不容置疑,那么与老师之前的自觉行为完全不同,作为普通教师就是要体现标准的执行力,在现实教学中落实它。充分肯定了几何直观在数学课堂教学中的重要作用与地位。

1、数形结合的策略;

数学是研究数量关系和空间形式的科学。而数形结合的思想就是抓住了数学的本质数与形,把抽象的数与具体的形结合在一起,让数与形有机结合,从而培养学生几何直观的能力。比如在教学小数除以整数一课,如何让学生理解小数除以整数的算理,我们就采用了数形结合的策略。结合图示说算理。用11个小正方形表示11个1,用涂色部分表示0.5.把11.5平均分给5袋牛奶,每袋2元,还剩1.5元。1元不能直接分,把1.5元转化成15角,也就是15个0.1,平均分给5袋牛奶,每袋3角,也就是3个0.1元,2元和0.3元就是2.3元。当图形直观的呈现分不完有剩余的情况下,我们就把余下的数转化成计数单位更小的数进行计算。小学生正处在形象思维向抽象思维过渡的阶段。图示,把抽象的算理变得直观可见,学生一下子就明白小数除以整数的计算方法,理解了商的小数点为什么要和被除数的小数点对整齐。几何直观凭借图形的直观性特点将抽象的数学语言转化成直观的图形,让学生由形象思维慢慢过渡到抽象思维,帮助学生灵活的思维,开启智慧的大门。

2、动手操作的策略;

理解运算的意义往往要经历四个阶段:情境感知、动作表征、语言表征、符号表征。情境往往是教材提供给学生,或者是老师提供的,在感知的基础上,学生如何进一步理解情境,明白情境中蕴含的数量关系。在小学阶段,我们常用的手段就是动手操作。动手操作的目的,就是要建立概念的表象。而这一活动在人脑海中形成的表象和图形很相似,它都有具体的成像。从这里开始,几何直观逐步萌芽。比如加法,在学生的手中,就是把两部分合并,或者在一部分的基础上增加,或者从别的地方移入新的一部分。“合并”、“增加”、“移入”在这里都不是抽象的概念,而是学生活生生的操作活动。学生理解概念,正是从这些简单的操作入手,慢慢内化成语言,最后归纳总结形成比较规范严密的定义。

3、化静为动的策略。

化静为动的策略在小学数学中有两种体现。一是让学生感受图形的变换,比

如基本图形组合成组合图形,组合图形分解成基本图形。还有基本图形通过平移或者旋转变成新的图案。这里主要体现图形的运动。但是在小学数学课中,化静为动更多的体现是,把静止的数量关系转化为可见的图形。比如圆面积公式的推导。学生会计算平行四边形的面积,通过分割与拼组,把圆形转化成近似的平行四边形。通过动手操作,感知平行四边形的底就是圆周长的1\2,平行四边形的高是圆的半径。因为平行四边形的面积等于底乘高,所以圆的面积等于π。化静为动,让学生经历了圆面积公式的形成过程.为学生的空间想象打基础,为直观洞察做铺垫,并且利用几何直观帮助学生理解了圆面积与圆半径之间的数量关系。在短时间内完成教学目标,提高课堂的成效。

在课堂教学中,数形结合、动手操作、化静为动这三种培养几何直观的策略,往往配合使用,为培养学生的几何直观能力发挥作用。

相关文档
最新文档