电路原理实验报告

合集下载

电路原理实验报告

电路原理实验报告

电路原理实验报告引言:电路原理实验是电子工程领域中一项基础而重要的实践内容。

通过实验,我们可以深入了解电路的基本原理和特性,并掌握一些常用的电路组合和搭建方法。

在本实验报告中,我们将介绍并总结我们实验过程中的心得和体会。

实验一:串联电路和并联电路首先,我们进行了串联电路和并联电路的实验,通过搭建简单的电路,我们验证了串联电路和并联电路的基本特性。

通过实验,我们发现串联电路中电流的大小保持不变,而电压则随电阻的变化而变化;而在并联电路中,电流的大小与电阻的变化成反比,而电压则保持不变。

这种现象可以被理解为电流在串联电路中只能有一条路径流动,而在并联电路中则可多条路径流动。

实验二:石英晶体振荡器的应用接下来,我们进行了石英晶体振荡器的应用实验。

我们通过搭建一个简单的电路,将石英晶体振荡器连接到一个LED灯上,实现了灯光的闪烁。

我们发现,石英晶体的振荡频率非常稳定,可以作为一种非常精确的时钟信号源。

这对于一些要求时间精度较高的电子设备和仪器非常重要。

实验三:共射放大器的工作原理最后,我们进行了共射放大器的实验,通过搭建一个简单的放大器电路,我们验证了共射放大器的工作原理。

我们发现共射放大器可以将输入的小信号放大,并输出一个较大的信号。

这对于音响设备和无线通信设备等电子产品非常重要。

我们还尝试通过改变电路中的一些元件,来观察放大器的工作特性变化,并得出了一些有趣的结论。

总结:通过进行以上三个实验,我们加深了对电路原理的理解,掌握了一些常用的电路搭建方法与技巧。

实验过程中,我们还发现了一些实际应用中的问题,并通过调整电路来解决这些问题。

通过实验,我们提高了实际动手操作的能力,并培养了观察问题、解决问题的技能。

电路原理实验为我们今后的学习和研究打下了良好的基础。

结语:通过本次电路原理实验,我们不仅巩固了理论知识,还提高了实验技能。

实验过程中,我们也遇到了一些困难和挑战,但是通过团队合作,我们相互帮助,克服了这些困难,取得了实验的成功。

实验报告模板电路原理(3篇)

实验报告模板电路原理(3篇)

第1篇一、实验名称二、实验目的1. 理解电路原理图的基本构成和符号;2. 掌握电路基本元件(电阻、电容、电感等)的特性和应用;3. 学会电路分析方法,如基尔霍夫定律、节点电压法、回路电流法等;4. 提高电路仿真和实验操作能力。

三、实验原理1. 电路基本概念电路是由各种电子元件按照一定规律连接而成的整体。

电路的基本元件包括电阻、电容、电感、二极管、晶体管等。

电路中的电压、电流、功率等参数遵循一定的物理规律。

2. 电路分析方法(1)基尔霍夫定律基尔霍夫定律包括节点电压定律和回路电流定律。

节点电压定律指出,在电路中任意节点处,流入该节点的电流之和等于流出该节点的电流之和。

回路电流定律指出,在电路中任意回路中,沿回路方向各元件电压之和等于回路电源电压之和。

(2)节点电压法节点电压法是一种电路分析方法,通过求解电路中各个节点的电压来分析电路。

节点电压法的基本步骤如下:① 设定电路中各个节点的电压;② 根据基尔霍夫定律列出节点电压方程;③ 解方程求得各个节点的电压。

(3)回路电流法回路电流法是一种电路分析方法,通过求解电路中各个回路的电流来分析电路。

回路电流法的基本步骤如下:① 设定电路中各个回路的电流;② 根据基尔霍夫定律列出回路电流方程;③ 解方程求得各个回路的电流。

3. 电路仿真软件电路仿真软件可以帮助我们快速、准确地分析电路。

常用的电路仿真软件有Multisim、Proteus等。

四、实验内容及步骤1. 熟悉电路原理图的基本构成和符号;2. 分析电路的基本元件特性和应用;3. 根据电路原理图,运用基尔霍夫定律、节点电压法、回路电流法等方法分析电路;4. 利用电路仿真软件对电路进行仿真,验证理论分析的正确性;5. 对实验数据进行整理和分析,得出实验结论。

五、实验数据记录与分析1. 记录实验中测得的电路参数,如电压、电流、功率等;2. 将实验数据与理论分析结果进行对比,分析误差原因;3. 对实验结果进行总结,提出改进措施。

《电路原理》实验报告

《电路原理》实验报告

《电路原理》实验报告实验一电阻元件伏安特性的测量一、实验目的1、学会识别常用电路和元件的方法。

2、掌握线性电阻及电压源和电流源的伏安特性的测试方法。

3、学会常用直流电工仪表和设备的使用方法。

二、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)表示,即I-U平面上的一条曲线来表征,即元件的伏安特性曲线。

线性电阻器的伏安特性曲线是一条通过坐标原点的直线该直线的斜率等于该电阻器的电阻值。

三、实验设备四、实验内容及实验数据测定线性电阻器的伏安特性按图1-1接线,调节稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相、I。

应的电压表和电流表的读数UR图1-1实验二 基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。

2、学会用电流表测量各支路电流。

二、实验原理1、基尔霍夫电流定律(KCL ):基尔霍夫电流定律是电流的基本定律。

即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。

2、基尔霍夫电压定律(KVL ):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。

这一定律实质上是电压与路径无关性质的反映。

基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

三、实验设备四、实验内容及实验数据实验线路如图4-1。

把开关K1接通U1,K2接通U2,K3接通R4。

就可以连接出基尔霍夫定律的验证单元电路,如图4-2。

图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。

图4-2中的I1、I2、I3的方向已设定。

三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。

2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。

电路课实验报告总结(3篇)

电路课实验报告总结(3篇)

第1篇一、实验背景电路课是一门理论与实践相结合的课程,通过实验可以加深对电路理论知识的理解,提高动手能力和解决问题的能力。

本实验报告总结了我在电路课中所完成的几个实验,包括基本放大电路、差分放大电路、稳压电路等,并对实验过程、实验结果及心得体会进行了总结。

二、实验内容及过程1. 基本放大电路实验(1)实验目的:掌握放大电路直流工作点的调整与测量方法,研究交流放大器的工作情况,加深对其工作原理的理解。

(2)实验过程:搭建基本放大电路,调整电路参数,测量静态工作点,分析电路性能。

(3)实验结果:通过实验,掌握了放大电路直流工作点的调整方法,分析了电路的增益、带宽、输入输出阻抗等性能指标。

2. 差分放大电路实验(1)实验目的:提高对差分放大电路性能及特点的理解,学习其性能指标测试方法。

(2)实验过程:搭建差分放大电路,调整电路参数,测量差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标。

(3)实验结果:通过实验,了解了差分放大电路的工作原理,掌握了性能指标测试方法,分析了电路的共模抑制能力、温度稳定性等特性。

3. 稳压电路实验(1)实验目的:学习稳压电路的设计原理,提高对稳压电路性能指标的理解。

(2)实验过程:搭建稳压电路,调整电路参数,测量输出电压、输出电流、纹波电压等性能指标。

(3)实验结果:通过实验,掌握了稳压电路的设计方法,分析了电路的稳压精度、负载调节范围、温度稳定性等特性。

三、实验心得体会1. 理论与实践相结合:电路课实验使我深刻体会到理论知识与实践操作的重要性。

只有将理论知识应用于实际操作中,才能更好地理解电路原理,提高动手能力。

2. 分析问题、解决问题的能力:在实验过程中,遇到各种问题,通过查阅资料、分析电路原理,最终找到解决问题的方法。

这使我更加自信地面对实际问题。

3. 团队合作:实验过程中,与同学互相帮助、共同讨论,提高了团队协作能力。

在今后的学习和工作中,这种团队合作精神将使我受益匪浅。

电路实验报告例子

电路实验报告例子

实验一:直流电路基本定律验证一、实验目的1.加深对基尔霍夫定律的理解;2.掌握电路分析方法,提高电路分析能力;3.熟悉实验仪器及设备的使用。

二、实验原理基尔霍夫定律是电路分析的基本定律,包括基尔霍夫电流定律和基尔霍夫电压定律。

基尔霍夫电流定律指出,在任何时刻,流入一个节点的电流之和等于流出该节点的电流之和。

基尔霍夫电压定律指出,在任意闭合回路中,各段电压之和等于电源电动势之和。

三、实验设备1.直流稳压电源;2.万用表;3.电阻箱;4.电感器;5.电容器;6.电路实验箱;7.连接线。

四、实验步骤1.搭建电路,按照实验电路图连接电阻、电感、电容器等元件;2.测量各元件的参数,如电阻值、电感值、电容值等;3.根据基尔霍夫定律,计算电路中各节点的电压和各支路的电流;4.与实验测量值进行对比,分析误差原因。

五、实验数据及处理1.实验电路图:(此处插入实验电路图)2.实验数据:(此处插入实验数据表格,包括电阻值、电感值、电容值、节点电压、支路电流等)3.数据处理:(此处插入数据处理结果,如计算各节点电压、支路电流等)六、实验结果与分析1.实验结果:根据实验数据,计算得出电路中各节点电压和各支路电流,与理论计算值进行对比,分析误差原因。

2.误差分析:(此处分析实验误差,如测量误差、搭建电路误差等)七、实验结论1.通过本次实验,加深了对基尔霍夫定律的理解;2.掌握了电路分析方法,提高了电路分析能力;3.熟悉了实验仪器及设备的使用。

实验二:交流电路基本定律验证一、实验目的1.加深对欧姆定律、基尔霍夫定律在交流电路中的应用理解;2.掌握交流电路的分析方法,提高电路分析能力;3.熟悉实验仪器及设备的使用。

二、实验原理交流电路分析的基本定律包括欧姆定律、基尔霍夫定律、功率定律等。

欧姆定律在交流电路中可以表示为:I = V/Z,其中I为电流,V为电压,Z为阻抗。

基尔霍夫定律在交流电路中的应用与直流电路相同。

功率定律在交流电路中可以表示为:P = V^2/R,其中P为功率,V为电压,R为电阻。

电路实验报告书

电路实验报告书

实验名称:差分放大电路性能测试实验日期:2024年9月15日实验地点:模拟电路实验室一、实验目的1. 理解差分放大电路的基本原理和性能特点。

2. 掌握差分放大电路的测试方法,包括差模电压放大倍数和共模电压放大倍数的测量。

3. 分析差分放大电路中RE电阻的作用以及晶体管恒流源的优势。

二、实验原理差分放大电路由两个元件参数相同的基本共射放大电路组成,其原理是利用两个晶体管的电流放大特性,使电路对共模信号具有抑制能力,而对差模信号有良好的放大效果。

1. 差模电压放大倍数(A_diff):差模电压放大倍数表示差分放大电路对差模信号的放大能力,其计算公式为:A_diff = V_out_diff / V_in_diff2. 共模电压放大倍数(A_comm):共模电压放大倍数表示差分放大电路对共模信号的放大能力,其计算公式为:A_comm = V_out_comm / V_in_comm三、实验设备及器材1. 模拟电路实验箱2. 实验线路板3. 万用电表4. 信号发生器5. 示波器6. 线路连接线四、实验过程及数据记录与处理分析1. 连接电路:按照实验电路原理图,将差分放大电路连接到实验线路板上,包括两个基本共射放大电路、RE电阻和晶体管恒流源。

2. 调节电路:调整电路中的电位器,使晶体管的静态工作点Q点达到最佳状态。

3. 测试差模电压放大倍数:将信号发生器产生的差模信号输入差分放大电路,使用示波器观察输出电压,记录数据。

4. 测试共模电压放大倍数:将信号发生器产生的共模信号输入差分放大电路,使用示波器观察输出电压,记录数据。

5. 分析数据:根据测试数据,计算差模电压放大倍数和共模电压放大倍数,并与理论值进行比较。

五、实验结论与发现1. 实验测得的差模电压放大倍数和共模电压放大倍数与理论值接近,表明实验准确度较高。

2. 具有恒流源的差分放大电路的共模抑制比(CMRR)大于典型差分放大电路的CMRR,说明恒流源能够有效提高差分放大电路抑制共模信号的能力。

电路原理实验报告

电路原理实验报告

电路原理实验报告本次电路原理实验的题目为“直流电路实验”,实验旨在通过实践掌握直流电路中基本电路元件的特性和使用方法,了解直流电路的基本组成和运行原理,培养实验操作能力和科学精神。

一、实验材料与装置1.材料电源、万用表、电阻箱、导线等2.装置直流电源、万用表、电阻箱、实验电路板等二、实验步骤及结果分析1.实验一:欧姆定律实验1)用电压表测量电源电压为10V;2)调整电阻箱电阻值,测量不同电阻下电压和电流值,记录实验数据;3)根据测量数据计算电阻的阻值,绘制电阻值与电流的关系图。

实验结果分析:根据欧姆定律公式U=R×I,计算出不同电阻值下的电流,绘制出电流随电阻变化的曲线。

实验结果表明,电流与电阻成正比关系,当电阻值增大时,电流值减小,阻值与电流呈现线性关系。

2.实验二:基尔霍夫定律实验1)将电源正极连接到一个电阻R1,将R1的另一个端口与R2连接,再将R2的另一端口连接到电源的负极,形成一简单电路;2)分别用万用表测量各电路的电压和电流值,记录实验数据;3)根据基尔霍夫定律计算每个接点处的电流,验证基尔霍夫定律成立。

实验结果分析:通过测量和计算电路中各接点电流和电压值,验证了基尔霍夫定律成立,即电路中各分支电流的代数和等于零,电路中环路各电动势之代数和与各电势差之代数和相等。

3.实验三:电阻分压实验1)将三个不同大小的电阻连成电阻分压器;2)测量电源电压和电路中三个电阻上的电压值,并计算分压比;3)根据实验结果绘制分压比与总电阻的关系曲线。

实验结果分析:实验验证了电阻分压定理的正确性,在电路中插入不同大小的电阻可以改变分压比,分压比与总电阻呈反比关系,所得实验结果与理论值基本一致。

三、实验总结通过本次电路原理实验,初步认识了直流电路的基本性质和基本组成,掌握了欧姆定律、基尔霍夫定律和电阻分压法等基本实验方法和操作技巧,培养了科学精神和实验探究的能力。

同时也意识到实验操作时需要细心和耐心,实验结果的真实性和可靠性取决于实验数据的准确性和精度。

分析电路实验报告总结(3篇)

分析电路实验报告总结(3篇)

第1篇一、实验背景在本次实验中,我们主要学习了电路分析的基本原理和方法,通过实际操作和数据分析,掌握了电路中各种元件的特性和电路的运行规律。

本实验旨在提高我们对电路原理的理解,培养实际操作能力,并加深对电路分析方法的认识。

二、实验目的1. 理解电路的基本组成和基本定律;2. 掌握电路分析的基本方法,包括基尔霍夫定律、欧姆定律等;3. 熟悉常用电路元件的特性和应用;4. 提高实际操作能力和问题解决能力。

三、实验内容1. 基尔霍夫定律实验:通过实验验证基尔霍夫定律的正确性,加深对节点电压、回路电流等概念的理解。

2. 欧姆定律实验:通过实验验证欧姆定律的正确性,掌握电阻、电流、电压之间的关系。

3. 电路元件特性实验:观察和分析电阻、电容、电感等元件的特性和应用。

4. 电路分析方法实验:通过实际电路分析,掌握电路分析方法,如节点电压法、回路电流法等。

四、实验步骤1. 准备实验仪器和电路元件,确保实验环境安全。

2. 根据实验要求搭建电路,连接相关元件。

3. 对电路进行初步测试,确保电路连接正确。

4. 根据实验要求,分别进行基尔霍夫定律、欧姆定律、电路元件特性、电路分析方法等实验。

5. 记录实验数据,进行分析和处理。

6. 对实验结果进行总结,撰写实验报告。

五、实验结果与分析1. 基尔霍夫定律实验:实验结果显示,基尔霍夫定律在本次实验中得到了验证,节点电压和回路电流的计算结果与理论值基本一致。

2. 欧姆定律实验:实验结果显示,欧姆定律在本次实验中得到了验证,电阻、电流、电压之间的关系符合理论公式。

3. 电路元件特性实验:实验结果显示,电阻、电容、电感等元件的特性和应用得到了充分验证,为后续电路设计提供了理论依据。

4. 电路分析方法实验:实验结果显示,节点电压法、回路电流法等电路分析方法在本次实验中得到了有效应用,提高了电路分析效率。

六、实验总结1. 通过本次实验,我们对电路分析的基本原理和方法有了更深入的理解。

电路实验实验报告

电路实验实验报告

一、实验目的1. 加深对电路基本原理的理解和掌握;2. 熟悉常用电子仪器的操作方法;3. 培养实际操作能力和实验报告撰写能力。

二、实验原理本实验主要研究电路的基本原理,包括串联电路、并联电路、电阻分压电路、电容滤波电路等。

三、实验内容及步骤1. 串联电路实验(1)搭建串联电路实验电路,包括电源、电阻、开关等元件。

(2)用万用表测量各电阻的阻值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和总电压,记录数据。

(4)计算电流和电压的比值,验证欧姆定律。

2. 并联电路实验(1)搭建并联电路实验电路,包括电源、电阻、开关等元件。

(2)用万用表测量各电阻的阻值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和总电压,记录数据。

(4)计算电流的分配比例,验证并联电路的电流分配规律。

3. 电阻分压电路实验(1)搭建电阻分压电路实验电路,包括电源、电阻、开关等元件。

(2)用万用表测量各电阻的阻值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和各电阻上的电压,记录数据。

(4)计算电压的分配比例,验证电阻分压电路的电压分配规律。

4. 电容滤波电路实验(1)搭建电容滤波电路实验电路,包括电源、电阻、电容、开关等元件。

(2)用万用表测量电容的电容值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和电容两端的电压,记录数据。

(4)分析电容滤波电路的滤波效果。

四、实验结果与分析1. 串联电路实验结果分析实验结果显示,电流与电压的比值符合欧姆定律,验证了串联电路的基本原理。

2. 并联电路实验结果分析实验结果显示,电流的分配比例符合并联电路的电流分配规律,验证了并联电路的基本原理。

3. 电阻分压电路实验结果分析实验结果显示,电压的分配比例符合电阻分压电路的电压分配规律,验证了电阻分压电路的基本原理。

4. 电容滤波电路实验结果分析实验结果显示,电容滤波电路对高频信号的滤波效果较好,验证了电容滤波电路的基本原理。

电路理论实验报告册(3篇)

电路理论实验报告册(3篇)

第1篇一、实验目的1. 通过实验,加深对电路基本概念和原理的理解。

2. 掌握电路实验的基本方法和技能。

3. 培养分析和解决实际电路问题的能力。

二、实验内容本实验报告册共分为以下八个实验部分:实验一:电路元件伏安特性测试实验二:基尔霍夫定律验证实验三:电路的叠加原理与齐次性验证实验四:受控源特性研究实验五:交流电路的研究实验六:三相电路电压、电流的测量实验七:三相电路功率的测量实验八:RC移相电路实验三、实验原理1. 电路元件伏安特性测试:通过测量电阻、电容、电感等元件的电压和电流,绘制伏安特性曲线,分析元件的特性。

2. 基尔霍夫定律验证:利用基尔霍夫电流定律和电压定律,验证电路节点处电流和电压的关系。

3. 电路的叠加原理与齐次性验证:验证电路的叠加原理和齐次性,即在电路中某一支路电流为零时,其他支路电流也为零。

4. 受控源特性研究:研究受控源(电压控制电流源、电流控制电流源、电压控制电压源、电流控制电压源)的特性,分析其控制作用。

5. 交流电路的研究:研究交流电路中电压、电流的相位关系,分析电路的阻抗、导纳、功率因数等参数。

6. 三相电路电压、电流的测量:测量三相电路中电压、电流的有效值和相位,分析三相电路的特点。

7. 三相电路功率的测量:测量三相电路的功率,分析三相电路的功率分配。

8. RC移相电路实验:研究RC移相电路的特性,分析电路的相位移动和幅值变化。

四、实验步骤1. 实验一:电路元件伏安特性测试(1)搭建实验电路,连接电路元件。

(2)调节信号源,测量电路元件的电压和电流。

(3)记录数据,绘制伏安特性曲线。

2. 实验二:基尔霍夫定律验证(1)搭建实验电路,连接电路元件。

(2)测量电路节点处的电流和电压。

(3)验证基尔霍夫电流定律和电压定律。

3. 实验三:电路的叠加原理与齐次性验证(1)搭建实验电路,连接电路元件。

(2)断开某一支路,测量其他支路电流。

(3)验证电路的叠加原理和齐次性。

4. 实验四:受控源特性研究(1)搭建实验电路,连接受控源。

关于电路的实验报告

关于电路的实验报告

一、实验名称:RC移相电路实验二、实验目的:1. 学习用电阻、电容组成移相电路,实现输入电压与输出电压之间的相位差。

2. 组成一个移相电路,使输入电压与输出电压之间的相位差在0~180度之间可调。

三、实验原理:RC移相电路是一种常见的电路,利用电阻和电容元件的特性来实现信号的相位调节。

在RC移相电路中,电容和电阻串联,电容和电阻并联,电容和电阻组成的串并联电路可以产生相位差。

通过改变电容和电阻的值,可以调整相位差的大小。

四、实验仪器与设备:1. 实验电路板2. 万用表3. 信号发生器4. 示波器5. 电阻(R1、R2)6. 电容(C1、C2)五、实验步骤:1. 按照电路图连接实验电路,确保连接正确。

2. 使用万用表测量电阻和电容的值,确保元件参数符合实验要求。

3. 使用信号发生器产生一个正弦波信号作为输入信号。

4. 将输入信号连接到实验电路的输入端。

5. 使用示波器观察输入信号和输出信号,并测量它们之间的相位差。

6. 改变电容和电阻的值,观察并记录输入信号和输出信号之间的相位差变化。

六、实验数据与结果:1. 当电容C1=100nF,电阻R1=10kΩ,电阻R2=10kΩ时,输入信号和输出信号之间的相位差为-90度。

2. 当电容C1=100nF,电阻R1=10kΩ,电阻R2=5kΩ时,输入信号和输出信号之间的相位差为-180度。

3. 当电容C1=100nF,电阻R1=5kΩ,电阻R2=10kΩ时,输入信号和输出信号之间的相位差为90度。

七、实验分析:通过实验,我们验证了RC移相电路可以实现输入信号与输出信号之间的相位差调节。

实验结果表明,通过改变电容和电阻的值,可以调整相位差的大小。

实验过程中,我们注意到以下几点:1. 在调整电容和电阻的值时,要保证元件参数符合实验要求。

2. 在观察输入信号和输出信号时,要注意信号的幅度和频率。

八、实验结论:本实验成功地实现了RC移相电路的搭建和测试,验证了RC移相电路可以实现输入信号与输出信号之间的相位差调节。

电路实验原理实验报告

电路实验原理实验报告

电路实验原理实验报告电路实验原理实验报告引言:电路实验原理是电子工程学科中最基础的实验之一,通过实际操作电路,我们可以更好地理解电路原理和电子元器件的工作原理。

本实验报告将详细介绍实验所用到的电路原理、实验步骤、实验结果以及实验心得体会。

一、实验目的本次实验的主要目的是通过搭建简单的电路实验装置,验证欧姆定律和基尔霍夫定律,并掌握使用万用表和示波器进行电路测量的方法。

二、实验原理1. 欧姆定律:欧姆定律是电路学中最基本的定律之一,它描述了电流、电压和电阻之间的关系。

根据欧姆定律,电流等于电压与电阻之比,即I = V/R,其中I为电流,V 为电压,R为电阻。

2. 基尔霍夫定律:基尔霍夫定律是电路学中的另一个重要定律,它分为基尔霍夫第一定律和基尔霍夫第二定律。

- 基尔霍夫第一定律(电流守恒定律):在一个节点上,流入节点的电流之和等于流出节点的电流之和。

- 基尔霍夫第二定律(电压守恒定律):在一个闭合回路中,电压源的代数和等于电阻元件电压降的代数和。

三、实验材料与仪器1. 材料:- 电阻:100欧姆、200欧姆、300欧姆- 电源:直流电源2. 仪器:- 万用表:用于测量电流、电压和电阻- 示波器:用于观察电路中的波形变化四、实验步骤1. 搭建电路:根据实验要求,搭建所需的电路。

例如,可以选择串联电路或并联电路,并连接相应的电阻和电源。

2. 测量电流:使用万用表测量电路中的电流。

将万用表的电流测量档位调至适当位置,将两个测量引线分别连接到电路的两个节点上,记录下电流数值。

3. 测量电压:使用万用表测量电路中的电压。

将万用表的电压测量档位调至适当位置,将两个测量引线分别连接到电路中的两个节点上,记录下电压数值。

4. 观察波形:使用示波器观察电路中的波形变化。

将示波器的探头连接到电路中的某个节点上,调整示波器的时间和电压刻度,观察并记录下波形的变化情况。

五、实验结果与分析根据实验步骤所得到的数据,我们可以计算出电流、电压和电阻的数值,并进行分析。

大学生实训课电路实验报告

大学生实训课电路实验报告

一、实验目的1. 理解并掌握电路基本元件(电阻、电容、电感等)的特性和应用。

2. 学会使用万用表、示波器等实验仪器进行电路测量。

3. 掌握电路基本分析方法,如欧姆定律、基尔霍夫定律等。

4. 提高电路设计与调试能力。

二、实验原理本次实验主要涉及以下电路原理:1. 电阻电路:欧姆定律、基尔霍夫电流定律和电压定律。

2. 电容电路:电容的充放电原理、电容的串联和并联。

3. 电感电路:电感的自感现象、电感的串联和并联。

4. 交流电路:交流电的基本概念、交流电的相位关系、交流电路的功率计算。

三、实验内容及步骤1. 电阻电路实验(1) 实验目的:验证欧姆定律,学习使用万用表测量电阻。

(2) 实验步骤:1. 搭建电阻电路,包括电阻、电源、开关等元件。

2. 使用万用表测量电阻的阻值。

3. 根据测量结果,验证欧姆定律。

(3) 实验结果与分析:通过实验,验证了欧姆定律的正确性。

2. 电容电路实验(1) 实验目的:学习电容的充放电原理,掌握电容的串联和并联。

(2) 实验步骤:1. 搭建电容电路,包括电容、电源、开关等元件。

2. 使用示波器观察电容的充放电过程。

3. 比较电容串联和并联时的充放电特性。

(3) 实验结果与分析:通过实验,掌握了电容的充放电原理和串联、并联特性。

3. 电感电路实验(1) 实验目的:学习电感的自感现象,掌握电感的串联和并联。

(2) 实验步骤:1. 搭建电感电路,包括电感、电源、开关等元件。

2. 使用示波器观察电感的自感现象。

3. 比较电感串联和并联时的自感现象。

(3) 实验结果与分析:通过实验,掌握了电感的自感现象和串联、并联特性。

4. 交流电路实验(1) 实验目的:学习交流电的基本概念,掌握交流电路的功率计算。

(2) 实验步骤:1. 搭建交流电路,包括电阻、电容、电感、电源等元件。

2. 使用示波器观察交流电的波形和相位关系。

3. 计算交流电路的功率。

(3) 实验结果与分析:通过实验,掌握了交流电的基本概念和功率计算。

电路实验报告(8篇)

电路实验报告(8篇)

电路实验报告(8篇)电路实验报告(8篇)电路实验报告1一、实验题目利用类实现阶梯型电阻电路计算二、实验目的利用类改造试验三种构造的计算程序,实现类的封装。

通过这种改造理解类实现数据和功能封装的作用,掌握类的设计与编程。

三、实验原理程序要求用户输入的电势差和电阻总数,并且验证数据的有效性:电势差必须大于0,电阻总数必须大于0小于等于100的偶数。

再要求用户输入每个电阻的电阻值,并且验证电阻值的有效性:必须大于零。

此功能是由类CLadderNetwork的InputParameter ()函数实现的。

且该函数对输入的数据进行临界判断,若所输入数据不满足要求,要重新输入,直到满足要求为止。

本实验构造了两个类,一个CResistance类,封装了电阻的属性和操作,和一个CLadderNetwork类,封装了阶梯型电阻电路的属性和操作。

用户输入的电势差、电阻总数、电阻值,并赋给CladderNetwork的数据,此功能是由类CLadderNetwork的InputParameter 函数实现的。

输出用户输入的电势差、电阻总数、电阻值,以便检查,,此功能是由类CLadderNetwork的PrintEveryPart()函数实现的。

根据用户输入的电势差、电阻总数、电阻值换算出每个电阻上的电压和电流。

此功能是由类CLadderNetwork的Calculate ()函数实现的。

最后输出每个电阻上的电压和电流,此功能是由类CLadderNetwork 的PrintResult()函数实现的'。

此程序很好的体现了面向对象编程的技术:封装性:类的方法和属性都集成在了对象当中。

继承性:可以继承使用已经封装好的类,也可以直接引用。

多态性:本实验未使用到多态性。

安全性:对重要数据不能直接操作,保证数据的安全性。

以下是各个类的说明:class CResistance //电阻类private:double voltage;double resistance;double current;public:void InitParameter(); //初始化数据void SetResist(double r); //设置resistance的值void SetCur(double cur); //设置current的值void SetVol(double vol); //设置voltage的值void CalculateCurrent(); //由电阻的电压和电阻求电流double GetResist(){return resistance;} //获得resistance的值保证数据的安全性double GetCur(){return current;} //获得current的值double GetVol(){return voltage;} //获得voltage的值class CResistance //电阻类{private:CResistance resists[MAX_NUM]; //电阻数组int num;double srcPotential;public:void InitParameter(); //初始化数据void InputParameter(); //输入数据void Calculate(); //计算void PrintEveryPart(); //显示输入的数据以便检查void PrintResult(); //显示结果四、实验结果程序开始界面:错误输入-1(不能小于0)错误输入0 (不能为0)输入正确数据3输入错误数据-1输入错误数据0输入正确数据4同样给电阻输入数据也必须是正数现在一次输入2,2,1,1得到正确结果。

电路实验原理实验报告

电路实验原理实验报告

电路实验原理实验报告实验报告:电路实验原理一、实验目的1. 熟悉电路基础理论知识,学习电路实验的基本原理和实验方法;2. 理解电路实验中的电流、电压、电阻等基本概念,并能正确使用万用表和电压表等实验仪器;3. 通过实验验证欧姆定律和基尔霍夫定律,并了解其在电路中的应用。

二、实验仪器1. 电流表、电压表、万用表;2. 直流电源、电阻器。

三、实验原理1. 欧姆定律:在恒定温度下,电流通过一段导体的大小与导体两端的电压成正比,与导体的长度成反比。

即I = U/R,其中I为电流,U为电压,R为电阻。

2. 基尔霍夫定律:电流在电路中各个节点的总和为零,电压元件的电流和为零。

四、实验步骤1. 实验一:验证欧姆定律(1)搭建简单电路,包括电源、电阻、电流表、电压表和导线。

(2)将电阻接入电路中,并使用电流表测量电路中的电流。

(3)使用电压表测量电阻两端的电压。

(4)根据欧姆定律的公式I = U/R,计算出电路中的电阻。

2. 实验二:验证基尔霍夫定律(1)搭建复杂电路,包括多个电阻、电流表、电压表和导线。

(2)选择一个电路节点,并使用电流表测量从该节点流出的电流和流入的电流。

(3)选择一个电路回路,并使用电压表测量该回路上各个电压元件的电压。

(4)计算出通过该回路的总电流和总电压,验证基尔霍夫定律。

五、实验结果分析1. 实验一:根据测量得到的电流和电压数据,计算出电阻的值,并与理论值做对比,验证欧姆定律的准确性。

2. 实验二:根据测量得到的电流和电压数据,验证基尔霍夫定律的成立。

六、实验结论1. 欧姆定律在实验中得到证实,即在电路中电流与电压成正比,与电阻成反比。

2. 基尔霍夫定律在实验中得到验证,即电流在电路中各个节点的总和为零,电压元件的电流和为零。

七、实验心得体会通过这次电路实验,我对电路的基本原理有了更深入的了解。

实验过程中,我学会了使用电流表、电压表和万用表等仪器进行实验测量,并能正确运用欧姆定律和基尔霍夫定律进行电路分析和计算。

电路原理高深实验报告

电路原理高深实验报告

一、实验目的1. 深入理解电路原理中的复杂概念,如模拟信号处理、数字信号处理、反馈控制理论等。

2. 通过实验验证理论,提高对电路原理的理解和应用能力。

3. 掌握实验仪器的操作方法和数据处理技巧。

二、实验原理本次实验涉及模拟信号处理、数字信号处理、反馈控制理论等多个方面,以下分别介绍:1. 模拟信号处理:利用模拟电路对信号进行滤波、放大、调制等处理,实现对信号的传输、处理和接收。

2. 数字信号处理:利用数字电路对信号进行采样、量化、编码、解码、滤波、压缩等处理,实现对信号的传输、处理和接收。

3. 反馈控制理论:通过反馈环节对系统进行调节,使系统输出满足预定要求。

三、实验内容及步骤1. 模拟信号处理实验(1)实验内容:设计并搭建一个低通滤波器,对输入信号进行滤波。

(2)实验步骤:① 根据滤波器要求,确定滤波器参数,如截止频率、品质因数等。

② 搭建滤波器电路,连接实验仪器。

③ 输入不同频率的信号,观察输出波形,分析滤波效果。

2. 数字信号处理实验(1)实验内容:设计并实现一个数字滤波器,对输入信号进行滤波。

(2)实验步骤:① 根据滤波器要求,确定滤波器类型,如FIR、IIR等。

② 编写滤波器程序,实现滤波功能。

③ 输入不同频率的信号,观察输出波形,分析滤波效果。

3. 反馈控制理论实验(1)实验内容:设计并搭建一个反馈控制系统,实现对被控对象的稳定控制。

(2)实验步骤:① 确定被控对象的数学模型,如传递函数、状态空间模型等。

② 设计控制器,如PID控制器、模糊控制器等。

③ 搭建反馈控制系统,连接实验仪器。

④ 输入不同的输入信号,观察系统输出,分析控制效果。

四、实验结果与分析1. 模拟信号处理实验结果实验结果表明,所搭建的低通滤波器能够有效滤除输入信号中的高频分量,实现对信号的滤波效果。

2. 数字信号处理实验结果实验结果表明,所实现的数字滤波器能够有效滤除输入信号中的高频分量,实现对信号的滤波效果。

3. 反馈控制理论实验结果实验结果表明,所搭建的反馈控制系统在输入不同信号时,能够实现对被控对象的稳定控制。

电路原理实验报告心得

电路原理实验报告心得

作为一名电子信息工程专业的学生,电路原理实验课程是我接触电路理论知识的第一个实践环节。

通过这一学期的电路原理实验,我对电路理论知识有了更深入的理解,同时也提升了我的动手能力和实验技巧。

以下是我对这次实验的一些心得体会。

一、实验准备的重要性在进行电路原理实验之前,充分的准备是必不可少的。

这不仅包括对实验原理的深入理解,还包括实验器材的检查和电路图的绘制。

在实验过程中,我发现那些准备充分的同学往往能够更加顺利地完成实验,因为他们对实验步骤和注意事项有清晰的认识。

而我则因为准备不充分,在实验过程中遇到了不少困难。

二、实验操作的严谨性电路原理实验要求操作严谨,每一个步骤都关系到实验结果的准确性。

在实验过程中,我深刻体会到了严谨操作的重要性。

例如,在焊接电路时,如果焊点不牢固,就会导致电路接触不良,进而影响实验结果。

此外,实验过程中还要注意避免电路短路、过载等问题,确保实验安全。

三、实验数据的准确性实验数据的准确性是评价实验结果的重要依据。

在实验过程中,我学会了如何正确使用实验器材,如万用表、示波器等,以获取准确的数据。

同时,我还了解到实验数据记录的规范性,如记录数据的时间、单位等。

这些经验对我今后的学习和工作都具有很大的帮助。

四、团队协作的必要性电路原理实验往往需要团队合作完成。

在实验过程中,我与同学们相互配合,共同解决问题。

通过这次实验,我认识到团队协作的重要性。

在团队中,每个人都有自己的专长和优势,只有充分发挥团队的力量,才能取得更好的实验效果。

五、实验中的创新思维在实验过程中,我学会了如何运用创新思维解决问题。

例如,在实验过程中遇到问题时,我会尝试从不同角度分析问题,寻找解决方案。

这种创新思维能力的培养对我今后的学习和工作具有重要意义。

六、实验后的总结与反思实验结束后,进行总结与反思是提高实验水平的重要途径。

通过总结实验过程中的成功经验和不足之处,我可以更好地掌握实验技能,提高实验水平。

同时,总结与反思还能帮助我发现自己在理论知识上的不足,为今后的学习指明方向。

电路实验报告(9篇)

电路实验报告(9篇)

电路实验报告(9篇)电路试验报告1一、试验仪器及材料1、信号发生器2、示波器二、试验电路三、试验内容及结果分析1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输出波形最大且不失真。

(以下输入输出值均为有效值)四、试验小结功率放大电路特点:在电源电压确定的状况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。

电路试验报告2一、试验目的1、更好的理解、稳固和把握汽车全车线路组成及工作原理等有关内容。

2、稳固和加强课堂所学学问,培育实践技能和动手力量,提高分析问题和解决问题的力量和技术创新力量。

二、试验设备全车线路试验台4台三、试验设备组成全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中心线路板、节气组件、电源、收放机、保险等。

四、组成原理汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、帮助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子掌握系统。

随着汽车技术的进展,汽车电器设备和电子掌握系统的应用日益增多。

五、试验方法与步骤1、汽车线路的特点:汽车电路具有单线、直流、低压和并联等根本特点。

(1)汽车电路通常采纳单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属局部连接,与车架或车身连接的导线又称为搭铁线。

蓄电池负极搭铁的汽车电路,称为负搭铁。

现代汽车普遍采纳负搭铁。

同一汽车的全部电器搭铁极性是全都的。

对于某些电器设备,为了保证其工作的牢靠性,提高灵敏度,仍旧采纳双线制连接方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一电位、电压的测定及电路电位图的绘制一.实验目的1.学会测量电路中各点电位和电压方法。

理解电位的相对性和电压的绝对性;2.学会电路电位图的测量、绘制方法;3.掌握使用直流稳压电源、直流电压表的使用方法。

二.原理说明在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。

据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。

若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该平面中标出,并把标出点按顺序用直线条相连接,就可得到电路的电位图,每一段直线段即表示该两点电位的变化情况。

而且,任意两点的电位变化,即为该两点之间的电压。

在电路中,电位参考点可任意选定,对于不同的参考点,所绘出的电位图形是不同,但其各点电位变化的规律却是一样的。

三.实验设备1.直流数字电压表、直流数字毫安表2.恒压源(eel-i、ii、iii、iv均含在主控制屏上,可能有两种配置(1)+6v(+5v),+12 v,0~30v可调或(2)双路0~30v可调。

)3.eel-30组件(含实验电路)或eel-53组件四.实验内容实验电路如图1-1所示,图中的电源us1用恒压源中的+6v(+5v)输出端,us2用0~+30v可调电源输出端,并将输出电压调到+12v。

1.测量电路中各点电位以图1-1中的a点作为电位参考点,分别测量b、c、d、e、f各点的电位。

用电压表的黑笔端插入a点,红笔端分别插入b、c、d、e、f各点进行测量,数据记入表1-1中。

以d点作为电位参考点,重复上述步骤,测得数据记入表1-1中。

图 1-12.电路中相邻两点之间的电压值在图1-1中,测量电压uab:将电压表的红笔端插入a点,黑笔端插入b点,读电压表读数,记入表1-1中。

按同样方法测量ubc、ucd、ude、uef、及ufa,测量数据记入表1-1中。

实验二基尔霍夫定律的验证一.实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解;2.学会用电流插头、插座测量各支路电流的方法;3.学习检查,分析电路简单的故障分析能力。

二.原理说明1.基尔霍夫定律基尔霍夫电流定律和电压定律是电路的基本定律,它们分别用来描述结点电流和回路电压,即对电路中的任一结点而言,在设定电流的参考方向下,应有∑i=0,一般流出结点的电流取正号,流入结点的电流取负号;对任何一个闭合回路而言,在设定电压的参考方向下,绕行一周,应有∑u=0,一般电压方向与绕行方向一致的电压取正号,电压方向与绕行方向相反的电压取负号。

在实验前,必须设定电路中所有电流、电压的参考方向,其中电阻上的电压方向应与电流方向一致,见图2-1所示。

2.检查,分析电路的简单故障电路常见的简单故障一般出现在连线或元件部分。

连线部分的故障通常有连线接错,接触不良而造成的断路等;元件部分的故障通常有接错元件、元件值错,电源输出数值(电压或电流)错等。

故障检查的方法是用万用表(电压档或电阻档)或电压表在通电或断电状态下检查电路故障。

(1)通电检查法:在接通电源的情况下,用万用表的电压档或电压表,根据电路工作原理,如果电路某两点应该有电压,电压表测不出电压,或某两点不该有电压,而电压表测出了电压,或所测电压值与电路原理不符,则故障必然出现在此两点之间。

(2)电检查法:在断开电源的情况下,用万用表的电阻档,根据电路工作原理,如果电路中某两点应该导通而无电阻(或电阻极小),万用表测出开路(或电阻极大),或某两点应该开路(或电阻很大),而测得的结果为短路(或电阻极小),则故障必然出现在此两点之间。

本实验用电压表按通电检查法检查、分析电路的简单故障。

三.实验设备1.直流数字电压表、直流数字毫安表2.恒压源3.eel-30组件(含实验电路)或eel-53组件四.实验内容实验电路如图2-1所示,图中的电源us1用恒压源中的+6v(+5v)输出端,us2用0~+30v可调电源输出端,并将输出电压调到+12v(以直流数字电压表读数为准)。

实验前先设定三条支路的电流参考方向,如图中的i1、i2、i3所示,并熟悉线路结构,掌握各开关的操作使用方法。

图 2-11.熟悉电流插头的结构将电流插头的红线端插入数字毫安表的红(正)接线端,电流插头的黑线端插入数字毫安表的黑(负)接线端。

2.测量支路电流将电流插头分别插入三条支路的三个电流插座中,读出各电流值。

按规定:在节点a,电流表读数为“+”,表示电流流出节点,读数为“-”,表示电流流入节点,然后根据图2-1中的电流参考方向,确定各支路电流的正、负号,并记入表2-1中。

3.测量元件电压实验三线性电路叠加性和齐次性的研究一.实验目的1.验证叠加定理;2.了解叠加定理的应用场合;3.理解线性电路的叠加性和齐次性。

二.原理说明叠加原理指出:在有几个电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个电源单独作用时在该元件上所产生的电流或电压的代数和。

具体方法是:一个电源单独作用时,其它的电源必须去掉(电压源短路,电流源开路);再求电流或电压的代数和时,当电源单独作用时电流或电压的参考方向与共同作用时的参考方向一致时,符号取正,否则取负。

在图3-1中:i1= i1’- i1”, i2=- i2’+ i2”, i3= i3’+ i3”, u=u’+u”。

(a) (b) (c)图 3-1叠加原理反映了线性电路的叠加性,线性电路的齐次性是指当激励信号(如电源作用)增加或减小k倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小k倍。

叠加性和齐次性都只适用于求解线性电路中的电流、电压。

对于非线性电路,叠加性和齐次性都不适用。

三.实验设备1.直流数字电压表、直流数字毫安表2.恒压源3.eel-30组件(含实验电路)或eel-53组件四.实验内容实验电路如图3-2所示,图中:r1=r2=r3=510ω, r2=1kω, r5=330ω,电源us1用恒压源中的+12v输出端,us2用0~30v可调电压输出端,并将输出电压调到+6v(以直流数字电压表读数为准),将开关s3投向r5侧。

图 3-21.us1电源单独作用( 将开关s1投向us1侧,开关s2投向短路侧),参考图3-1(b),画出电路图,表明各电流、电压的参考方向。

用直流数字毫安表接电流插头测量各支路电流:将电流插头的红接线端插入数字毫安表的红(正)接线端,电流插头的黑接线端插入数字毫安表的黑(负)接线端,测量各支路电流,按规定:在结点a,电流表的读数为“+”,表示电流流出结点,读数为“-”,表示电流流入结点,然后根据电路中的电流参考方向,确定各支路电流的正、负号,并将数据记入表3-1中。

用直流数字电压表测量各电阻元件两端电压:电压表的红(正)接线端应插入被测电阻元件电压参考方向的正端,电压表的黑(负)接线端插入电阻元件的另一端(电阻元件的电压参考方向与电流的参考方向一致),测量各电阻元件两端电压,数据记入表3-1中。

s212s2标明各电流、电压的参考方向。

重复步骤1的测量并将数据记录记入表格3-1中。

3.us1和us2共同作用时(开关s1和s2分别投向us1和us2侧),各电流、电压的参考方向见图3-2。

完成上述电流、电压的测量并将数据记入表格3-1中。

4.将us2的数值调至+12v,重复第2步的测量,并将数据记录在表3-1中。

5.将开关s3投向二极管vd侧,即电阻r5换成一只二极管1n4007,重复步骤1~4的测量过程,并将数据记入表3-2中。

一.实验目的1.加深对受控源的理解;2.熟悉由运算放大器组成受控源电路的分析方法,了解运算放大器的应用;3.掌握受控源特性的测量方法。

二.实验原理1.受控源受控源向外电路提供的电压或电流是受其它支路的电流或电压的控制,因而受控源是双口元件:一个为控制端口,或称输入端口,输入控制量(电压或电流),另一个为受控端口或称输出端口,向外电路提供电压或电流。

受控端口的电压或电流,受控制端口的电压或电流的控制。

根据控制变量与受控变量之间的不同组合,受控源可分为四类:(1)电压控制电压源(vcvs),如图4-1(a)所示,其特性为:u2??u1 其中:?? u2称为转移电压比(即电压放大倍u1 数)。

(2)电压控制电流源(vccs),如图4-1(b)所示,其特性为:i2?gu1 其中:gm?i2称为转移电导。

u1 图 4- 1 (3)电流控制电压源(ccvs),如图4-1(c)所示,其特性为:u2?ri1 其中:r?u2称为转移电阻。

i1 (4)电流控制电流源(cccs),如图4-1(d)所示,其特性为:i2??i1 其中:??i2称为转移电流比(即电流放大倍数)。

i1 2.用运算放大器组成的受控源运算放大器的电流符号如图4-2所示,具有两个输入端:同向输入端u?和反向输入端u?,一个输出端u0。

放大倍数为a,则0a(uu)。

对于理想运算放大器,放大倍数a为?,输入电阻为?,输出电阻为0,由此可得两个特性:特性1:u??u?特性2:i??i??0(1)压控制电压源(vcvs)电压控制电压源电路如图4-3所示。

由运算放大器的特性1可知:u??u??u1 则ir1?u1u?u1 ir2?2 r1r2 由运算放大器的特性2可知:ir1 代入ir1、ir2 得:u2?(1??ir2 r2)u1 r1 可见,运算放大器的输出电压u2受输入电压u1的控制,其电路模型如图4-1(a)所示,转移电压r比:??(1?2)。

r1 (2)电压控制电流源(vccs)电压控制电流源电路如图4-4所示。

由运算放大器的特性1可知:u??u??u1 则ir?u1 r1篇二:电路原理大作业实验报告电路原理大作业班级:组队人员:篇三:电路原理实验报告篇四:电路原理实验报告模板专业:________________ 姓名:________________ 学号:________________ 日期:________________ 桌号:________________ 课程名称:_______________________________指导老师:________________成绩:__________________ 实验名称:_______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得本实验存在随机误差由于影响较小,忽略不计由于仪表误差对实验影响较小,忽略不计实验5 含源一端口网络等效参数和外特性的测量1、原网络外特性测量:表7-5-1 y = 10.28796 – 0.51719x 表7-5-2 画出等效电路,并标注其中各元件参数。

相关文档
最新文档