函数的定义域值域及解析式

合集下载

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。

因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。

⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。

然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。

求解函数定义域、值域、解析式讲义(精华版)

求解函数定义域、值域、解析式讲义(精华版)

3. 已知函数 f( x 1) x 2 x ,求函数 f (x) 的解析式。
4. 方程组法
当关系式中同时含有 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1) 时,常将原式中的 x 用 x (或 1 )代替,
x
x
从而得到另一个同时含 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1 ) 的关系式, 将这两个关系式联立, 解方程组解出 f ( x) 。 x
出参数的范围。
【例 1】 ( 1)若函数 f ( x)
(a 2 1) x2 ( a 1) x 2 的定义域为 R,求实数 a 的取值范围。 a1
(2)判断 k 为何值时,函数 y
2kx 8 kx2 2kx
关于 x 的定义域为 1
R。
2. 函数值域的逆向应用
【例 2】 求使函数 y
x2 x2
ax x
2 的值域为 ( 1
【例 1】 求下列函数的定义域
( 1) y x 1
( 2) y
1
2x
( 3) y
1
( x 1)0
2x
【例 2】 求下列函数的定义域
(1) y
1; 11
1x
( 2) y
4 x2 ; x1
))))))
))))))))
( 3) y
1
3 x2 5
7 - x2 ;
(4) y
x2 3x 10 x11
【当堂检测】
( 3)若函数 f ( x) 是整式型函数,则定义域为全体实数。
( 4)若函数 f ( x) 是分式型函数,则定义域为使分母不为零的实数构成的集合。
( 5)若函数 f (x ) 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 ( 6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 ( 7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有

函数解析式、定义域、值域

函数解析式、定义域、值域
解:当m=0时,函数的定义域为R; 当m≠0时,mx2-6mx+8+m≥0是二次不等式,其对一切实数x都成立
的充要条件是
m 0



(6m)2

4m(m

8)

0
0
m
1
综上可知0≤m≤1。 注:不少同学容易忽略m=0的情况,希望通过此例解决问
题。
例4 已知函数 f (x) kx 7 kx 2 4kx 3
三:换元法
• 通过代数换元法或者三角函数换元法, 把无 理函数化为代数函数来求函数值域的方法 (关注新元的取值范围).
• 例3 求函数 y=x- x-1 的值域:
注:换元法是一种非常重工的数学解题方法, 它可以使复杂问题简单化,但是在解题的 过程中一定要注意换元后新元的取值范围。
3、求下列函数的值:
是:由a≤x≤b,求g(x)的值域,即所求f(x)的定义域。 例2 已知f(2x+1)的定义域为[1,2],求f(x)的定义域。
解:因为1≤x≤2, 2≤2x≤4,
3≤2x+1≤5. 即函数f(x)的定义域是{x|3≤x≤5}。
(3)已知f(2x-1)的定义域是[0,1],求f(3x)的定义域。 解:因为0≤x≤1,0≤2x≤2,-1≤2x-1≤1.
所以函数f(3x)的定义域是-1≤3x≤1即 {x|-1/3≤x≤1/3}。
例3 已知函数 y mx 2 6mx m 8
的定义域为R求实数m的取值范围。
分析:函数的定义域为R,表明mx2-6mx+8+m≥0,使一切x∈R 都成立,由x2项的系数是m,所以应分m=0或m≠0进行讨论。
不小于零。 4.零的零次幂没有意义,即f(x)=x0,x≠0。

2.1函数的解析式及定义域与值域

2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。

求函数定义域、值域、对应关系(知识点+例题)pdf版

求函数定义域、值域、对应关系(知识点+例题)pdf版

2
2
综上 1 y 1 .
2
2
答案:[ 1 , 1 ] 22
(6)单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值 域.
例 17 求函数 y 4x 1 3x 的值域.
解析:由解析式知1 3x 0 ,即 x 1 3
4x 单调递增, 1 3x 也递增,则 y 4x 1 3x 在定义域内单调递增
x3
x3
答案:{y | y 2}
(5)判别式法:把函数转化为关于 x 的二次方程,通过方程有实根,判别式 0 ,从而 求得原函数的值域.
例 15
求函数
y
3x x2
4
的值域.
解析:将函数化为 yx2 3x 4y 0
原函数有意义,等价于此方程有解
y 0 时, x 0 有解符合题意
y 0 时,判别式 9 16y2 0 ,解得 3 y 0或0 y 3
{x | x 0}
R 决定 [1,1] [1,1]
R (, 2 k ) (2 k , )
2.函数的定义域的求法
函数的定义域就是使得整个函数关系式有意义的实数的全体构成的集合.
(1)求定义域注意事项:★
①分式分母不为 0;
②偶次根式的被开方数大于等于 0;
③零次幂底数不为 0;
④对数的真数大于 0;
例 21 已知 f ( 2 1) lg x ,求 f (x) 的解析式. x
解析:令 2 1 t ,则 x 2 且 t 1
x
t 1
带入原式得 f (t) lg 2 (t 1) t 1
f (x) lg 2 (x 1) . x 1
答案: f (x) lg 2 (x 1) x 1
例 22 已知 f ( x 1) x 2 x ,求 f (x) 的解析式.

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。

函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。

定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。

常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。

下面将逐个介绍这些函数解析式的定义域和值域的求法。

1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。

线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。

2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。

对于一般的二次函数,定义域是实数集,即(-∞, +∞)。

值域则取决于二次函数的开口方向和开口点的位置。

-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。

-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。

3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。

指数函数的定义域是实数集,即(-∞,+∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,指数函数的值域为(0,+∞)。

-当a>1时,指数函数的值域为(0,+∞)。

-当a=1时,指数函数的值域为{1}。

4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。

对数函数的定义域是正实数集,即(0, +∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,对数函数的值域为(-∞,+∞)。

-当a>1时,对数函数的值域为(-∞,+∞)。

5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的定义域是实数集,即(-∞,+∞)。

值域则取决于具体的三角函数类型。

-正弦函数的值域为[-1,1]。

-余弦函数的值域为[-1,1]。

函数的定义域、解析式、值域

函数的定义域、解析式、值域

函数的定义域一、几类函数的定义域(1)如果f(x )是整式,那么函数的定义域是实数集R ;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合。

(4)如果2[()]f x ,那么函数的定义域是使f(x)不等于0的实数的集合。

(5)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数的集合(即求各集合的交集)(6)满足实际问题的意义。

二、例题讲解例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(例2 求下列函数的定义域: ①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x 11111++ ④x x x x f -+=)1()( ⑤373132+++-=x x y例3 若函数a ax ax y 12+-=的定义域是R ,求实数a 的取值范围例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。

练习:设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域例7已知f(2x -1)的定义域为[0,1],求f(x)的定义域已知f(x 2)的定义域为[-1,1],求f(x)的定义域若()y f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是 () A.[]1,1- B⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡1,21 D.10,2⎡⎤⎢⎥⎣⎦已知函数()11xf x x +=-的定义域为A,函数()y f f x =⎡⎤⎣⎦的定义域为B,则( )A.A B B = B.B A ∈ C.A B B = D. A B =例8、若函数f (x )=x -4mx 2+4mx +3的定义域为R ,求实数m 的取值范围练习、若函数222(1)(1)1y a x a x a =-+-++的定义域为R ,求实数a 的取值范围例9、(1)设二次函数f (x )满足f (x-2)=f (-x-2),且图像在y 轴上的截距为1,被x 轴截得的线段长为22,求f (x )的解析式;(2)已知,2)1(x x x f +=+求f (x )(3)已知f (x )满足x xf x f 3)1()(2=+,求f (x )例10、若函数()f x 的定义域为[,]a b ,且0b a >->,则函数()()()g x f x f x =--的定义域是_______________________例11. 已知函数m mx mx y ++-=862的定义域为R.(1)求实数m 的取值范围;(2)当m 变化时,若y 的最小值为f(m),求函数f(m)的值域.例12. 若函数y=x 2-6x-16的定义域为[0,m],值域为[-25,-16],则m 的取值范围( )A.(0,8]B.[3,8]C.[3,6]D.[3,+∞)例13. 已知1()1f x x =+,则函数(())f f x 的定义域是( ). A .{|1}x x ≠- B .{|2}x x ≠-C .{|12}x x x ≠-≠-且D .{|12}x x x ≠-≠-或函数的解析式我们知道,把两个变量的函数关系用一个等式表示,这个等式就叫做函数的解析表达式,简称解析式.下面我们通过例题来说明求函数解析式的几种常用方法(一)待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结
一、常见函数解析式
1、二次函数
解析式:y=ax2+bx+c
定义域:全实数集
值域:ax2+bx+c的值
2、三角函数
解析式:y=sinx,y=cosx,y=tanx,y=cotx,y=secx,y=cscx
定义域:全实数集
值域:[-1,1]
3、反三角函数
解析式:y=arcsinx,y=arccosx,y=arctanx,y=arccotx,
y=arcsecx,y=arccscx
定义域:-[1,1],(-∞,+∞)
值域:[-π/2,π/2]
4、双曲函数
解析式:y=sinhx,y=coshx,y=tanhx,y=cothx,y=sechx,y=cschx 定义域:全实数集
值域:[-1,1]
5、对数函数
解析式:y=lgx,y=lnx
定义域:x>0
值域:(-∞,+∞)
6、指数函数
解析式:y=ex
定义域:全实数集
值域:(0,+∞)
二、定义域和值域的求法
1、函数的定义域
定义域的求法:一般取出函数的变量,求出它所在的域,如果有多个变量,一般要满足多个变量的取值范围,才能满足函数的定义域,比如:函数f(x,y)=x2+y2,则它的定义域就是x,y取得所有实数
2、函数的值域
值域的求法:一般取定义域,将变量取不同的值,将函数求出不同的值并且收集,得到函数的值域,比如:函数f(x)=x2+x+2,值域就是1,3,5,7……。

2.1函数的定义域、值域、解析式

2.1函数的定义域、值域、解析式

函数的定义域、值域、解析式一、知识点1、定义域的概念和求法2、值域的概念和求法3、映射、对应法则 区间概念设,a b R ∈且a b <(,a b 称为端点,在数轴上注意实心空心的区分) 满足a x b ≤≤的全体实数x 的集合,叫做闭区间,记作[,]a b 满足a x b <<的全体实数x 的集合,叫做开区间,记作(,)a b满足a x b ≤<或a x b <≤的全体实数x 的集合,叫做半开半闭区间,记作[,)a b 或(,]a b 分别满足,,,x a x a x a x a ≥>≤<的全体实数的集合分别记作[,),(,),(,],(,)a a a a +∞+∞-∞-∞一、定义域1、定义域的概念设集合A 是一个非空实数集,对A 内任意实数x ,按照确定的法则f ,都有唯一确定的实数值y 与它对应,则这种对应关系叫做集合A 上的一个函数,记做(),y f x x A =∈。

x 叫做自变量,自变量取值的范围所组成的集合叫做函数的定义域。

函数的定义域和值域一定表示成集合或区间的形式。

(易错点)2、函数定义域的求法(方法对接):(1)分式中的分母不为零; (2)偶次方根下的数(或式)大于或等于零; (3)a 的零次方没有意义; (后续课程会涉及的定义域:指数式的底数,对数式的底数和真数,正余切函数和反三角函数的定义域)例1、求下列函数的定义域(分母和偶次方根)1()1f x x =+ 221533x x y x --=+-练习、求下列函数的定义域:1()5f x x =- ()13f x x x =-++ ()f x x x =+- 262x y x -=+ 021(21)4111y x x x =+-+-+- 211()1x y x -=-+(选讲)复合函数的定义域:函数()f x 的定义域为(,)a b ,函数()g x 的定义域为(,)m n ,则函数[]()f g x 的定义域为()(,)(,)g x a b x m n ∈⎧⎨∈⎩,解不等式,最后结果才是。

求函数的解析式 定义域 值域

求函数的解析式 定义域 值域

一. 求函数的解析式一.待定系数法:在已知函数解析式的构造时,可用待定系数法。

1.已知()f x 是一次函数,且[x ]9x 8f f ()=+,求()f x2.已知二次函数()f x 满足:2(1)(1)24f x f x x x ++-=-,求()f x二.配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

1.已知 2()1f x x =-,求2()f x x +2. 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 3.已知3311()f x x x x +=+,求()f x 4.()x f cos 1-=2sin x ,求()f x5.若函数x x x f 2)1(2-=+,则)3(f = .三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

1. 已知x x x f 2)1(+=+,求)1(+x f2 .已知f ⎪⎭⎫ ⎝⎛+x 11=21x — 1,求()f x四、构造方程组消元法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

1. 设,)1(2)()(x xf x f x f =-满足求)(x f 2.()f x 满足:12()()1f x f x x-=+求()f x 3.()f x 满足:()2()32f x f x x --=+,求()f x4、设函数()f x 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求()f x 的解析式.函数的定义域和值域1.求下列函数的定义域:)13lg(13)(2++-=x x x x f y .2. 函数=y R ,则k 的取值范围是( )3.已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。

函数解析式,定义域,值域的求法

函数解析式,定义域,值域的求法

函 数1:设,A B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记做2:对于函数(),y f x x A =∈,其中x 叫做自变量,x 的取值范围A 叫做 ;与x 的值相对应的y 值叫做 ,函数值的集合{}()|f x x A ∈叫做函数的 3:函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。

4:函数的表示法有 、 、 .5:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数通常叫 ,它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。

函数解析式的四种求法:(1):换元法 (2):配凑法(3):待定系数法 (4):构造方程组法1:确定下列函数的解析式(1) 已知1)(2+=x x f ,求)1(+x f(2) 已知11)1(2++=+)(x x f ,求)(x f(3)(换元法,配凑法)已知23)1(2++=+x x x f ,求()f x(4)(配凑法):已知2211()f x x x x+=+,求()f x (5) (待定系数法)设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f(6)(构造方程组法)已知12()()f f x x x+=,求()f x2:求下列函数的定义域1:21()3f x x =- 2:y = 3:y = 4:()f x =5:()01()x f x x x +=- 6:2(0)()2(01)(14)x x f x x x x ⎧-<⎪=≤<⎨⎪-≤≤⎩ 7: 1122---=x x y1.函数值域的求法:①直接法:利用常见函数的值域来求.②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想⑤利用某些函数的有界性:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如)0(>+=k x k x y ,利用均值不等式公式或单调性来求值域;⑦数形结合:根据函数的几何图形,利用数型结合的方法来求值域. 2.确定函数的值域的原则:定义域优先原则3:求下列函数的值域:1: )322R x x x y ∈-+=( 2:]2,1[,322∈-+=x x x y 3 113+-=x x y 4:1222+-=x x y 5: 5212+-=x x y 6: 542++-=x x y7: x x y 21--= 8:()212log 45y x x =-+9:2sin 3sin 4y x x =-+ 10: 1sin 21sin 2-+=x x y11: sin 1cos 2x y x +=+ 12:1y x x =+(0)x >两个函数相等的条件:定义域和对应法则相同4:判断下列各组中的两个函数是否是同一函数1.3)5)(3(1+-+=x x x y 52-=x y 2。

函数及其表示、定义域、解析式、值域的求法

函数及其表示、定义域、解析式、值域的求法
2、 f ( x 4)定义域为[-1, 0),求函数f(x)的定义域。
小结:已知f[g(x)]的定义域是B,求f(x)的 定义域.其实质是已知f[g(x)]中的x取值范围 是B.求出g(x)的值域,此范围就是f(x)的定 义域。
求函数值域常用方法
(一)观察法:当函数结构不复杂时,通过简
单变形和观察,利用熟知函数值域来求。
2
由 f ( x 2) f ( x 2)
得 4a b 0
x1 x2 2 2 b2 4ac 8a2 a
又 c 1
1 解得 a , b 2, c 1 2 1 2 f ( x) x 2 x 1 2
• 解法二、 由 f ( x 2) f ( x 2) 得 y f ( x) 的对称轴为
函数解析式的常用方法有: 待定系数法 换元法 凑配法 解函数方程组法 代入法
(一)、待定系数法
例1 设二次函数 f ( x) 满足 f ( x 2) f ( x 2) y 且图象在 轴上的截距为1,在 x 轴截
得的线段长为 2 2 ,求
f ( x)
的解析式。
• 解法一、 设 f ( x) ax bx c(a 0)
9.已知 F(x)=f(x)-g(x), 其中 f(x)=loga(x-b), 当且仅当点 (x0, y0) 在 f(x) 的图象上时, 点 (2x0, 2y0) 在 y=g(x) 的图象上(b>1, a>0 且 a≠1), (1)求 y=g(x) 的解析式; (2)当 F(x)≥0 时, 求 x 的范围. y0=loga(x0-b), g(x)=2loga( x -b). 解: (1) 由已知 2y =g(2x ) 2 0 0 x (2) 由(1) 知: F(x)=f(x)-g(x)=loga(x-b)-2loga( 2 -b). 故由 F(x)≥0 可得: loga(x-b)≥2loga( x -b). 2 x-b≥( x -b)2, 2 当 a>1 时, x 解得: 2b<x≤2b+2+2 b+1 . 2 -b>0, x-b≤( x -b)2, 2 解得: x≥2b+2+2 b+1 . 当 0<a<1 时, x -b>0, 2 综上所述: 当 a>1 时, 2b<x≤2b+2+2 b+1 ; 当 0<a<1 时, x≥2b+2+ 2 b+1.

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

专题04 函数的定义域、解析式、值域(知识梳理)(新高考地区专用)(解析版)

专题04 函数的定义域、解析式、值域(知识梳理)(新高考地区专用)(解析版)

专题04 函数的定义域、解析式、值域(知识梳理)一、函数的定义域定义域特指x 的值。

函数题的解答不能不考虑函数的定义域,抛弃函数的定义域解决函数问题没有任何意义。

但大部分学生都会忽视这一问题,所以被称为隐形杀手,一定要确立定义域优先的思想。

基本解题思路:①注意“定义域优先”;②不要对解析式化简变形;③在解不等式组时要细心、快而准,分类讨论要全面,取交集时需要借助数轴; ④要注意端点值或边界值能否取到; ⑤定义域要用集合或者区间的形式写出; ⑥换元法要注意新变量的取值范围;⑦注意对于指数不等式、对数不等式和分式不等式的解法的通用方法。

(一)单一函数经过四则运算结合求函数的定义域。

1、基本函数定义域的要求: (1)分式函数,分母不为0;(2)偶次根式函数的被开方数为非负数; (不要忘记等号) (3)一次函数、二次函数的定义域为R ;(4)0x 中的底数不等于0; (n x -中的底数也不等于0) (5)指数函数x a y =定义域为R ,对数函数x y a log =定义域为0>x ; (注意0>a 且1≠a ) (6)x y sin =、x y cos =的定义域为R ;x y tan =的定义域为},2|{z k k x x ∈π+π≠;x y cot =的定义域为},|{z k k x x ∈π≠;(7)实际问题应考虑实际限制。

2、剥洋葱原理→一层一层→交集(同时成立) →最后把求定义域转化成解不等式。

例1-1.函数3121)(++-=x x f x 的定义域为( )。

A 、]0,3()3,(---∞ B 、]1,3()3,(---∞ C 、]0,3(- D 、]1,3(- 【答案】C【解析】⎩⎨⎧>+≥-03021x x ,解得03≤<-x ,故选C 。

例1-2.函数211ln)(x xx x f -++=的定义域为 。

【答案】]1,0( 【解析】0111>+=+xx x 且0≠x 且012≥-x 解得10≤<x 。

函数定义域、值域、解析式求法

函数定义域、值域、解析式求法
2
可用判别式法
9月25日作业:
1.设等差数列{an}的前n项和为Sn,若a1=-11,
a4+a6=-6,求当Sn取最小值时,n的值 2.已知 ABC 的三边长成公比为 2 的等比数列,
求三角形ABC最大角的余弦值。
五、解析式求法
(一)待定系数法 例1:f(x)是一个一次函数,已知f(0)=1, f(-1)=6,求 f(x)。 例2:一次函数f(x)满足f[f(x)]=4x+6, 求 f(x)。 例3:二次函数f(x),有f(x+1)+f(x-1)= 2 2x -4x,求f (x)。
g ( x) g ( x) 0
0
3、 g(x) g ( x) 0
4、真数大于零,底数大于零且不等于1
例 题:
1 : 求函数f ( x)
解: 依题有:
x 2 5x 6 的定义域 x2
x2 5x 6 0 x2 0
解得:
x 3或x 2
x 2 5x 6 的定义域是 : {x x 3或x 2} x2
f ( x)
练 习:
1 : 求函数f ( x) log x
解: 依题有
(1 x )
(1 x) 的定义域
x 1 x 0且x 1 x 1
1 2
x 1 0 x 0且x 1 1 x 0
1 2
f ( x) log x
(1 x )
的 取 值 范 围
分离常数法(或反函数法)
ax b y cx d
例.求下列函数值域
函数值域为 y y
a c
3x 1 y x2
1 3x y x6

函数的定义域、值域及解析式

函数的定义域、值域及解析式

§2.2 函数的定义域、值域及解析式知识点: 1. 函数的定义域(1)函数的定义域是指使函数有意义的自变量的取值范围. (2)求定义域的步骤①写出使函数式有意义的不等式(组); ②解不等式组;③写出函数定义域.(注意用区间或集合的形式写出) (3)常见基本初等函数的定义域 ①分式函数中分母不等于零.②偶次根式函数、被开方式大于或等于0. ③一次函数、二次函数的定义域为R .④y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . ⑤y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .⑥函数f (x )=x 0的定义域为{x |x ∈R 且x ≠0}. 2. 函数的值域(1)在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域.(2)基本初等函数的值域 ①y =kx +b (k ≠0)的值域是R .②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞;当a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a .③y =kx (k ≠0)的值域是{y |y ∈R 且y ≠0}.④y =a x (a >0且a ≠1)的值域是(0,+∞). ⑤y =log a x (a >0且a ≠1)的值域是R . ⑥y =sin x ,y =cos x 的值域是[-1,1]. ⑦y =tan x 的值域是R . 3. 函数解析式的求法(1)换元法;(2)待定系数法;(3)消去法:若所给解析式中含有f (x )、f ⎝⎛⎭⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式. [难点]1. 函数的定义域是研究函数问题的先决条件,它会直接影响函数的性质,所以要树立定义域优先的意识.2. (1)如果函数f (x )的定义域为A ,则f (g (x ))的定义域是使函数g (x )∈A 的x 的取值范围.(2)如果f (g (x ))的定义域为A ,则函数f (x )的定义域是函数g (x )的值域. (3)f [g (x )]与f [h (x )]联系的纽带是g (x )与h (x )的值域相同. 自测:1. (2012·山东改编)函数f (x )=1ln (x +1)+4-x 2的定义域为____________.答案 (-1,0)∪(0,2] 解析 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0得-1<x ≤2,且x ≠0.2. 设g (x )=2x +3,g (x +2)=f (x ),则f (x )=________.答案 2x +7解析 由g (x )=2x +3,知f (x )=g (x +2)=2(x +2)+3=2x +7.3. 若f (x )满足f (x +y )=f (x )+f (y ),则可写出满足条件的一个函数解析式f (x )=2x .类比可以得到:若定义在R 上的函数g (x ),满足(1)g (x 1+x 2)=g (x 1)g (x 2);(2)g (1)=3;(3)∀x 1<x 2,g (x 1)<g (x 2),则可以写出满足以上性质的一个函数解析式为__________. 答案 g (x )=3x解析 由①知g (x )应该是指数函数模型,结合②③知g (x )=3x .抽象离不开具体,对于一些常见的恒等式,其对应的函数模型应该熟悉.如:一、指数函数模型,对应的性质为:f (m +n )=f (m )·f (n )或f (m -n )=f (m )f (n );二、对数函数型,对应的性质为:f (mn )=f (m )+f (n )或f (mn )=f (m )-f (n );三、正比例函数模型,对应的性质为:f (m +n )=f (m )+f (n );四、余弦函数型,对应的性质为:f (m +n )+f (m -n )=2f (m )f (n ). 4.函数f (x )=log 2(3x +1)的值域为___________________.答案 (0,+∞)解析 由3x >0知3x +1>1.又f (x )在(0,+∞)为增函数且f (1)=0, ∴f (x )=log 2(3x +1)>0.5. 已知f ⎝⎛⎭⎫1x =1+x21-x 2,则f (x )=__________.答案 x 2+1x 2-1(x ≠0)解析 令1x =t ,则x =1t 且t ≠0,∴f (t )=1+⎝⎛⎭⎫1t 21-⎝⎛⎭⎫1t 2=t 2+1t 2-1,即f (x )=x 2+1x 2-1(x ≠0).题型一 求函数的定义域 例1 (1)函数y =ln (x +1)-x 2-3x +4的定义域为______________.(2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是____________.思维启迪:函数的定义域是使解析式有意义的自变量的取值集合;抽象函数的定义域要注意自变量的取值和各个字母的位置. 答案 (1)(-1,1) (2)[0,1)解析 (1)由⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,得-1<x <1.(2)依已知有⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解之得0≤x <1,定义域为[0,1).探究提高 (1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].(1)若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是__________.答案 ⎣⎡⎭⎫0,34解析 f (x )的定义域为R ,即mx 2+4mx +3≠0恒成立. ①当m =0时,符合条件.②当m ≠0时,Δ=(4m )2-4×m ×3<0, 即m (4m -3)<0,∴0<m <34.综上所述,m 的取值范围是⎣⎡⎭⎫0,34. (2)已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是__________. 答案 [1,3]解析 由⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3]. 题型二 求函数的值域 例2 求下列函数的值域:(1)y =x 2+2x (x ∈[0,3]); (2)y =x -3x +1;(3)y =x -1-2x ; (4)y =log 3x +log x 3-1.思维启迪:根据各个函数解析式的特点,考虑用不同的方法求解.(1)配方法;(2)分离常数法;(3)换元法或单调性法;(4)基本不等式法. 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15, 即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1. 因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}. (3)方法一 (换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(4)(基本不等式法)函数定义域为{x |x ∈R ,x >0,且x ≠1}. 当x >1时,log 3x >0, 于是y =log 3x +1log 3x-1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是 y =log 3x +1log 3x -1=-⎣⎡⎦⎤(-log 3x )+⎝⎛⎭⎫1-log 3x -1 ≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).探究提高 (1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.求下列函数的值域:(1)y =x 2-xx 2-x +1; (2)y =2x -1-13-4x .解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0. ∵y =1时,x ∈∅,∴y ≠1.又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0, 解得-13≤y ≤1.综上得-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法)设13-4x =t ,则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数, 所以g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法) 函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小, 所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数, 所以当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112, 故原函数的值域是⎝⎛⎦⎤-∞,112. 题型三 求函数的解析式例3 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式;(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. 思维启迪:求函数的解析式,要在理解函数概念的基础上,寻求变量之间的关系. 解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1. (3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).探究提高 函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)消去法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0),又f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1, ∴f (x )=x 2-x +3.函数问题首先要考虑定义域典例:(14分)已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域.审题视角 (1)f (x )的定义域;(2)y =[f (x )]2+f (x 2)的定义域与f (x )的定义域不同;(3)如何求y=[f(x)]2+f(x2)的定义域.规范解答解∵f(x)=2+log3x的定义域为[1,9],要使[f(x)]2+f(x2)有意义,必有1≤x≤9且1≤x2≤9,∴1≤x≤3,[4分]∴y=[f(x)]2+f(x2)的定义域为[1,3].又y=(2+log3x)2+2+log3x2=(log3x+3)2-3.[8分]∵x∈[1,3],∴log3x∈[0,1],∴y max=(1+3)2-3=13,y min=(0+3)2-3=6.[12分]∴函数y=[f(x)]2+f(x2)的值域为[6,13].[14分]温馨提醒(1)本题考查了函数的定义域、值域的概念及求法,是函数的重点知识.(2)本题易错原因是忽略对定义域的研究,致使函数y=[f(x)]2+f(x2)的讨论范围扩大.(3)解答有关函数的问题要规范,研究函数问题,首先研究其定义域,这是解答的规范,也是思维的规范.方法与技巧1.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先意识.求函数的定义域关键在于列全限制条件和准确求解方程或不等式(组);对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义.2.函数值域的几何意义是对应函数图象上点的纵坐标的变化范围.利用函数几何意义,数形结合可求某些函数的值域.3.函数的值域与最值有密切关系,某些连续函数可借助函数的最值求值域,利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.失误与防范1.求函数的值域,不但要重视对应法则的作用,而且还要特别注意定义域对值域的制约作用.函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.特别要重视实际问题中的最值的求法.2.对于定义域、值域的应用问题,首先要用“定义域优先”的原则,同时结合不等式的性质.A 组 专项基础训练 (时间:35分钟,满分:62分)一、填空题(每小题5分,共35分) 1. 若f (x )=1log 12(2x +1),则f (x )的定义域为____________.答案 ⎝⎛⎭⎫-12,0 解析 要使f (x )有意义,需log 12(2x +1)>0=log 121,∴0<2x +1<1,∴-12<x <0.2. (2012·福建改编)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为________. 答案 0解析 根据题设条件,∵π是无理数,∴g (π)=0, ∴f (g (π))=f (0)=0.3. 已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________.答案 6解析 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧12+p +q =022+2p +q =0,∴⎩⎪⎨⎪⎧p =-3q =2,∴f (x )=x 2-3x +2. ∴f (-1)=(-1)2+3+2=6.4. 已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为____________. 答案 f (x )=2x1+x 2(x ≠-1)解析 令t =1-x 1+x (t ≠-1),由此得x =1-t 1+t ,所以f (t )=1-⎝⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t1+t 2,从而f (x )的解析式为f (x )=2x1+x 2(x ≠-1). 5. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0.6. 若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是__________.答案 ⎣⎡⎦⎤12,2解析 由-1≤log 2x ≤1得log 212≤log 2x ≤log 22,由y =log 2x 在(0,+∞)上递增,得12≤x ≤2.7. 若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是__________.答案 [-5,-1]解析 ∵1≤f (x )≤3,∴1≤f (x +3)≤3, ∴-6≤-2f (x +3)≤-2,∴-5≤F (x )≤-1. 二、解答题(共27分)8. (13分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N . 解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32,N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或x <1};(2)M ∩N ={x |x ≥3},M ∪N ={x |x <1或x >32}.9. (14分)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.(1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. 解 (1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,∴c =0,即f (x )=ax 2+bx .又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧ 2a +b =b +1a +b =1,解得⎩⎨⎧ a =12b =12.∴f (x )=12x 2+12x . (2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2) =12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18. ∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组 专项能力提升(时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1. (2012·江苏)函数f (x )=1-2log 6x 的定义域为________.答案 (0,6]解析 要使函数f (x )=1-2log 6x 有意义,则⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0. 解得0<x ≤ 6.2. 设f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是____________.答案 [0,+∞)解析 f (x )的图象如图.g (x )是二次函数,且f (g (x ))的值域是[0,+∞),∴g (x )的值域是[0,+∞).3. 设函数f (x )=⎩⎪⎨⎪⎧2x +a ,x >2,x +a 2,x ≤2,若f (x )的值域为R ,则常数a 的取 值范围是______________.答案 a ≥2或a ≤-1解析 易知两段函数都是增函数,当x >2时,y >4+a ;当x ≤2时,y ≤2+a 2,要使f (x )的值域为R ,则4+a ≤2+a 2,解得a ≥2或a ≤-1.4. 已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (3)=________. 答案 11解析 ∵f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2, ∴f (x )=x 2+2,∴f (3)=32+2=11.5. 设函数g (x )=x 2-2 (x ∈R ),f (x )=⎩⎪⎨⎪⎧ g (x )+x +4,x <g (x )g (x )-x , x ≥g (x ), 则f (x )的值域是________________.答案 ⎣⎡⎦⎤-94,0∪(2,+∞) 解析 由x <g (x )可得x <-1或x >2,由x ≥g (x )可得-1≤x ≤2;∴f (x )=⎩⎪⎨⎪⎧x 2+x +2, x <-1或x >2,x 2-x -2, -1≤x ≤2. 由f (x )的图象可得:当x <-1或x >2时,f (x )>f (-1)=2,当-1≤x ≤2时,f ⎝⎛⎭⎫12≤f (x )≤f (2),即-94≤f (x )≤0,∴f (x )值域为⎣⎡⎭⎫-94,0∪(2,+∞). 6. 设x ≥2,则函数y =(x +5)(x +2)x +1的最小值是________. 答案 283解析 y =[(x +1)+4][(x +1)+1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t =t +4t +5,在 区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 二、解答题(共28分)7. (14分)已知函数f (x )=x 2-4ax +2a +6 (a ∈R ).(1)若函数的值域为[0,+∞),求a 的值;(2)若函数的值域为非负数,求函数g (a )=2-a |a +3|的值域.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0,∴2a 2-a -3=0,∴a =-1或a =32. (2)∵对一切x ∈R 函数值均为非负,∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0.∴-1≤a ≤32.∴a +3>0, ∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减, ∴g ⎝⎛⎭⎫32≤g (a )≤g (-1).即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4. 8. (14分)已知定义在[0,6]上的连续函数f (x ),在[0,3]上为正比例函数,在[3,6]上为二次函数,并且当x ∈[3,6]时,f (x )≤f (5)=3,f (6)=2,求f (x )的解析式.解 由题意,当x ∈[3,6]时,可设f (x )=a (x -5)2+3 (a <0).∵f (6)=2,∴a (6-5)2+3=2,解得a =-1,∴f (x )=-(x -5)2+3=-x 2+10x -22.当x ∈[0,3]时,设f (x )=kx (k ≠0).∵x =3时,f (x )=-(3-5)2+3=-1,∴-1=3k ,k =-13,∴f (x )=-13x . 故f (x )=⎩⎪⎨⎪⎧ -13x (0≤x <3),-x 2+10x -22 (3≤x ≤6).。

函数定义域、值域与解析式

函数定义域、值域与解析式

函数定义域、值域与解析式(一)知识梳理1、求函数解析式的常用方法 方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; (3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f ;(4)若已知函数关于某点或者某条直线的对称函数时,一般用代入法。

2、函数的定义域方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:① 分母不能为0;② 对数的真数必须为正;③ 偶次根式中被开方数应为非负数;④ 零指数幂中,底数不等于0;⑤ 负分数指数幂中,底数应大于0;⑥ 若解析式由几个部分组成,则定义域为各个部分相应集合的交集;⑦ 如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。

3、求值域的几种常用方法 方法总结:(1)直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)(2)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域 (3)函数的单调性法:(4)配方法:对于(可化为)“二次函数型”的函数常用配方法, (5)基本不等式法 : 如对勾函数y=x+m x,(m>0),m<0就是单调函数了 (6)数形结合法:其题型是函数解析式具有明显的某种几何意义,如两点的距离公式、直线斜率等等(7)判别式法:通过对二次方程的实根的判别求值域。

如求函数22122+-+=x x x y 的值域(8)换元法:通过等价转化换成常见函数模型(如二次函数),如y ax b cx d =+±+(a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。

(9)分离常数法:常用来求“分式型”函数的值域。

如求函数3243x y x +=-的值域(10)函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的定义域值域及解析式GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-函数的定义域、值域及解析式【教学目标】1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。

2.了解对应关系在刻画函数概念中的作用。

3.了解构成函数的三要素,会求一些简单函数的定义域和值域【教学重难点】函数定义域、值域以及解析式的求法。

【教学内容】1.定义高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.2.构成函数的三要素:定义域、对应关系和值域函数解析式定义域值域一次函数y=ax+b(a≠0)二次函数y=ax2+bx+c(a≠0)反比例函数(k为常数,k≠0)注意:1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 例. 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? (1)f ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x ; g ( x ) = (√x )2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x 2-2x+2, g ( x )=t 2-2t+2 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”。

注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.练习、请用区间表示(1){|12}x x <<=____________, {|01}x x ≤≤=____________,{|10}x x -≤<=____________, {|23}x x <≤=____________, (2){|}x x a ≥=____________, {|}x x a >=____________,{|}x x b ≤=____________, {|}x x b <=____________.定义域能使函数式有意义的实数x 的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(4)实际问题中的函数的定义域还要保证实际问题有意义 含分式的函数:在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。

题型一:常规函数型例:求函数 的定义域.例:求函数y =23-x +3323-+x x )(的定义域.练习求下列函数的定义域。

x x x f -++=211)(⑴y=x x -||1(2)2143)(2-+--=x x x x f题型二:抽象函数型(一)、已知的定义域,求的定义域, 其解法是:若的定义域为,则中,从中解得的取值范围即为的定义域。

例. 设函数的定义域为,则(1)函数的定义域为________。

(2)函数的定义域为__________。

练习1已知f(x)的定义域为[1,3],求f(x-1)的定义域.2已知函数)x (f 的定义域为(0,1),则函数)1x 21(f -的定义域是________。

(二)、已知的定义域,求的定义域。

其解法是:若的定义域为,则由确定的范围即为的定义域。

例. 已知函数的定义域为,则的定义域________。

练习、已知函数)42(f 的定义域为(0,1),求函数)x(f的定义域。

x(三)、已知的定义域,求的定义域。

其解法是:可先由定义域求得的定义域,再由的定义域求得的定义域。

例. 函数定义域是,则的定义域是()A. B. C. D.练习1.函数f(2x-1)的定义域为[1,3],求函数f(x2+1)的定义域.运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,再求交集。

例. 已知函数的定义域是,求的定义域。

练习若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域。

逆向型即已知所给函数的定义域求解析式中参数的取值范围。

特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。

例 已知函数的定义域为R 求实数m 的取值范围。

练习. 已知函数的定义域是R ,求实数k 的取值范围。

求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. 例题 求函数值域1)观察法 2)图象法 3)分式分离常数法 4)换元法 5)判别式法 6)配方法 7)函数单调性法 8)反函数法 (1)335-+=x x y (2) 22++-=x x y(3)132222++++=x x x x y (4)x x y 314--=(6)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. 例题 求函数解析式(1)配凑法; (2)换元法; (3)待定系数法; (4)方程组法.(1)已知3311()f x x x x+=+,求()f x ;(2)已知f (x -1)=3x -1,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x .【课后作业】1、设x 取实数,则f(x)与g(x)表示同一个函数的是 ( )A 、x )x (f =,2x )x (g = B 、x )x ()x (f 2=,2)x (x )x (g =C 、1)x (f =,0)1x ()x (g -= D 、3x 9x )x (f 2+-=,3x )x (g -=2、函数6542-+--=x x x y 的定义域是( )(A ){x|x>4} (B)}32|{<<x x(C){x | x<2 或 x>3} (D) }32|{≠≠∈x x R x 且 3、集合{|25}x x <≤可以写成 ( ) A .[]2,5 B .(]2,5 C .()2,5 D .[)2,54、求下列函数的定义域:(1)1()43f x x =+ (2)11()2f x x x=+-5、求下列函数的值域(用区间表示): (1)322--=x x y ;①R x ∈,②]4,1(-∈x ,③]4,1(∈x(2)22++-=x x y ; (3)2845xy x x =-+.6、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f7、已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式8、已知x x x f 2)1(+=+,求)1(+x f9、设,)1(2)()(x xf x f x f =-满足求)(x f。

相关文档
最新文档