超声波特性
超声波特性实验

用来调节反射回波的电压幅度;超声仪的发射接口与探头连接,并向探头发射 400V 的高压脉冲,用来激发超声波;仪器面板上射频、检波接口与示波器的 CH1、 CH2 通道连接,以射频或检波方式在示波器上显示探头接收到的反射回波;触 发接口与示波器的外触发(TRG)相连,使超声的发射信号与示波器扫描同步。
实验内容 1、熟悉仪器使用、观察反射回波 (1)、如图 20-7 所示,把直探头放在位置 1、2 等处,先适当调节超声仪衰 减(大约 90dB),再调节示波器衰减,要求被测信号最大幅度不超过 2V(估算 一下)。观察试块底面对纵波反射的多次反射回波(反射底波),多次回波是部分 超声波在平行的两个界面之间来回反射的结果。
可变角探头入射角继续增加,横波幅度减弱并消失,在此过程中又会出现两个回波,测
量这两个回波对应的时间差,可确定其为表面波,用手指轻压试块表面,可发现回波幅值变
化。
探头
水槽
挡板
图 20-9 表面波测量弧面长度
图 20-10 水声速测量示意图
4.测量水中的声速
如图 20-10,将金属档板放在水槽的不同位置 x,用示波器测量超声波在档
回波幅度最大,然后适当调节超声仪衰减,要求被测信号幅度不超过 2V。在此前提下调节
示波器衰减(可用微调)使回波幅度增大到满幅的 80%左右。
2、测量直探头和斜探头的延迟
超声波在晶片到被测试块表面这段距离往复传播的时间称为探头的延迟(如
图 20-8)。由于探头的延迟 使距离的测量出现误差,因此需要测量探头的延迟时
利用试块 40 mm 的厚度方向进行测量。多次测量,求 平均值。
(2)、测量斜探头的延迟 如图 20-6 把斜探头放在试块上 3 的位置,使探头的斜 射声束能够同时入射在R1和R2圆弧面上。适当移动探头使在 示波器上同时观测到两个弧面的回波B1和B2为最大。测量它 们对应的时间t1和t2。由于R1 = 2R2,因此斜探头延迟的计算 同(20-3)式。多次测量,求平均值。
超声波的物理特性及医学应用

超声波的物理特性及医学应用超声波是一种频率高于人类听觉范围的机械波,波长短于可见光波长的一种波动形式。
它在物理学和医学中有着广泛的应用,其物理特性和医学应用均为我们所熟知。
超声波的物理特性包括频率高、波长短、能量强、穿透力强等特点。
超声波的频率通常在20 kHz到1 GHz之间,远远超出了人类听觉的范围。
波长短于可见光波长,因此在物质中传播时,超声波能够穿透并产生回波,这使得超声波成为了一种理想的成像工具。
超声波能量强,穿透力强,能够穿透人体组织,因而被广泛应用于医学成像和治疗中。
在医学应用方面,超声波已经成为了一种重要的医疗工具。
超声波成像技术被广泛应用于医学影像学中,如超声心动图、超声造影、超声血流动力学等。
通过超声波成像技术,医生可以清晰地看到人体内部器官的结构和功能,从而诊断疾病和指导治疗。
而且,超声波成像技术还具有即时、无辐射和低成本等优点,因此被认为是一种理想的影像学检查手段。
超声波在医学中还被广泛应用于治疗。
超声波治疗技术是一种无创伤的治疗手段,通过超声波的热效应和机械效应对病灶进行治疗。
常见的超声波治疗包括超声波消融治疗、超声波手术刀和超声波射频治疗等,它们被广泛应用于肿瘤治疗、疼痛治疗、美容整形等领域。
超声波治疗技术具有无创伤、局部作用、可靶向等优点,因此备受医生和患者的青睐。
超声波在医学中还被应用于超声心血管造影、超声导航手术、超声检测等领域。
超声心血管造影技术是一种无创伤的心脏和血管成像技术,通过超声波对心脏和血管进行准确成像,帮助医生诊断心血管疾病。
超声导航手术技术则是一种利用超声波引导手术的技术,通过超声波成像对手术器械和病灶进行准确定位,能够提高手术的精确度和安全性。
超声波

三、超声波
超声波特性:
2、超声波在液体介质中传播,能够产生巨 大的正、负交变的液压冲击波和空化作用。
这种交变的脉冲压力作用在邻近的零件 表面上会使其破坏,引起固体物质分散、破 碎效应等。
三、超声波
超声波特性: 3、超声波在介质中传播遇到不同介质的界 面会发生反射和折射现象。
能量反射的大小,决定于两种介质的波阻抗 (密度乘波速),介质的波阻抗相差越大,超声波 通过界面时能量的反射率越高。当超声波从液体或 固体传入到空气、或者是相反的过程,反射率都接 近100%。为了改善超声波在相邻介质中的传递条 件,往往在声学部件的连接处加入全损耗系统用油、 凡士林油为传递介质,以消除空气所引起的衰减, 如医学上的B超。
2) 振幅扩大棒
指数形:扩大比中等(10~20倍),使用中 振幅比较稳定,但不易于制造;
阶梯形:扩大比较 大(>20倍),也易于 制造;但振幅易减 小,性能不稳定, 而且在粗细过度的 地方容易产生应力 集中而导致疲劳断 裂,为此须加工过 渡圆弧。 锥形:振幅扩大比较小 (5~10倍),但易于制造;
三、超声波
超声波特性:
4、超声波在一定条件下,会产生波的干涉 和共振现象。 为了使弹性杆处于最大振幅共振状态,应 将弹性杆设计成半波长的整数倍;而固定弹 性杆的支持点,应该选在振动过程中的波节 处,这一点不振动。
7.1 超声波加工原理
超声加工:是利用工具端面作超声振动,通过磨粒悬浮液加 工脆硬材料的一种成型方法。
vmax=251.3 mm/s
a=3233g
1、工具 2、工件 3、磨料悬浮液 4、5 变幅杆
6、换能器
7、超声波发生器
7.1 超声波加工原理
虽然每次打击下来的材料很少,但由于每秒打击的次数 多达16000次以上,所以仍有一定的加工速度。 同时,工作液受工具端面超声振动作用而产生的高频、 交变的液压冲击波和“空化”作用,促使工作液钻入被加工 材料的微裂缝处,加剧机械破坏作用。 重要概念:空化作用 由此可见,超声加工是磨粒在超声振动作用下的机械碰 撞和抛磨作用以及超声空化作用的综合结果,其中磨粒撞击 作用是主要的。
1. 简述超声波的特性

1. 简述超声波的特性
超声波是一种由高频声波组成的电磁波。
它的频率在20kHz以上,可以超出人类听觉范围。
超声波具有许多特殊的特性,如高速传播、高能量转换效率、高穿透能力、高分辨率等。
首先,超声波具有高速传播特性。
它的传播速度取决于介质的密度和弹性模量,一般在1,500m/s到1,700m/s之间。
这使得超声波在探测和测量应用中具有很大的优势。
其次,超声波具有高能量转换效率的特性。
超声波能够将电能转换为声能,并在传播过程中不断转换为其他形式的能量。
这使得超声波在高能量密度的激励下能够产生高能量输出。
第三,超声波具有高穿透能力的特性。
超声波的穿透能力取决于波的频率和介质的密度。
在低密度介质中,超声波的穿透能力较强;而在高密度介质中,超声波的穿透能力较弱。
这使得超声波在探测和成像应用中具有很大的优势。
最后,超声波具有高分辨率的特性。
超声波的分辨率取决于波的频率和波的振幅。
超声波的频率越高,它的分辨率就越高。
同时,超声波的振幅越大,它的分辨率也就越高。
这使得超声波在成像应用中能够提供清晰的图像。
总之,超声波具有高速传播、高能量转换效率、高穿透能力和高分辨率等特性,这使得它在许多应用领域中具有广泛的应用前景。
超声波在医学成像、工业探测、测量和检测等领域都有广泛的应用。
超声波的特性及在医学诊断中的应用价值

超声波的特性及在医学诊断中的应用价值超声波是一种机械波,在波长小于人类能够听到的声音范围内,具有高频率的特性。
超声波在医学诊断中具有重要的应用价值,因为它能够通过皮肤表面向体内器官发送声波,从而产生图像,帮助医生诊断疾病。
本文将探讨超声波的特性及在医学诊断中的应用价值。
超声波的特性超声波是一种能够穿透人体组织的机械波,具有高频率和短波长的特性。
通常情况下,医学上使用的超声波频率在1MHz至10MHz之间,波长在1mm至1cm之间。
这种高频率和短波长使得超声波能够穿透人体组织,在不损伤组织的情况下产生图像。
超声波在医学诊断中的应用价值超声波在医学诊断中具有重要的应用价值,主要体现在以下几个方面:1. 无损伤性超声波诊断技术是一种无创伤的检查方法,它通过声波的传播和反射来生成图像,不会对人体组织造成伤害。
这使得超声波成为一种相对安全的医学诊断技术,适用于各个年龄段和各种病情的患者。
2. 高分辨率超声波诊断技术具有较高的图像分辨率,能够清晰显示组织结构和器官形态,有助于医生准确诊断疾病。
而且,超声波可以通过改变频率和波长来调整图像分辨率,满足不同病情下的诊断需求。
3. 实时性超声波诊断技术可以实时生成图像,医生可以在进行检查的同时观察患者的组织结构和器官形态,及时发现异常情况。
这种实时性有利于医生在诊断和治疗过程中做出及时的决策。
4. 多功能性超声波诊断技术不仅可以用于检查内脏器官如心脏、肝脏、肾脏等,还可以用于检查肌肉、骨骼、血管等。
它还可以用于妇科、产科、儿科等领域的诊断,具有较高的多功能性。
5. 便捷性超声波诊断设备体积小、重量轻,操作简便,不需要进行复杂的准备工作,有利于医生在医疗现场进行快速、准确的诊断。
超声波诊断技术在医学诊断中具有重要的应用价值,它能够通过高频率的声波穿透人体组织,产生清晰的图像,帮助医生进行诊断和治疗。
随着医学技术的不断发展,超声波诊断技术将会有更广泛的应用,为医疗健康事业作出更大的贡献。
超声波特性

1.声速:超声波在不同介质中传输速度是不同的。
气体350m/s左右,液体中1500m/s左右;固体中5000m/s左右。
2.声衰减在空气中,超声波除了因扩散引起衰减外,由于空气中的粘滞性、热传导以及分子的吸收也会引起衰减。
在20℃时的空气中,衰减系数在20℃时的水中,衰减系数如换算成位移衰减到I/e的距离x(1/ɑ),则空气中x(m)=则水中x(m)=从表中可以看出:空气可水相比,其声衰减随频率的增大而急剧增加,即空气(各种气体均如此)不利于高频声传播,衰减很快,如500KHZ以上。
所以液体中超声一般选择1-5MHz,而气体中超声一般选择50-300KHz。
当然选择频率时还应考虑超声换能器之间的距离(声程)以及测量精度等要求。
3.特性阻抗与声反射、声折射、声散射特性阻抗由介质的密度和声速之积确定。
气体、液体和固体的特性阻抗之比约为1:3000:80000,差异很大。
超声从一种介质进入另一种介质的能力取决于特性阻抗。
流体中只存在纵波,纵波从流体向固体倾斜射入,在固体中除纵波外,还存在横波。
高频率的声波,如2MHZ,在照射到含有气泡和固体颗粒时液体时,会产生声散射。
4.超声换能器的指向性式中:--------指向性半角;--------波长;--------圆型辐射面直径气体介质中换能器的角一般取3-7度;液体介质中换能器的角一般取2-10度;可以上换能器的指向性均要求尖锐,以使能量较为集中。
5.温度特性在水中中,超声传播速度随温度升高而增大,但在90℃之后又开始减小。
1. 压电陶瓷片PZT用于测量液体流量的超声换能器,工作频率在0.5-5MHz.PZT压电片(圆形、半圆形、方形、矩形)是常用的形式,它的频率由下公式确定式中:-----------频率常数,PZT均为2200;-----------厚度(应远小于横向尺寸)。
1MHz的PZT圆片,直径10-12mm,厚度约2mm;1.5MHz的的PZT圆片,直径15mm左右,厚度约1.3mm;2. 换能器的基本结构压电圆片换能器一般结构有一下三种:液体换能器中,若在前后端设置匹配层,可有效提高电声转换效率和扩展频带宽度。
超声波的特性(精)

职业教育现代宠物技术教学资源库
1 超声波的特性
声波是物体的机械振动产生的,振动的频率超过20000次/s 称为超声波,简称超声。
超声波在机体内传播的物理特性是超声影像诊断的基础,其中主要有:
一、超声的定向性
又称方向性或束性。
当探头的声源晶片振动发生超声时,形成了一股声束,以一定的方向传播。
诊断方面利用这一特性做器官的定向探查,以发现体内脏器或组织的位置和形态上的变化。
二、超声的反射性
超声在介质中传播,若遇到声阻抗不同的界面时一部分声能引起反射,所余的声能继续传播。
如介质中有多个不同的声阻界面,则可顺序产生多次的回声反射。
超声界面的大小要大于超声的半波长,才能产生反射。
若界面小于半波长,则无反射而产生绕射。
超声垂直入射界面时,反射的回声可被接收返回探头而在示波屏显示。
入射超声与界面成角而不垂直时,入射角与反射角相等,探头接收不到反射的回声。
三、超声的吸收和衰减性
超声在介质中传播时,由于与介质中的摩擦产生粘滞性和热传播而吸收,又由于声速本身的扩散、反射、散射、折射与传播距离的增加而衰减。
吸收和衰减除与介质的不同有关外,亦与超声的频率有关。
但频率又与超声的穿透力有关,频率愈高,衰减愈大,穿透力愈弱。
超声诊断主要是利用这种界面反射的物理特性。
超声波特性

2.1 超声波的定义波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。
声波是一种弹性机械波。
人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz,超声波是频率大于20KHz的机械波。
在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。
2.2超声波的物理特性当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L为入射波,S₁为反射横波,L₁为反射纵波,L₂为折射纵波,S₂为折射横波。
S₂图2.1超声波的反射、折射及其波形转换这些物理现象均遵守反射定律、折射定律。
除了有纵波的反射波折射波以外,还有横波的反射和折射。
因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。
在理想介质中,超声波的波动方程描述方法与电磁波是类似的。
描述简谐声波向X 正方向传播的质点位移运动可表示为:()cos()A A x t kx ω=+ ()0()ax A x A e -= ()式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。
衰减系数与声波所在介质和频率关系:2af α= ()式(2.3)中,a 为介质常数,f 为振动频率。
2.2.1超声波的衰减从理论上讲,超声波衰减主要有三个方面:(1) 由声速扩展引起的衰减在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。
(2) 由散射引起的衰减由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 超声波的定义
波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。
声波是一种弹性机械波。
人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。
在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。
2.2超声波的物理特性
当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ₁为反射横波,L ₁为反射纵波,L ₂为折射纵波,S ₂为折射横波。
L
图2.1超声波的反射、折射及其波形转换
这些物理现象均遵守反射定律、折射定律。
除了有纵波的反射波折射波以外,还有横波的反射和折射。
因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。
在理想介质中,超声波的波动方程描述方法与电磁波是类似的。
描述简谐声波向X 正方向传播的质点位移运动可表示为:
()cos()A A x t kx ω=+ (2.1)
0()ax A x A e -= (2.2)
式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。
衰减系数与声波所在介质和频率关系:
2af α= (2.3)
式(2.3)中,a 为介质常数,f 为振动频率。
2.2.1超声波的衰减
从理论上讲,超声波衰减主要有三个方面:
(1) 由声速扩展引起的衰减
在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。
(2) 由散射引起的衰减
由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。
被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。
(3) 由介质的吸收引起的衰减
超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。
同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。
扩散衰减仅取决于波的几何形状而与传播介质的性质无关。
对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。
因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P
f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率
η:动力粘滞系数 C :超声波传播速度
v C :定容比热 p C :定压比热
ρ:传播介质密度
式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示:
223
83f C πηβρ= (2.5)
把C = 2.5)可得: 3223
322283()M f R T
β
πηργ=⨯⨯ (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。
在实际应用中,一般选
30100KHz的超声波进行距离测量,比较典型的频率为40KHz,本系统就选用频率f=40KHz的超声波的传感器。
2.2.2超声波的波型
由于声源在介质中施力的方向与波在介质中传播的方向可以相同也可以不同,这就可产生不同类型的声波,超声波的波型主要有以下几种。
(1)纵波
当介质中的质点振动方向和超声波传播方向相同时,此种超声波为纵波波型,以L表示。
任何介质,当其体积发生交替变化时均产生纵波。
由于纵波的产生和接收都较容易,所以纵波在超声波检测中得到了广泛应用。
(2)横波
当介质中质点振动方向和超声波的传播方向垂直时,此种超声波为横波波型,以T表示。
因为液体和气体中缺乏横向运动的弹性力,所以横波不能存在,只有纵波才能存在,但在固体中纵波和横波都能存在。
(3)表面波
瑞利于1887年首先研究和证实了表面波的存在,因此称为瑞利波,用字母R表示。
表面波是沿着固体表面传播的具有纵波和横波双重性的波。
其振动质点的轨迹为一椭圆,质点位移的长轴垂直于传播方向,质点位移的短轴平行于传播方向,随着深度增加很快衰减,离表面一个波长以上的地方,质点振动的振幅很微弱。
表面波的传播速度,只与介质的弹性性质有关,与频率无关。
(4)板波
板波亦称拉姆波,板波只产生在大约一个波长的薄板内,在板的两表面和中部都有质点的振动,声场遍及整个板的厚度。
薄板两表面的质点振动是纵波和横波成分之和,运动轨迹为椭圆形,长轴于短轴的比例取决于材料的性质。
板波可以分为对称型和非对称型两种。
2.2.3超声波的传播速度
声波的传输需要一种媒质,声波在媒质中的传播速度,称为声速。
由声波产生的物理过程可知,声速与质点速度是完全不同的,声波的传播只是扰动形式和能量的传递,
并不把在各自平衡位置附近振动的媒质点传走。
某种媒质中的声速主要取决于该媒质的密度和温度。
由于空气没有剪切弹性,只有体积弹性,因而气体中声波的传播形式只能是纵波。
也就是说,在声扰动下,气体媒质中的质点在各自平衡位置附近运动,形成稠密和稀疏依次交替的传递过程,而且质点运动的方向与声波传播的方向一致。
声波在相当大的频率范围内不随频率发生变化,也就是说超声波的传播速度与可听声波的传播速度是相同的,超声波在媒质中的反射、折射、衍射、散射等传播规律与可听声波并无质的区别,与一般声波相比,超声波具有更好的定向性,并且可以穿透不透明物质。
在空气中超声波传播速度主要与温度有关,在空气中的传播速度C为:
331.4
C=(2.7)
式中,T为环境温度。
2.3超声波传感器
人们把产生超声波的核心部件称作超声波传感器,也叫超声波换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的装置。
超声波传感器的种类很多,按照实现超声波传感器机电转换的物理效应的不同可分为电动式、电磁式、磁滞式、压电式等。
有些单晶体和多晶陶瓷材料受到应力能在材料中产生电场,这种效应称为压电效应,这些材料称为压电材料。
目前压电式传感器的理论研究和实际应用最为广泛,本文超声波测距选用的是压电式收发分体超声波传感器T/R40-16,其特性如下:
(1)T/R40-16型号代码
T—发射;R—接受;40一中心频率;16一外壳直径。
(2)T/R40-16结构图
本设计中选用T/R40-16型超声波传感器,T/R40-16内部结构示意图如图2.2所示。
超声波传感器由压电晶片、锥形喇叭、底座、引线、金属外壳及屏蔽网组成。
其中,压电晶片是传感器的核心,锥形喇叭使发射和接收超声波的能量集中,并使传感器有一定的指向角,金属网可防止外界力量对压电晶片和锥形喇叭的损害,金属网也起保护作用,但不影响发射和接收超声波。
实物图如图2.3所示。
.
(3)频率特性曲线
.
TR40/16超声波传感器的声压电平和灵敏度曲线如图2.4、2.5所示,从上图中可以得知,它的声压能级、灵敏度在40Ⅺ乜的时候最大,所以电路一般选用40KHz作为传感器的使用频率。
如有侵权请联系告知删除,感谢你们的配合!。