第三章 电容式传感器 第四节电容式传感器应用举例
电容式传感器原理解析及其应用举例
![电容式传感器原理解析及其应用举例](https://img.taocdn.com/s3/m/b39bcadec0c708a1284ac850ad02de80d5d80657.png)
工业技术科技创新导报 Science and Technology Innovation Herald48电容式传感器是一种利用电容变化把非电物理量转换成电信号的装置。
它的应用十分广泛,比如:可以用于运动学物理量的测量,也可以用于液面、物质成分、湿度等方面的测量。
它的优点是结构简单,价格便宜,灵敏度高,零磁滞,动态响应特性好,可实现非接触测量,对高温、辐射、强振等恶劣条件的适应性强等。
缺点是输出有非线性,寄生电容和分布电容对灵敏度和测量精度的影响较大,联接电路比较复杂等。
随着技术的发展,电容式传感器正在逐渐扬长避短[1]。
电容式传感器的原理可用平行板电容器简单阐释。
假设忽略边缘效应,平行板电容器电容为0r SS C dd==,其中为极板相对覆盖面积,为极板间距,r 为电介质的相对介电常数,0为真空介电常数,=r为电介质的介电常数。
、或r发生变化时,就改变了电容。
或的变化可以反映位移的变化,也可以间接反映力和加速度等的变化,r 的变化则可反映液面高度和材料厚度等的变化。
根据上述原理,电容式传感器可分为3类,即极距变化型、面积变化型和介质变化型电容传感器。
1 变极距型电容传感器以平行板电容器为例,上极板固定不动,下极板为动极板,设初始时两极板距离为0。
当距离减小Δ时,则电容相应增大00dC C d d∆∆=⋅-∆,电容的相对变化为00011/C d C d d d ∆∆=⋅-∆ (1)当Δ/<<1时,将上式按泰勒级数展开,得:200001C d d d C d d d ⎡⎛⎫∆∆∆∆⎢=+++ ⎪⎢⎝⎭⎣…⎤⎥⎥⎦(2)①基金项目:安徽省教育厅教学研究项目:应用型本科大学物理教学改革——以安徽工程大学机电学院为例(项目编号:2015jy x m726)和安徽工程大学机电学院校级教学研究项目:构建工科类专业大学物理教学的典型案例库。
作者简介:孙辉(1986,4—),男,汉,安徽芜湖人,博士,讲师,研究方向:大学物理教学研究。
传感器技术第4讲电容式传感器
![传感器技术第4讲电容式传感器](https://img.taocdn.com/s3/m/6d5d18259ec3d5bbfc0a7439.png)
特点: 1、 非接触 2、 精度高
Cx
S
d
3、 分辨率高(最小检测量为0.01微米)
第四节 应用举例 三、电容式测厚系统
Cx
S
d
第四节 应用举例 四、电容式测电缆偏心示意系统
C1 C2
C1 C2
C1 C2
C1 C2
Cx
S
d
完
第一节、工作原理及特性 三、类型
(一)变面积型(二种)
角位移式
直线位移式
第一节、工作原理及特性
三、类型
(一)变面积型
1、角位移式工作原理
当被测量的变化引起 动极板有一角度位移 θ时,两极间相互覆 盖的面积改变了 ,从
而也就改变了两极板 间的电容量C 。
C0
S
d
CdS1
由上式可见,电容量C与角位移θ呈线关系
隔离膜片
很高但差压很小的场合
隔离膜片
油硅
2.精度高、耐振动、耐冲击、
感压膜片
可靠好。
3.但制造工艺要求很高,尤 电极板
电极板
其是感压膜片的焊接是一工 绝缘体
艺难题。
第四节 应用举例 二、电容式测微仪
电容式测微仪原理如图3—18所示。圆柱 形探头外一般加等位环以减小边缘效应。 探头与被测件表面间形成的电容为:
第二节 测量电路
一、类型
1、调幅型 2、脉宽调制型 3、调频型
第二节 测量电Βιβλιοθήκη 1、调幅型这种电路输出的是幅度值,并且正比于或 近似正比于被测信号。该电路有两种:
(1)交流电桥电路
(2)运算放大器电路
第二节 测量电路
1、调幅型 (1)交流电桥电路----单臂接法
A
电容式传感器应用实例
![电容式传感器应用实例](https://img.taocdn.com/s3/m/4a1cb8f429ea81c758f5f61fb7360b4c2e3f2ae8.png)
电容式接近开关在物位测量控制中的使用演示
电容式转速传感器
电容式键盘
常规的键盘有机械 按键和电容按键两种
电容式键盘是基于 电容式开关的键盘;原理 是通过按键改变电极间 的距离产生电容量的变 化,暂时形成震荡脉冲 允许通过的条件。这种 开关是无触点非接触式 的,磨损率极小。
电容式指纹传感器
指纹识别所需电容传感器包含一个大约有数万 个金属导体的阵列;其外面是一层绝缘的表面, 当用户的手指放在上面时,金属导体阵列/绝 缘物/皮肤就构成了相应的小电容器阵列 它们 的电容值随着脊近的和沟(远的)与金属导体
电容式传声器Microphone
双联电容器——变面积的电容传感器
当顺时针旋转调谐旋钮时;变面积式可变电容器的动 片就随之转动,改变了与定片之间的覆盖面积A,电 容量C也就越来越小,谐振频率也随之改变
圆柱型电容传感器
圆柱型;当动极板有一线位移时,两极板间覆 盖面积就发生变化,从而导致电容量的变化
5
电容式传声器Microphone
电容传声器核心是平板电容器;振动膜片是一片表面经过金 属化处理的轻质弹性薄膜,当膜片随着声波的压力的大小产 生振动时,膜片与后极板之间的相对距离发生变化,膜片与 极板所构成电容器的量就发生变化 极板上的电荷随之变化, 电路中的电流也相应变化,负载电阻上也就有相应的电压输 出,从而完成了声音信号与电信号的转换。
各种电容式压力变送 器外形
电容式加速度传感器
m
C1
a
C2
C1 C2
加速度传感器在汽车中 的应用
装有传感 器的假人
气囊
电容测厚仪
C
C0
L1
C1 R
C2 R L2 B电容式荷重传感器弹性体绝缘材料
电容式传感器应用实例演示
![电容式传感器应用实例演示](https://img.taocdn.com/s3/m/f1841d6fac02de80d4d8d15abe23482fb5da025f.png)
电容式传感器应用实例演示电容式传感器是一种广泛应用于工业领域的传感器之一,它通过测量电容的变化来检测环境中的物理量。
其原理是利用了介质的电容与其周围环境的关系,当介质的性质或位置发生改变时,电容值也会发生相应的变化。
以下是几个电容式传感器应用实例的演示:1.液位检测:在液体储罐中安装电容式液位传感器,通过测量液位与罐壁之间的电容变化来确定液位的高低。
当液位上升时,液体与罐壁之间的介电常数增加,导致电容值增加;反之,当液位下降时,电容值减小。
这种液位检测方法广泛应用于石油、化工等行业。
2.触摸传感:将电容式传感器应用于触摸屏上,能够实现触摸位置的精确检测。
触摸屏上覆盖了一层由导电材料制成的感应层,当手指接触屏幕时,手指周围的电场会影响感应层上的电容。
通过测量这个电容的变化,可以确定手指触摸的位置,并将其转化为相应的控制信号。
3.地热能利用:利用地下的地热能作为供暖或供冷的能源已经成为一种环保的方式。
电容式传感器可以用于监测地下能源的温度变化,通过测量地下水或土壤的电容来确定温度变化的幅度和趋势。
这种监测方式有助于科学合理地利用地下的地热能,提高能源利用效率。
4.空气质量检测:通过检测空气中各种气体的电容变化,可以判断空气质量的优劣。
电容式传感器能够感知空气中的气体浓度变化,从而实时监测空气中的有害气体浓度。
将这些传感器应用于空气净化器或环境监测设备上,可以实时监测和改善室内空气质量。
5.智能农业:电容式传感器可以应用于农业领域,实现土壤湿度的准确测量。
根据土壤的含水量不同,土壤的电容也不同,通过测量土壤与传感器之间的电容变化,可以判断土壤的湿度状况。
利用这些数据,可以实现精准的灌溉控制,提高农作物的产量和质量。
总结:电容式传感器广泛应用于液位检测、触摸传感、地热能利用、空气质量检测和农业等领域。
通过测量电容的变化,可以实现对环境中各种物理量的检测和监测。
随着科技的不断进步,电容式传感器在各个领域的应用也将不断扩大和深入。
第三章 电容式传感器
![第三章 电容式传感器](https://img.taocdn.com/s3/m/f2305b412e3f5727a5e96216.png)
C d 2 C0 d0 非线性误差为: d 3 2 d0 d r 100% 100% d d0 d0
减小
C C0 A 2 2 2 灵敏度: S d d0 d0
提高一倍
18
差动式比单极式灵敏度提高一倍,且非线性误差大为减 小。由于结构上的对称性,它还能有效地补偿温度变化所 造成的误差。
弹性体
绝缘材料 定极板
极板支架
动极板
36
在弹性钢体上高度相同处打一排孔,在孔内形成一排平行 的平板电容,当称重时,钢体上端面受力,圆孔变形,每
个孔中的电容极板间隙变小,其电容相应增大。由于在电
路上各电容是并联的, 因而输出反映的结果 是平均作用力的变化, 测量误差大大减小 F
(误差平均效应)
电容式称重传感器
T1 T2 UA U 1 ,U B U1 T1 T2 T1 T2
UA、UB—A点和B点的矩形脉冲的直流分量; T1、T2 —C1和C2充电至Ur的所需时间; U1—触发器输出的高电位。
29
C1、C2的充电时间T1、T2为:
U1 T1 R1C1 ln U1 U r U1 T2 R2C2 ln U1 U r
0 A
dg
g
d0
云母片的相对介电常数是空气的7倍,其击穿电压不小于 1000 kV/mm,而空气的仅为3kV/mm。 有了云母片,极板间起始距离可大大减小,同时传感器的输 出特性的线性度得到改善。
12
13
14பைடு நூலகம்
差动电容式传感器
定极板 动极板 C1 d1 C2 d2 定极板
15
初始位置时,
3
电容式传感器可分为变极距型、变面积型和变介质型三 种类型。
电容传感器(传感器原理与应用)
![电容传感器(传感器原理与应用)](https://img.taocdn.com/s3/m/359076906bec0975f465e2dd.png)
第三章 电容式传感器电容测量技术近几年来有了很大进展,它不但广泛用于位移、振动、角度、加速度等机械量的精密测量,而且,还逐步扩大应用于压力、差压、液面、料面、成分含量等方面的测量。
由于电容式传感器具有一系列突出的优点:如结构简单,体积小,分辨率高,可非接触测量等。
这些优点,随着电子技术的迅速发展,特别是集成电路的出现,将得到进一步的体现。
而它存在的分布电容、非线性等缺点又将不断地得到克服,因此电容式传感器在非电测量和自动检测中得到了广泛的应用。
第一节 电容式传感器的工作原理和结构 一、基本工作原理电容式传感器是一种具有可变参数的电容器。
多数场合下,电容是由两个金属平行板组成并且以空气为介质,如图3—1所示。
由两个平行板组成的电容器的电容量为dAC ε=(3—1)式中ε——电容极板介质的介电常数。
A ——两平行板所覆盖面积; d ——两平行板之间的距离; C ——电容量当被测参数使得式(3—1)中的d 、A 和r ε发生变化时,电容量C 也随之变化。
如果保持其中两个参数不变而仅改变另一个参数,就可把该参数的变化转换为电容量的变化。
因此。
电容量变化的大小与被测参数的大小成比例。
在实际使用中,电容式传感器常以改变平行板间距d 来进行测量,因为这样获得的测量灵敏度高于改变其他参数的电容传感器的灵敏度。
改变平行板间距d 的传感器可以测量微米数量级的位移,而改变面积A 的传感器只适用于测量厘米数量级的位移。
二、变极距型电容式传感器由式(3—1)可知,电容量c 与极板距离d 不是线性关系,而是如图3—2所示的双曲线关系。
若电容器极板距离由初始值do 缩小d ∆,极板距离分别为do 和do-d ∆,其电容量分别为C0和C1,即0d AC ε=(3—2)⎪⎪⎭⎫⎝⎛∆-⎪⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛∆-=∆-=2020********d d d d d A d d d Add AC εεε(3—3)当Ad 《Ju 时,1…菩*1,则式(3—3)可以简化为 一W一一这时c1与AJ 近似呈线性关系,所以改变极板距离的电容式传感器注注是设计成Ad 在极小的范围内变化。
电容式传感器的应用
![电容式传感器的应用](https://img.taocdn.com/s3/m/2ed39047a517866fb84ae45c3b3567ec112ddc60.png)
4、电容传声器
采用聚四氟乙烯材料作为振动膜片。这种材料经特殊 电处理后,表面永久地驻有极化电荷,取代了电容传声器 极板,故名为驻极体电容传声器。
变极距型应用:电容式传声器
7、电容式接近开关 被测物体 感应电极
振荡电路
被测电容
传感器技术及应用
传感器技术及应用
电容式传感器的应用
1.2 电容式传感器的应用举例 1、电容式测微仪
探头
高灵敏度电容式测微仪采用
非接触方式精确测量微位移和振 S
动振幅。在最大量程为(100±5)
h
μm时,最小检测量为0.01μm。 右图为电容式测微仪测头原 被测件
理图。
图4.17 电容式测微仪原理图
2、电容式压力传感器
压力变送器 陶瓷电容压力传感器
3.电容式加速度传感器
右图为电容式加速 度传感器的结构示意图。
4
5
A面
6
2
质量块4由两根簧片3支
Cx1
3
撑于充满空气的壳体2
内,弹簧较硬使ቤተ መጻሕፍቲ ባይዱ统的 2
固有频率较高,因此构
Cx2
成惯性式加速度计的工 作状态。
B面
1
1、5—固定极板;2—壳体;3—簧片;4—质量块;6—绝缘体
图4.20(a)为单只变极距型电容式传感器原理图。 用于测量气体或液体压力。
图4.20(b)为一种 小型差动电容式压 力传感器。可用于 微小压力。
3 P
1
2
4
5
6
P
(a)单只电容式压力传感器 (b)差动电容式压力传感器 图 4.20 电容式压力传感器
产品.
液体压力 作用在陶 瓷膜片的 表面,使 膜片产生 位移。
电容式传感器原理及其应用
![电容式传感器原理及其应用](https://img.taocdn.com/s3/m/4dbf9f5e53d380eb6294dd88d0d233d4b04e3f73.png)
电容式传感器原理及其应用
传感器通常由两个电极组成:一个是探测电极,用于和物体接触形成
电容;另一个是参考电极,用于和环境隔离,提供一个参考电容。
当物体
接近传感器时,探测电极和参考电极之间的电容会发生变化。
1.位置检测:在机器人、自动门、车辆等设备上,可以使用电容式传
感器来检测物体的位置,以便进行准确控制。
2.形状检测:电容式传感器可以根据物体所形成的电容来检测物体的
形状,适用于模具、雕塑、冲压等领域。
3.压力检测:电容式传感器可以根据物体施加的压力来测量电容的变化,常用于汽车空调系统、机械手等设备中的压力控制。
4.湿度检测:在湿度计、空调、除湿器等设备中,电容式传感器可以
通过测量物体和介质之间的相对湿度来判断湿度的变化。
5.液位检测:电容式传感器可以通过测量液体的介电常数来判断液位
的高低,用于液位测量仪表、储罐等设备。
6.运动检测:电容式传感器可以通过检测物体运动时电容的变化来实
现运动检测,常用于门禁系统、人体感应灯等。
7.接近开关:电容式传感器可以检测物体与传感器之间的距离,常用
于接近开关、自动水龙头、触摸屏等设备。
8.手势识别:电容式传感器可以检测手的位置和动作,实现手势识别,常用于智能手机、智能手表等设备中。
总结来说,电容式传感器具有广泛的应用领域,可以用于位置检测、形状检测、压力检测、湿度检测等。
其原理是通过测量电容的变化来获取物体或环境的相关信息,为现代科技领域提供了重要的技术支持。
电容式传感器的应用
![电容式传感器的应用](https://img.taocdn.com/s3/m/c246abbde518964bce847c90.png)
1.3.2 TR230型容栅测微传感器
1) 工作原理
如图所示,容栅传感器是一种无差调节的闭 环控制系统,基本测量部分是一个差动电容器, 它是利用电容的电荷耦合方式将机械位移量转变 成为电信号的相应变化量,将该电信号送入电子 电路后,再经过一系列变换和运算后显示出机械 位移量的大小。
2) 外型尺寸
具体结构尺寸为:
其中,前置器DT610:供电±15VDC;输 出0 — 10V;(可选)DC24:供电DC24VDC; 输出0 — 10V;或DC9/36:供电9 — 36VDC; 输出0 — 10V。
4)技术参数
在室温20℃,传感器电缆长为1米的情况 下测得的。在被测材料为金属材料时,测量信 号线性特性,不需重新校准。导电性能的变化 不会影响传感器灵敏度和线性。
5)线性化校准
它在出厂时已用金属材料校 准好,输出0 — 10V。
在精度低时测量范围可扩展2 - 3倍,如下图所示。
6)传感器和电缆
传感器带有保护环,它用1米长电缆 同前置器连接起来。应用时,无须再校 准,灵敏度误差在0.5 — 1%以内。特殊 传感器请咨询。所有传感器无安装座, 也能简单安装。固定通常用埋头螺钉或 者开口夹(如右图所示)。
TR230型的L0=31(mm) ,L=194(mm);
3)技术指标 I. 测量范围:0-30mm/0-50mm/0100mm II. 分辨率:0.01mm、0.005mm III. 测力:≤2.5N IV. 最大移动速度:1.5M/s V. 工作温度:10℃-40℃ VI. 存储温度:0℃-55℃
1)工作原理
被测介质的两种压力通入高、低两 压力室,作用在δ元件(即敏感元件)的两 侧隔离膜片上,通过隔离膜片和δ元 件 内的填充液传到预张紧的测量膜片两侧。 当两侧压力不一致时,致使测量膜片产 生位移,其位移量和压力差成正比,故 两侧电容就不等,通过检测,放大转换 成4-20mA的
电容式传感器的应用和发展
![电容式传感器的应用和发展](https://img.taocdn.com/s3/m/523bdced81eb6294dd88d0d233d4b14e85243e36.png)
电容式传感器的应用和发展
一、电容式传感器及其应用
1、什么是电容式传感器
电容式传感器是一种能够检测被测目标电容值的变化而产生额外的电
路反应的传感器。
它的特点是可以检测到微小的变化,适用于多种检测应用,如温度、湿度、压力、电阻、反应物浓度的测量。
简单的电容式传感
器由两个平板相互垂直放置,当外界目标的电容发生变化时,传感器的输
出电流也会发生变化。
2、电容式传感器的应用
(1)温度、湿度检测:电容式传感器可以应用于温度、湿度的检测,是温湿度检测技术的重要组成部分。
它可以直接检测温度和湿度变化,并
能够迅速反映温度和湿度的变化,采用更安全、可靠、精确的方法进行环
境检测。
(2)电阻、电容测量:电容式传感器可以用来测量低电阻、电容等。
它可以检测目标物体的负载电容、相对湿度、电阻率等参数,从而实现目
标物体的检测。
它具有较高的精度,可以检测准确性,从而对特定测量应
用起到保护作用。
(3)测量气体浓度:电容式传感器可以用来测量气体浓度。
它可以
根据气体的电容和湿度的变化,可以实现精确测量气体浓度。
它比其他技
术具有更高的精度和可靠性,可以提高工业检测效率。
(4)测量液位:电容式液位传感器可以测量液位。
电容式传感器的应用举例.
![电容式传感器的应用举例.](https://img.taocdn.com/s3/m/66d8b8615acfa1c7aa00ccb0.png)
电容式传感器的应用举例
电容传感器可用来测量直线位移、角位移,振动振 幅(可测至0.05μm的微小振幅),尤其适合测量高频振动 振幅、精密轴系回转精度、加速度等机械量,还可用来 测量压力、差压力、液位、料面、粮食中的水分含量、 非金属材料的涂层、油膜厚度、测量电介质的湿度、密 度、厚度等等。在自动检测和控制系统中也常常用来作 为位置信号发生器。
0
当测量导电固体的料位时,采用
P93图4—22(b)方案。
4、电容式位移传感器
1. 平面测端(电极) 2. 绝缘衬塞 3. 弹簧 7. 螺母
振动位移测量
电容式振动位移传感器应用示意图
贝尔实验室
指纹传感芯片:电容感应原理
Veridicom的指纹传感芯片表面由300×300个电容传感 器组成。 当个人把他的手指放在传感器上时,手指充当电容器 的另外一极。由于手指上指纹纹路及深浅的存在,导致硅 表面电容阵列的各个电容电压的不同,通过测量并记录各 点的电压值就可以获得具有灰度级的指纹图象。
r1
前述公式:
2x C ln D / d
h
对照着应用:
0
hx
20 h hx 2hx C ln r2 / r1 ln r2 / r1
r2
内外极板间要加绝缘层!
注意:不做特殊处理的情况下,仅可用于检测非导电液体介质。
20 h hx 2hx C ln r2 / r1 ln r2 / r1 C 2 0 S hx ln r2 / r1 h
电容式传感器及应用—电容式传感器测量转换电路(传感技术课件)
![电容式传感器及应用—电容式传感器测量转换电路(传感技术课件)](https://img.taocdn.com/s3/m/e216817430126edb6f1aff00bed5b9f3f90f7234.png)
调频电路
该测量电路把电容式传感器与一个电感元件配合,构成一个振荡器谐振
电路。当传感器工作时,电容量发生变化,导致振荡频率产生相应的变
化。再经过鉴频电路将频率的变化转换为振幅的变化,经放大器放大后
即可显示,这种方法称为调频法。
调频-鉴频电路原理图
调频振荡器的振荡频率
f
1
2π LC
运算放大器式测量电路
电容式厚度传感器
电容式测厚仪
C1
C=C1+C2
C2
+
-
电容式压力传感器
电容式压力传感器是将由被测压力引起的弹性元件的位移变化转变
为电容的变化来实现测量的。
电容式加速度传感器
电容式加速度传感器是将被测物的振动转换为电容量变化,其结构
示意图如图所示。
电容式荷重传感器
电容式荷重传感器是利用弹性元件的变形,致使电容随外加载荷
的变化而变化。
例1
有一台变间隙非接触式电容测微仪,其传感器的极板半径
r=5mm,假设与被测工件的初始间隙d0=0.5mm。已知真空的介
电常数等于8.854×10-12F/m,求:
(1)如果传感器与工件的间隙变化量增大△d=10μm,电容
变化量为多少?
(2)如果测量电路的灵敏度Ku=100mV/pF,则在间隙增大
理想运算放大器输出电压与输入电压之间的关系为
C0
uo ui
Cx
采用基本运算放大器的最大特点是电路输出电压与电容传感器的极距d成
正比,使基本变间隙式电容传感器的输出特性具有线性特性。
C0
uo ui
dd
SA
运算放大器式测量电路
实际中存在的问题及其解决办法
电容式传感器医疗应用举例讲解
![电容式传感器医疗应用举例讲解](https://img.taocdn.com/s3/m/f01cc36b69eae009581bec38.png)
分类(按原理)
3. 变介电常数型 大多用于测量电介质的厚度(图a)、位移(图b)、液位(图c) 还可根据极板间介质的介电常数随温度、湿度、容量改变 而改变来测量温度、湿度、容量(图d)等
在心音采集中的应用举例
原理
s 0 r s C
ε:介质介电常数 s :极板面积 δ :极板间距离
s
δ
ε
• 改变其中任意一个参数,均可改变电容量。 • 固定两个参数,可以做成三种类型的电容传感器
分类(按原理)
1. 变极距式 • 用于微动位移的测量 • 采用差动式结构
图4-1
分类(按原理)
优势
• 灵敏度高,能够较准确地测出心音信号 • 价格适中 • 使用方便
缺陷
• 受到外界环境噪声影响大,测试时必须保持环境安静 • 受到电磁辐射影响大 • 注意防潮
实际应用测试
正常心音
测试一
测试二
相关
• 电容式传感器:对外加极化电压
>>>END
THANKS
驻极体式声电传感器:将声信号转换为电信号
驻极体式传声器原理
• 本质:电容式传感器 • 驻极体:不需要外加极化电压——振动膜片一般由二氧化 硅或高分子聚合物做成,这些物质经ቤተ መጻሕፍቲ ባይዱ殊电处理后,表面 永久地驻有极化电荷。
P
金属层
动态时薄膜上下振动示意图
驻极体薄膜 空气间隙
E
R
铜 板
• 由于驻极体膜片具有永久性的电极化 ——在金属层上产生感应电荷Q • 声波传到振动膜片 ——等效距离发生变化 ——电容量C发生变化 ——电容两端的电压U发生变化 • 声压转换成了电压——心音信号转化成了电信号!
第3章-电容式传感器
![第3章-电容式传感器](https://img.taocdn.com/s3/m/ea190b0103d8ce2f00662396.png)
结构形式二
电容传感器分类比较
§2电容式传感器的输出特性
差动电容传感器的结构如图3—4所示( )其输出特性 曲线如图3—5所示。在零点位臵上设臵一个可动的接 地中心电极,它离两块极板的距离均为d。当中心电极 在机械位移的作用下发生位移 d 时,则传感器电容 量分别为
1 C1 d 0 d d 0 1 d d0
d ) d0 A A C1 d d 2 (3—3) d 0 d d (1 ) d 0 (1 2 ) 0 d0 d0
A(1
d 2 当 d d0 时, 1 d 2 1 ,则式(3—3)可以简化为: 0 d
A(1
C1 d0 ) d0 C0 C0 d d0
(3—4)
C
C1
C2
0
d1
d2
d
图3-2 电容量与极板距离的关系 由图3—2可以看出,当 d 0 较小时,对于同样的 d变化所引起的电容变化量 C可以增大,从而使传感 器的灵敏度提高;
在实际应用中,为了提高传感器的灵敏度和克服某 些外界因素(例如电源电压、环境温度、分布电容等) 对测量的影响,常常把传感器做成差动的形式,其原 理如图3—4所示。
差动电容式传感器的相对非线性误差为:
C C C d ( ) ( ) 2 C0 实际 C0 线性 C0 d0 d 2 d 4 d 2 r ( ) ( ) ... ( ) C d d0 d0 d0 ( ) 2 C0 线性 d0
灵敏度
若略去高次项,则 C 与 C0
RS 代表串联损耗,即引线电阻,电容器支架和极板
的电阻。
电感L由电容器本身的电感和外部引线电感组成。 由等效电路可知,等效电路有一个谐振领率,通常 为几十兆赫,当工作频率等于或接近谐振频率时, 谐振频率破坏了电容的正常作用。因此,应该选择 低于谐振频率的工作频率,否则电容传感器不能正 常工作。
第三章 电容式传感器 第四节电容式传感器应用举例
![第三章 电容式传感器 第四节电容式传感器应用举例](https://img.taocdn.com/s3/m/a29a606f4028915f814dc24b.png)
二、电容式压 力传感器
这种传感器结构简单、灵敏度高、响应速 度快(约100ms)、能测微小压差(0~0.75Pa)。 它是由两个玻璃圆盘和一个金属(不锈钢)膜片 组成。两玻璃圆盘上的凹面其上各镀金属材料 作为电容式传感器的两个固定极板,而夹在两 凹圆盘中的膜片则为传感器的可动电极,则形
成传感器的两个差动电容C1、C2。当两边压力p1、 p2相等时,膜片处在中间位置与左、右固定电容 间距相等,因此两个电容相等;当p1>p2时,膜 片弯向p2,那么两个差动电容一个增大、一个减
小,且变化量大小相同;当压差反向时,差动 电容变化量也反向。这种差压传感器也可以用 来测量真空或微小绝对压力,此时只要把膜片 的一侧密封并抽成高真空(10-5Pa)即可。
第三章 电容式传感器 第四节 电容式传感器应用举例
一、电容式测厚仪
1、运算型电容测厚传感器
在被测材的上下两侧各放置一块面积相等、与带 材距离相等的极板,极板与带材构成两个电容C1和C2。 把两块极板用导线连成一个电极,带材是电容的另一 电极,其总电容为Cx= C1 + C2 。
电容Cx与固定电容C0、变压器的次级L1和L2构成电 桥。 板材厚度变化时,Cx也变化。变化量耦合给运放, 再经整流滤波放大输出。同时由反馈回路将偏差信号
三. 电容式加速度传感器
四、电容式指纹传感器
• 指纹识别目前最常 用的是电容式传感 器,也被称为第二 代指纹识别系统。 它的优点是体积小、 成本低,成像精度 高,而且耗电量很 小,因此非常适合 在消费类电子产品 中使用。
• 右图为指纹经过处 理后的成像图:
• 指纹识别所需电容 传感器包含一个大 约有数万个金属导 体的阵列,其外面 是一层绝缘的表面, 当用户的手指放在 上面时,金属导体 阵列/绝缘物/皮肤 就构成了相应的小 电容器阵列。它们 的电容值随着脊 (近的)和沟(远 的)与金属导体之 间的距离不同而变 化。
传感器
![传感器](https://img.taocdn.com/s3/m/f52e4a92dd88d0d233d46ace.png)
在弹性钢体上高度相同处打一排孔,在孔内形成一排 平行的平板电容,当称重时,钢体上端面受力,圆孔
变形,每个孔中的电容极板间隙变小,其电容相应增
大。由于在电路上各电容是并联的,因而输出反映的
结果是平均作用力的变化,
测量误差大大减小
F
(误差平均效应)
图3-27 电容式称重传感器
传感器原理与应用——第三章
同轴双层电极电容式液位计。
内电极和与之绝缘的同轴金
属套组成电容的两极,外电 极上开有很多流通孔使液体 流入极板间。 1、2-内、外电极;
3-绝缘套; 4-流通孔
传感器原理与应用——第三章
以上介绍的两种是最一般的安装方法,在有些特殊
场合还有其它特殊安装形式,如大直径容器或介电
系数较小的介质,为增大测量灵敏度,通常也只用
计算点半径
传感器原理与应用——第三章
a2 而CA为:(积分求解过程省略) k 4 T ln 2 。 2 a b 2 2 1 4 T a a 1 CA ln 2 4 T ln 2 k 2 2 PH PL a b a b PH PL PH PL
传感器原理与应用——第三章
生物识别的技术核心在于如何获取这些生物特征,并
将其转换为数字信息,存储于计算机中,利用可靠的
匹配算法来完成验证与识别个人身份的过程。
传感器原理与应用——第三章
指纹识别
传感器原理与应用——第三章
19世纪初,科学研究发现了指纹的两个重要特征, 一是两个不同手指的指纹纹脊的式样不同,二是指纹
利用脉宽调制电路,将中心膜片接地,其输出U0
C1 C 2 CL CH U0 UQ UQ C1 C 2 CL CH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、电容式测厚仪
1、运算型电容测厚传感器 在被测材的上下两侧各放置一块面积相等、与带 材距离相等的极板,极板与带材构成两个电容C1和C2。 把两块极板用导线连成一个电极,带材是电容的另一 电极,其总电容为Cx= C1 + C2 。
电容Cx与固定电容C0、变压器的次级L1和L2构成电 桥。 板材厚度变化时,Cx也变化。变化量耦合给运放, 再经整流滤波放大输出。同时由反馈回路将偏差信号 传输给压力调节装置。
三. பைடு நூலகம்容式加速度传感器
四、电容式指纹传感器
• 指纹识别目前最常 用的是电容式传感 器,也被称为第二 代指纹识别系统。 它的优点是体积小、 成本低,成像精度 高,而且耗电量很 小,因此非常适合 在消费类电子产品 中使用。 • 右图为指纹经过处 理后的成像图:
• 指纹识别所需电容 传感器包含一个大 约有数万个金属导 体的阵列,其外面 是一层绝缘的表面, 当用户的手指放在 上面时,金属导体 阵列/绝缘物/皮肤 就构成了相应的小 电容器阵列。它们 的电容值随着脊 (近的)和沟(远 的)与金属导体之 间的距离不同而变 化。
2、频率变换型电容测厚传感器
二、电容式压 力传感器
这种传感器结构简单、灵敏度高、响应速 度快(约100ms)、能测微小压差(0~0.75Pa)。 它是由两个玻璃圆盘和一个金属(不锈钢)膜片 组成。两玻璃圆盘上的凹面其上各镀金属材料 作为电容式传感器的两个固定极板,而夹在两 凹圆盘中的膜片则为传感器的可动电极,则形 成传感器的两个差动电容C1、C2。当两边压力p1、 p2相等时,膜片处在中间位置与左、右固定电容 间距相等,因此两个电容相等;当p1>p2时,膜 片弯向p2,那么两个差动电容一个增大、一个减 小,且变化量大小相同;当压差反向时,差动 电容变化量也反向。这种差压传感器也可以用 来测量真空或微小绝对压力,此时只要把膜片 的一侧密封并抽成高真空(10-5Pa)即可。
第四节 电容式传感器的应用举例
电容式传感器可用来测量直线位移、角位移、 振动振幅,尤其适合测量高频振动振幅、精密轴 系回转精度、加速度等机械量。变极距型的适用 于较小位移的测量,量程在0.01m至数百微米。变 面积型的能测量较大的位移,量程为零点几毫米 至数百毫米之间。 电容式传感器还可用来测量压力、压差、液 位、料面、成分含量(如油、粮食中的含水量)、非 金属材料的涂层、油膜等的厚度,测量电介质的 湿度、密度、厚度等等,在自动检测和控制系统 中也常常用来作为位置信号发生器。