复变函数例题
复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
复变函数14套题目和答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则Cz f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1.=-⎰=-1||00)(z z nz z dz __________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数0n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→nz z z nn (i)21______________.8.=)0,(Re nz ze s ________,其中n 为自然数.9.zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=Cd zz f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D内为常数. 2. 试证: ()(1)f z z z =-在割去线段0R e 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0R e 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)1、 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nnf .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z nz z dz _________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________. 10.____)1,1(Res 4=-zz .三. 计算题. (40分) 1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dz z zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若nn ni nn z )11(12++-+=,则=∞→nz n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z nz z dz _________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nz ze .三. 计算题. (40分)1. 将函数12()z f z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-Czz z z e )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z 在|z |<1内根的个数. 四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时nz M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数初步例题和知识点总结

复变函数初步例题和知识点总结一、复变函数的基本概念复变函数是指定义在复数域上的函数。
一个复变函数通常可以表示为$w = f(z)$,其中$z = x + iy$ 是复数,$x$ 和$y$ 分别是实部和虚部,$w = u + iv$ 也是复数,$u$ 和$v$ 分别是其实部和虚部。
例如,函数$f(z) = z^2$ 就是一个简单的复变函数。
将$z = x +iy$ 代入,可得:\\begin{align}f(z)&=(x + iy)^2\\&=x^2 y^2 + 2ixy\end{align}\从而得到实部$u = x^2 y^2$,虚部$v = 2xy$。
二、复变函数的极限与连续(一)极限如果对于任意给定的正数$\epsilon$,都存在正数$\delta$,使得当$0 <|z z_0| <\delta$ 时,有$|f(z) A| <\epsilon$,则称$A$ 为函数$f(z)$当$z$ 趋向于$z_0$ 时的极限,记作$\lim_{z \to z_0} f(z) = A$。
例如,考虑函数$f(z) =\frac{z}{|z|}$,当$z$ 沿着实轴正方向趋近于$0$ 时,极限为$1$;当$z$ 沿着实轴负方向趋近于$0$ 时,极限为$-1$。
由于这两个极限不相等,所以该函数在$z = 0$ 处极限不存在。
(二)连续如果函数$f(z)$在点$z_0$ 处的极限存在且等于$f(z_0)$,则称函数$f(z)$在点$z_0$ 处连续。
例如,函数$f(z) = z$ 在整个复数域上都是连续的。
三、复变函数的导数复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程。
设函数$f(z) = u(x, y) + iv(x, y)$,则其导数为:\f'(z) =\lim_{\Delta z \to 0} \frac{f(z +\Delta z) f(z)}{\Delta z}\柯西黎曼方程为:\\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y},\quad \frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}\例如,函数$f(z) = z^2 =(x + iy)^2 = x^2 y^2 + 2ixy$,则$u = x^2 y^2$,$v = 2xy$。
复变函数与积分变化例题

复变函数与积分变化例题
首先,让我们来看一个关于复变函数及积分变化的具体例子.设z=x+y,其中x和y都是实数.为了计算积分变化,则先对此函数作积分变换,此时函数z可写作:
z=x+y=x+4xy-4x+4xy+y-4xy+6xy-4xy
左右两边做积分变换,即可得到:
∫zdx=∫(x+4xy-4x+4xy+y-4xy+6xy-4xy)dx
=x+2xy-2x+2xy+y/5-2xy/5+2xy/5-2xy/5+C
而上面的结果就是利用复变函数以及积分变换求得的函数值,可以通过复变函数对积分变换做出精确的计算.
再来看一个与复变函数及积分变化有关的例题,即:设z=xy,其中x与y都是实数.可用复变函数求解积分变换,则可得到:
int frac{1}{z} dz = int frac{1}{xy} dz = int
frac{sqrt{x}}{y} dx
tttttttttt+ int frac{sqrt{y}}{x} dy
tttttttttt
那么积分变换的结果就是:
ln|z|+C=ln|xy|+C=ln|x|+ln|y|+C
以上例题,都说明了复变函数的空间表示及其在计算积分变换时的有用性.
究其原因,复变函数是一种非常有效、非常强大的数学工具.它能够把复杂的变量压缩成一个函数,可以让人们更直观地看到函数的
变化规律,并且能够更有效地求解函数的积分变换问题.
例如,复变函数可以使用对函数变量的积分变换,从而求出函数性质的变化;复变函数也可以用来计算曲线的方程的值;复变函数还可以用来求解积分变换的值,以便更好地理解和处理实际问题。
另外,复变函数还可以应用于自然科学领域,比如物理系统和生物系统,以及更多方面的物理学。
(完整)复变函数经典例题

第一章例题例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线?(1)以原点为心,2为半径,在第一象项里的圆弧;(2)倾角的直线;(3)双曲线.解设,则因此(1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周.(2)在平面上对应的图形为:射线。
(3)因,故,在平面上对应的图形为:直线。
例1。
2 设在点连续,且,则在点的某以邻域内恒不为0。
证因在点连续,则,只要,就有特别,取,则由上面的不等式得因此,在邻域内就恒不为0。
例1。
3设试证在原点无极限,从而在原点不连续.证令变点,则从而(沿正实轴)而沿第一象限的平分角线,时,。
故在原点无确定的极限,从而在原点不连续。
第二章例题例2.1 在平面上处处不可微证易知该函数在平面上处处连续.但当时,极限不存在。
因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1.故处处不可微。
例 2.2 函数在满足定理2。
1的条件,但在不可微。
证因。
故但在时无极限,这是因让沿射线随而趋于零,即知上式趋于一个与有关的值。
例2。
3 讨论的解析性解因, 故要使条件成立,必有,故只在可微,从而,处处不解析.例2。
4讨论的可微性和解析性解因,故要使条件成立,必有,故只在直线上可微,从而,处处不解析。
例2.5讨论的可微性和解析性,并求。
解因, 而在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。
且。
例2。
6 设确定在从原点起沿负实轴割破了的平面上且,试求之值。
解设,则由代入得解得:,从而。
例2。
7 设则且的主值为.例2。
8 考查下列二函数有哪些支点(a)(b)解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即从而故的终值较初值增加了一个因子,发生了变化,可见0是的支点。
同理1 也是其支点。
任何异于0,1的有限点都不可能是支点。
因若设是含但不含0,1的简单闭曲线,则故的终值较初值增加了一个因子,未发生变化。
复变函数的积分例题及解析

复变函数的积分例题及解析复变函数的积分是学习复变函数的重要内容,了解复变函数的积分及其解析方法有助于学生对复变函数有更深入的理解,在解决实际问题时也能够更好的运用复变函数的知识。
本篇文章的目的,就是为了帮助学生们更好地掌握复变函数的积分,从而解决复变函数的积分问题。
首先,先来看一个简单的例题,是一个求复变函数的定积分问题:求∫[-3,3]sin(x)-3dx的值解:这是一个普通的求复变函数定积分的问题,使用定积分公式即可求解。
下面我们来进行求解,∫[-3,3]sin(x)-3dx =[-3,3]sin(x)dx -[-3,3]3dx∫[-3,3]sin(x)dx = -cos(3) + cos(-3) = -cos(3) -cos(3) ∫[-3,3]3dx = 36 = 18所以∫[-3,3]sin(x)-3dx=-cos(3) -cos(3) -18=-2cos(3)-18 根据上述计算,我们可以得到[-3,3]sin(x)-3dx=-2cos(3)-18,以上就是这道定积分问题的解析。
以上是一道简单的复变函数定积分问题的解析,下面我们继续看一道比较复杂的复变函数不定积分问题:求∫sin2xcos3xdx的值解:这是一个不定积分问题,这种问题一般使用公式法解决。
下面我们来进行求解,∫sin2xcos3xdx = 1/4∫sin4xcos3xdx = 1/4(1/3∫sin7xdx -1/5∫sin5xdx)∫sin7xdx = -1/7cos7x + C∫sin5xdx = -1/5cos5x + C所以∫sin2xcos3xdx = -1/84cos7x + 1/60cos5x + C根据上述计算,我们可以得到∫sin2xcos3xdx = -1/84cos7x + 1/60cos5x + C,以上就是这道不定积分问题的解析。
以上就是本篇文章要介绍的复变函数的积分例题及解析,帮助学生们更好地掌握复变函数的积分知识。
复变函数历年考试真题试卷

复变函数历年考试真题试卷一、选择题1. 下列哪个函数不是复变函数?A. f(z) = e^zB. f(z) = z^2C. f(z) = |z|D. f(z) = ln(z+1)2. 设f(z) = u(x,y) + iv(x,y)是一个复变函数,下面哪个等式成立?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = ∂v/∂xC. ∂u/∂x = -∂v/∂yD. ∂u/∂y = -∂v/∂x3. 对于复变函数f(z) = x^3 + 3ix^2y - 3xy^2 - iy^3,下列哪个等式成立?A. ∂u/∂x = 3x^2 + 6ixy - 3y^2B. ∂u/∂y = 3x^2 + 6ixy - 3y^2C. ∂v/∂x = -3x^2 + 3y^2 - 6ixyD. ∂v/∂y = -3x^2 + 3y^2 - 6ixy二、填空题1. 设f(z) = z^2 + 2iz - 1,则f(z)的共轭函数是________。
2. 当z → ∞ 时,f(z) = z^2 + 3z + 1的极限是________。
3. 若f(z) = u(x,y) + iv(x,y) 是全纯函数,则满足柯西-黎曼方程的条件是∂u/∂x = ________。
三、计算题1. 计算复变函数f(z) = z^3 - 4z的积分,其中C为以原点为圆心、半径为2的圆周。
2. 当z = -i 时,计算复变函数f(z) = 2z^2 + 3iz的导数。
四、证明题证明:若复变函数f(z) = u(x,y) + iv(x,y) 在单连通域D上解析,则f(z) 在D 上也是调和函数。
(请自行根据题目要求增减字数,使得文章达到合适的长度。
)(文章正文)选择题:1. 下列哪个函数不是复变函数?2. 设f(z) = u(x,y) + iv(x,y)是一个复变函数,下面哪个等式成立?3. 对于复变函数f(z) = x^3 + 3ix^2y - 3xy^2 - iy^3,下列哪个等式成立?填空题:1. 设f(z) = z^2 + 2iz - 1,则f(z)的共轭函数是________。
复变函数练习题

复变函数练习题一、填空题1. 复变函数的定义域是__________,值域是__________。
2. 若复数z = a + bi(a, b为实数),则z的共轭复数是__________。
3. 设f(z) = z^2 + 3z + 2,则f(1+i) =__________。
4. 复数z = 1 + i的模为__________,辐角为__________。
5. 若f(z) = e^z,则f'(z) =__________。
二、选择题1. 下列哪个函数是整函数?()A. f(z) = z^2B. f(z) = 1/zC. f(z) = |z|D. f(z) = sin(z)2. 复变函数f(z) = z^3 3z在z = 0处的泰勒展开式为()A. f(z) = z^3 3z + 3z^2 zB. f(z) = z^3 3z + 3z^2 z^4C. f(z) = z^3 3z + 3z^2 z^3D. f(z) = z^3 3z + 3z^23. 下列哪个复数是解析函数的孤立奇点?()A. z = 0B. z = ∞C. z = 1+iD. z = 1i4. 复变函数f(z) = e^z在z = 0处的洛伦兹级数为()A. f(z) = 1 + z + z^2/2! + z^3/3! + …B. f(z) = 1 + z + z^2/2 + z^3/3 + …C. f(z) = 1 z + z^2/2! z^3/3! + …D. f(z) = 1 z + z^2/2 z^3/3 + …5. 复变函数f(z) = sin(z)在z = π处的留数为()A. 1B. 1C. 0D. 无法确定三、计算题1. 设f(z) = (z^2 + 1)/(z i),求f(z)的洛伦兹级数展开。
2. 求解积分∮(1/(z^2 + 4))dz,其中积分路径为以原点为中心,半径为2的圆。
3. 设f(z) = e^zsin(z),求f(z)在z = 0处的泰勒展开式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2): C1 C2 , 其中C1:z t ,0 t 3, C C2 : z 3 it,0 t 4 故 zdz tdt (3 it )idt
C 0 0 3 4
4.5 12i 8 3.5 12i
例2、 z dz C:从原点到点( i) 1
§3 初 等 函 数
实变函数中有五种基本 等函数: 初 e x , log a x , x n , sin x , Arc sin x
用有限次四则运算和复 运算得到一般初等函 。 合 数
推广到复数域,有五种 初等函数: e z , Lnz , z a , sin z , Arc sin z
△ △ △
二、五种初等函数:
函数
解析性
处处解析 e
e
z
z
多值性
单值
ez 0
周期 2 i
Lnz
除原点和负实轴外
Lnz
1 z
多值 多值
单值奇 单值偶 单值奇
z
a
除原点和负实轴外
az a 1 sin z 1 处处解析
a
z
sin z cos z shz chz
处处解析 处处解析 处处解析
i n r
2
0
e
in
2 i n 0 d n0 0
记住:
z z0 r
dz 2 i z z0
3、积分的基本性质:
(定义形式相似,有一 些与实变函数类似)
k f ( z )dz k f ( z )dz (k为 复 常 数 )
f ( z ) g( z )dz C C
1、指数函数:e(周期)
z
定义f ( z ) e 满足 3个条件:
z
f ( z )在复平面内处处解析; z ( z ) e e z f
Im( z ) 0时有e z e x
f(z) e e
z
x iy
e (cos y i sin y )
x
z
满足上述3个条件,称为复变数z的指数函数
iz iz
三角函数性质:
周期为2的周期函数 : s in(z 2 ) s in z , cos (z 2 ) cos z 在复平面内处处解析; s in z cos z , cos z s in z 欧拉公式仍然成立; e iz cos z i s in z 三角公式一些仍然成立; cos (z1 z 2 ) cos z1 cos z 2 s in z1 s in z 2 s in(z1 z 2 ) s in z1 cos z 2 cos z1 s in z 2
C 0 0 1 1
* 一个重要例子
2 i n 0 dz 例3、 证明: n 1 n0 0 z z0 r z z0 解:C的方程:z z0 re i ,0 2。因此
2 dz irei r z z0 n1 0 r n1ei ( n1) d z z0
C
C:(0, 1, 0) ( 1 )直线段 : x y t C:(0, 1, 1, 0) ( 0) ( 1 ) 解 : z dz (t it )(1 i )dt 1
C 0 1
z t (x t, y 0),0 t 1 :C的方程: z 1 it (x 1, y t),0 t 1 故 z dz tdt (1 it )idt 0.5 i (1 0.5i ) i
cos z 1
2 2
2 i
2 i
单值偶
(2)线积分的计算方法:
通过两个二元线积分求 :
C
f ( z )dz udx vdy i vdx udy
C C
( u iv )( dx idy )
C
当曲线C可表示为参数方程时: z ( t ) t z
C1 C2
1 1 dz dz | z | r1 z | z | r1 z 1 1 1 dz dz 4i | z 1| r2 z | z 1| r2 z 1
定理3:f ( z )若在单连通域D内解析,则
例1:求积分 z cos zdz ?
0
z
z0
f ( z )dz F ( z ) F ( z0 )
i
解:因z cos z在全复平面内解析, z sin z cos z是z cos z的一个原函数, 由定理3,有
i
0
z cos zdz [ z sin z cos z ]i0
1 1
i sin i cos i 1 e e e e 1 i 1 e 1 2i 2
k 1 Ck n
2z 1 1 1 解:分解:f ( z ) 2 z z z z 1 f ( z )在内有两个奇点:z 0,1 寻找C1 , C2 , 令C1:z | r1 , C2 :| z 1 | r2 | 使C1 , C2在的内部,则f ( z )在, C1 , C2所 围的区域内解析。 f ( z )dz f ( z )dz f ( z )dz
高 层 中 层 低 层
f ( z )在D内解析
f ( z )在D内可导
f ( z )在z0解析
f ( z )在z0可导
f ( z )在z0连续
连续、点解析、区域解析关系多; 复变可导不但实部和虚 部必须可导, 而且它们之间还要有特 殊的联系。
C C
C
C
f ( z )dz g ( z )dz
C
f ( z )dz
f ( z )dz
当C的长度为 , f ( z )在C上满足 f ( z ) M L 则:
C
f ( z )dz ML (有界)
柯西定理: (1)如果f(z)在单连通区域D内处处解析,
则:f(z)沿D内任何一条封闭曲线C的 积分为0,即
2、复数四种表示方法:
1)复数的模与辐角:
模: z x y
2 2
y 辐角: tg 有无穷多个 x z 0时 不确定
全部辐角 Argz 0 2k arg z 2k 辐角主值 arg z 0 ( 0 )
2)三角表示法: z (cos i sin ) 3)指数表示法:
C
1) C : 从z 0到点z 3 4i的直线; 2) C : z 0 z 3 z 3 4i。 解1):C的方程:z 3t 4ti( x 3t , y 4t ), t [0, 1] 故 zdz (3 4i ) 2 tdt (3 4i ) 2 / 2 3.5 12i
C
f ( z )dz f z ( t )z ( t )dt
C为分段光滑曲线: C1 C 2 C n C
C
f ( z )dz f ( z )dz f ( z )dz
C1 C2
Cn
f ( z )dz
例1、 zdz C:从z 0到点z 3 4i
提供了判断函数是否可导的方法; 给出了求导公式。 u v v u f ( z ) i i x x y y
例:f ( z ) z 2
2 2 2 2
在复平面解析
2
f ( z ) z x y i 2 xy u x y 和v 2 xy在平面上每点可微,且 u / x v / y 2 x, u / y v / x 2 y
x x
4、三角函数和双曲函数:(周期)
三角函数:
e e 余弦函数: z cos (偶函数) 2 e iz e iz 正弦函数: z sin (奇函数) 2i sin z 正切函数: z tgz tan cos z cos z 余切函数: ctgz sin z 正(余)割函数: z 1 / cos z; csc z 1 / sin z sec
定理1:f ( z ) u ( x, y ) v( x, y )i 在一点z x iy可导的充分必要条件为: u ( x, y ), v( x, y )在点( x, y )可微; u v u v 满足C R方程: , x y y x
两个重要定理的作用:
模: e e
z
x
辐角:Arg e y 2k
e 的性质: ( 4条 )
z
f ( z ) e 0 z z e e 处处解析
z
满足加法定理:e e e
z1 z2
z1 z 2
周期性:周期为 2 i
因
u e cos y, v e sin y u v z z e i u iv e x x
由欧拉公式:e i
cos i sin
i
指数表示: z e 4)平面图形
复数形式方程:
z 1 表示单位圆
定义:方程 w z的根,
n n 每个w称为 z 的 n 次根 记为: z
1 n
n n k 0 ,1 ,2 ,3 , ( n 1 ) 得到n个不同的根。
w z (cos
n
0 2k
i sin
0 2k
)
(1) 1 i
4
1 i 2 cos i sin 4 4
2k 8 4 4 4 2k 1 i 2 cos i sin 4 4