操作系统 实验 进程的同步
操作系统实验二实验报告
操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。
通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。
2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。
3、为新进程指定可执行文件的路径、命令行参数、进程属性等。
4、编写代码来等待新进程的结束,并获取其退出代码。
(二)进程同步实验1、设计一个生产者消费者问题的模型。
2、使用信号量来实现生产者和消费者进程之间的同步。
3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。
4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。
(三)进程通信实验1、选择使用管道来实现进程之间的通信。
2、创建一个匿名管道,父进程和子进程分别读写管道的两端。
3、父进程向管道写入数据,子进程从管道读取数据并进行处理。
四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。
通过观察进程的创建和执行过程,加深了对进程概念的理解。
(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。
分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。
(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。
数据能够准确地在进程之间传递,验证了管道通信的有效性。
五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。
通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。
(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。
操作系统 实验三 进程同步
集美大学计算机工程学院实验报告课程名称:操作系统指导教师:王丰实验成绩:实验编号:实验三实验名称:进程同步班级:计算12姓名:学号:上机实践日期:2015.5上机实践时间:2学时一、实验目的1、掌握用Linux信号灯集机制实现两个进程间的同步问题。
2、共享函数库的创建二、实验环境Ubuntu-VMware、Linux三、实验内容⏹需要的信号灯: System V信号灯实现☐用于控制司机是否可以启动车辆的的信号灯 S1=0☐用于控制售票员是否可以开门的信号灯 S2=0System V信号灯实现说明□ System V的信号灯机制属于信号灯集的形式, 一次可以申请多个信号灯.□同样利用ftok()生成一个key: semkey=ftok(path,45);□利用key申请一个包含有两个信号灯的信号灯集, 获得该集的idsemid=semget(semkey,2,IPC_CREAT | 0666);□定义一个联合的数据类型union semun{int val;struct semid_ds *buf;ushort *array;};□利用semctl()函数对信号灯初始化,参数有:信号灯集的id: semid要初始化的信号灯的编号:sn要设定的初始值:valvoid seminit(int semid, int val,int sn){union semun arg;arg.val=val;semctl(semid,sn,SETVAL,arg);}利用初始化函数,初始化信号灯:seminit(semid,0,0);//用来司机启动汽车的同步seminit(semid,0,1);//用来售票员开门的同步控制□利用semop()函数, 对信号灯实现V操作:sembuf是一个在头部文件中的预定义结构、semid—信号灯集id, sn—要操作的信号灯编号void semdown(int semid,int sn){/* define P operating*/struct sembuf op;op.sem_num=sn;op.sem_op=-1;//P操作为-1op.sem_flg=0;semop(semid,&op,1);}2、Linux的静态和共享函数库·Linux生成目标代码: gcc -c 源程序文件名(将生成一个与源程序同名的.o目标代码文件。
进程的同步与互斥实验报告
进程的同步与互斥实验报告1.实验目的进程(线程)的同步与互斥是操作系统中非常重要的概念,本实验旨在通过实际操作,加深对这些概念的理解和掌握。
通过编写多个进程(线程),并在其间进行同步与互斥操作,验证同步与互斥的实际效果。
2.实验环境本实验在Linux系统下进行,使用C/C++语言编程。
3.实验内容3.1同步在实验中,我们编写了两个进程A和B,这两个进程需要按照特定的顺序执行。
为了实现同步,我们使用信号量机制来确保进程A和B按照正确的顺序执行。
3.2互斥在实验中,我们编写了多个进程C和D,这些进程需要同时对一个共享资源进行访问。
为了实现互斥,我们使用互斥锁机制来确保同一时刻只有一个进程访问共享资源。
4.实验过程4.1同步实验编写进程A和进程B的代码,使用信号量机制实现同步。
进程A先运行,然后通过信号量唤醒进程B,进程B再开始执行。
通过观察进程的运行顺序,验证同步机制是否起作用。
4.2互斥实验编写进程C和进程D的代码,使用互斥锁机制实现互斥。
进程C和进程D同时对一个共享资源进行访问,通过互斥锁来确保同一时刻只有一个进程访问共享资源。
观察进程的输出结果,验证互斥机制是否起作用。
5.实验结果5.1同步实验结果进程A开始执行进程A执行完毕进程B开始执行进程B执行完毕5.2互斥实验结果进程C开始执行进程C访问共享资源进程C执行完毕进程D开始执行进程D访问共享资源进程D执行完毕6.实验分析通过上述结果可以看出,同步实验中进程A和进程B按照正确的顺序执行,证明了同步机制的有效性。
互斥实验中进程C和进程D能够正确地交替访问共享资源,证明了互斥机制的有效性。
7.实验总结通过本次实验,我深刻理解了进程(线程)的同步与互斥,并通过实际操作加深了对这些概念的理解。
同步和互斥是操作系统中非常重要的概念,对于应对资源竞争和提高程序性能具有重要意义。
在实际开发中,我们应该合理使用同步和互斥机制,以确保程序的正确性和并发执行的效率。
16207318邓嘉操作系统实验三
操作系统实验第三次实验进程同步实验指导老师:***学号:********姓名:***操作系统第三次实验进程同步实验指导老师:谭朋柳学生:16207318邓嘉4.1 实验目的加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。
了解Linux 系统中IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。
4.2 实验说明在linux 系统中可以利用进程间通信(interprocess communication )IPC 中的3 个对象:共享内存、信号灯数组、消息队列,来解决协作并发进程间的同步与互斥的问题。
1)共享内存是OS 内核为并发进程间交换数据而提供的一块内存区(段)。
如果段的权限设置恰当,每个要访问该段内存的进程都可以把它映射到自己私有的地址空间中。
如果一进程更新了段中数据,那么其他进程立即会看到这一更新。
进程创建的段也可由另一进程读写。
linux 中可用命令ipcs -m 观察共享内存情况。
$ ipcs -m------ Shared Memory Segments --------key shmid owner perms bytes nattch status 0x00000000 327682 student 600 393216 2 dest0x00000000 360451 student 600 196608 2 dest 0x00000000 393220 student 600 196608 2 destkey 共享内存关键值shmid 共享内存标识owner 共享内存所由者(本例为student)perm 共享内存使用权限(本例为student 可读可写)byte 共享内存字节数nattch 共享内存使用计数status 共享内存状态上例说明系统当前已由student 建立了一些共享内存,每个都有两个进程在共享。
进程同步实验报告
一、实验目的1. 理解进程同步的概念和原理;2. 掌握进程同步的基本方法和机制;3. 学会使用信号量实现进程同步;4. 通过实验验证进程同步机制的有效性。
二、实验原理1. 进程同步:在多道程序设计中,进程的执行是并发的,但某些情况下需要保证多个进程按照一定的顺序执行,以避免出现数据不一致、死锁等问题。
进程同步是指通过某种机制,协调多个进程的执行顺序,保证它们能够正确、有效地共享资源。
2. 信号量:信号量是一种特殊的变量,用于实现进程同步。
信号量具有两个原子操作:P操作(wait)和V操作(signal)。
P操作用于申请资源,V操作用于释放资源。
3. 互斥锁:互斥锁是一种常见的进程同步机制,用于保证临界资源的互斥访问。
当一个进程进入临界区时,它会尝试获取互斥锁,如果锁已被其他进程获取,则该进程进入等待状态;当进程退出临界区时,它会释放互斥锁。
三、实验内容1. 实验环境:Linux操作系统,C语言编程环境。
2. 实验工具:gcc编译器、gdb调试器。
3. 实验步骤:(1)创建一个互斥锁,用于保护临界资源。
(2)编写两个进程,分别模拟对临界资源的访问。
(3)在进程访问临界资源前,使用P操作尝试获取互斥锁。
(4)在进程访问临界资源后,使用V操作释放互斥锁。
(5)编译并运行程序,观察进程执行情况。
四、实验结果与分析1. 实验结果:(1)在互斥锁的保护下,两个进程能够按照预期顺序访问临界资源。
(2)当其中一个进程正在访问临界资源时,另一个进程会进入等待状态。
(3)当进程访问临界资源完成后,它会释放互斥锁,允许其他进程访问。
2. 实验分析:(1)互斥锁能够有效地保护临界资源,避免数据不一致问题。
(2)信号量P操作和V操作保证了进程的同步,避免了死锁现象。
(3)通过实验验证了进程同步机制的有效性。
五、实验总结本次实验通过使用信号量和互斥锁,实现了进程同步。
实验结果表明,信号量和互斥锁能够有效地保证进程按照预期顺序执行,避免数据不一致和死锁等问题。
操作系统实验3进程同步报告
实验三进程同步一、实验目的:1.了解进程和线程的同步方法,学会运用进程和线程同步方法来解决实际问题;2.了解windows系统下Win32 API或Pthread信号量机制的使用方法;二、实验预备内容:1.对书上所说基于信号量的有限缓冲的生产者-消费者问题;2.对于信号量的概念有大概的了解,知道如何用信号量的wiat()和signal()函数如何取消应用程序进入临界区的忙等;三、实验环境说明:此实验在Win7(32位) CodeBlocks环境下实现,采用WinAPI的信号量机制。
四、实验内容:设计一个程序解决有限缓冲问题,其中的生产者与消费者进程如下图所示。
在Bounded-Buffer Problem(6.6.1节)中使用了三个信号量:empty (记录有多少空位)、full(记录有多少满位)以及mutex(二进制信号量或互斥信号量,以保护对缓冲区插入与删除的操作)。
对于本项目,empty和full将采用标准计数信号量,而mutex将采用二进制信号量。
生产者与消费者作为独立线程,在empty、full、mutex的同步前提下,对缓冲区进行插入与删除。
本项目可采用Pthread或Win32 API。
(本实验采用Win32 API)五、程序设计说明:1.全局变量:定义缓冲区数组及其环形队列表达方式,定义mutex、empty、full 三个信号量。
empty记录缓冲区有多少个空位;full记录缓冲区有多少个满位;mutex作为互斥信号量,保护对缓冲区插入或删除的操作。
具体定义如下:定义生产者、消费者线程结构和包含的信息:(由于题目中没有要求,因此只定义了编号一个变量)2.缓冲区:缓冲区是一个元数据类型为buffer_item(可通过typedef定义)的固定大小的数组,按环形队列处理。
buffer_item的定义及缓冲区大小可保存在头文件中:A.insert_item():先判断缓冲区是否已满,不满则向缓冲区中插入元素;B.remove_item()先判断缓冲区是否为空,不空则从缓冲区中删除元素;3.生产者线程:生产者线程交替执行如下两个阶段:睡眠一段随机事件,向缓冲中插入一个随机数。
操作系统实验进程同步与互斥
操作系统实验进程同步与互斥操作系统实验进程同步与互斥实验目的1.掌握进程同步和互斥原理,理解生产者-消费者模型;2.学习Windows2000/xp中的多线程并发执行机制;3.学习使用Windows SDK解决读者-写者问题。
试验内容1依据生产者-消费者模型,在Windows 2000/xp环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥,分析、熟悉生产者消费者问题仿真的原理和实现技术。
(见附件2)试验内容2参考实验内容1和附件2伪码,编程解决读者-写者问题的程序。
(具体要求和读写者问题原始伪码内容见附件1)相关知识Windows 2000/XP的线程控制CreateThread完成线程创建,在调用进程的地址空间上创建一个线程,以执行指定的函数;它的返回值为所创建线程的句柄。
ExitThread用于结束当前线程。
SuspendThread可挂起指定的线程。
ResumeThread可激活指定线程,它的对应操作是递减指定线程的挂起计数,当挂起计数减为0时,线程恢复执行。
Windows 2000/XP的进程互斥和同步在Windows 2000/XP中提供了临界区、互斥对象、信号量对象同步对象和相应的系统调用,用于进程和线程同步。
临界区对象(Critical Section)只能用于在同一进程内使用的临界区,同一进程内各线程对它的访问是互斥进行的。
相关API包括:InitializeCriticalSection对临界区对象进行初始化;EnterCriticalSection等待占用临界区的使用权,得到使用权时返回;TryEnterCriticalSection非等待方式申请临界区的使用权;申请失败时,返回0;LeaveCriticalSection释放临界区的使用权;DeleteCriticalSection释放与临界区对象相关的所有系统资源。
互斥对象(Mutex)互斥对象相当于互斥信号量,在一个时刻只能被一个线程使用。
操作系统进程调度和进程同步实验要求
0711操作系统进程调度和进程同步实验要求实验内容:用线程模拟进程,实现进程调度和进程同步。
在任意操作系统中,用c、c++或者java 编写程序。
并且完成相应的实验报告。
实验要求:实验一:进程调度⑴ 主线程,创建子线程,保存子线程的虚拟PCB(参见恐龙书P74)、要求运行多少时间(可随机产生)、已经等待多少时间(初始化为0),优先级(可随机产生)等信息,并负责子线程的调度。
调度的基本时间单位为1 S。
⑵ 创建20个线程(可以只用一个线程函数,传递不同的参数即上述数据结构)分别实现FCFS调度、SJF调度、RR调度、优先级调度和多级队列调度,并且计算每个调度的平均等待时间。
其中,多级队列调度要求设计4个调度队列,每个队列5个线程,队列内部分别采用FCFS、SJF、RR和优先级调度。
时间片的长度可以随机生成为n S。
⑶ 对于每个子线程,在其运行期间,输出其占用的时间标号(例如,第3个线程占用了第10秒的CPU时间,输出为:“Thread 3: 10”,格式可自行设计)。
实验二:进程同步⑴ 模拟哲学家就餐问题:设置5个子线程模拟5个哲学家,设置5个互斥区为筷子。
⑵ 输出问题解决方法:在每个哲学家线程中输出其获得的筷子标号与时间(可以读取系统时间,或者自行设置时间标准),例如:哲学家2在第n秒获得筷子1,在第m秒获得筷子2。
实验报告要求:写明实验目的、实验设计步骤、实验结果、总结。
附录:windows线程基本操作以windows线程函数为例介绍线程基本操作,以下函数都必须包含windows.h头文。
如果想更深入地了解线程,请参见《c++编程艺术》等相关书籍。
线程创建函数:HANDLE CreateThread (LPSECURITY_ATTRIBUTES secAttr,SIZE_T stackSize,LPTHREAD_START_ROUTINE threadFunc,LPVOID param,DWORD flags,LPDWORD threadID);在此,secAttr是一个用来描述线程的安全属性的指针。
哈尔滨工程大学操作系统 实验四进程的同步
操作系统实验报告哈尔滨工程大学软件学院第四讲进程的同步一、实验概述1. 实验名称:进程的同步2. 实验目的:(1)使用E OS 的信号量,编程解决生产者—消费者问题,理解进程同步的意义。
(2)调试跟踪E OS 信号量的工作过程,理解进程同步的原理。
(3)修改E OS 的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。
3. 实验类型:验证+设计4. 实验内容1)准备实验2)使用EOS 的信号量解决生产者-消费者问题3)调试EOS 信号量的工作过程4)修改EOS 的信号量算法二、实验环境操作系统:windows xp编译器:Bochs 模拟器语言:C语言工具:OSLAB三、实验过程1 准备实验按照下面的步骤准备本次实验:1. 启动OS Lab。
2. 新建一个EOS Kernel项目。
3. 生成EOS Kernel项目,从而在该项目文件夹中生成SDK 文件夹。
4. 新建一个EOS应用程序项目。
5. 使用在第3步生成的SDK文件夹覆盖EOS应用程序项目文件夹中的SDK 文件夹。
2 使用EOS 的信号量解决生产者-消费者问题在本实验文件夹中,提供了使用EOS的信号量解决生产者-消费者问题的参考源代码文件pc.c。
使用OS Lab打开此文件(将文件拖动到OS Lab窗口中释放即可打开),仔细阅读此文件中的源代码和注释,各个函数的流程图可以参见图13-1。
思考在两个线程函数(Producer 和Consumer)中,哪些是临界资源?哪些代码是临界区?哪些代码是进入临界区?哪些代码是退出临界区?进入临界区和退出临界区的代码是否成对出现?按照下面的步骤查看生产者-消费者同步执行的过程:1. 使用pc.c文件中的源代码,替换之前创建的EOS 应用程序项目中EOSApp.c文件内的源代码。
2. 按F7生成修改后的EOS应用程序项目。
3. 按F5启动调试。
OS Lab会首先弹出一个调试异常对话框。
操作系统实验报告——进程同步与互斥
操作系统实验报告——进程同步与互斥一、实验内容本实验主要内容是通过编写程序来实现进程的同步与互斥。
具体来说,是通过使用信号量来实现不同进程之间的同步和互斥。
我们将编写两个进程,一个进程负责打印奇数,另一个进程负责打印偶数,两个进程交替打印,要求打印的数字从1开始,直到100结束。
二、实验原理进程的同步是指多个进程之间按照一定的顺序执行,进程之间互相等待的关系。
而进程的互斥是指多个进程竞争同一个资源,需要通过其中一种方式来避免同时访问共享资源,以免造成数据错乱。
在本实验中,我们使用信号量来实现进程的同步与互斥。
信号量是一个计数器,用于表示一些共享资源的可用数量。
进程在访问共享资源时,需要先对信号量进行操作,当信号量大于0时,表示资源可用,进程可以访问;当信号量等于0时,表示资源不可用,进程需要等待。
进程同步的实现可以通过信号量的P操作与V操作来完成。
P操作用于申请资源,当资源可用时,将计数器减一,并进入临界区;V操作用于释放资源,当资源使用完毕时,将计数器加一,使等待资源的进程能够申请。
进程互斥的实现可以通过信号量的P操作与V操作结合临界区来完成。
当多个进程需要访问共享资源时,需要先进行P操作,进入临界区,访问完毕后进行V操作,离开临界区。
三、实验步骤1.首先,我们需要创建两个进程,一个进程负责打印奇数,另一个进程负责打印偶数。
2. 然后,我们创建一个共享变量count,用来记录打印的数字。
3. 接着,我们创建两个信号量odd和even,用来控制进程的同步与互斥。
odd信号量初始值为1,表示打印奇数的进程可以访问;even信号量初始值为0,表示打印偶数的进程需要等待。
4.编写奇数打印进程的代码,首先进行P操作,判断奇数信号量是否大于0,如果大于0,表示可以打印奇数。
5. 如果可以打印奇数,将count加一,并输出当前的奇数,然后进行V操作,释放偶数打印进程的等待。
6.同样的,编写偶数打印进程的代码,首先进行P操作,判断偶数信号量是否大于0,如果大于0,表示可以打印偶数。
进程的同步实验报告
进程的同步实验报告进程的同步实验报告引言:进程同步是操作系统中一个重要的概念,它涉及到多个进程之间的协调和合作。
在本次实验中,我们将通过一个简单的实例来探讨进程同步的概念和实现方式。
实验目的:通过实验,我们的目标是理解进程同步的概念,学习常见的同步机制,并通过编程实现一个简单的同步问题。
实验环境:本次实验使用了C语言作为编程语言,并在Linux操作系统上进行。
实验过程:我们的实验场景是一个餐厅,有一个厨师和多个服务员。
厨师负责烹饪菜品,服务员负责上菜给客人。
我们需要实现的是,服务员只有在厨师烹饪好一道菜之后才能上菜,否则需要等待。
首先,我们使用互斥锁来实现进程间的同步。
互斥锁是一种常见的同步机制,它可以确保在同一时间只有一个进程可以访问共享资源。
在我们的实验中,厨师和服务员都需要访问菜品资源,因此我们为菜品资源添加了一个互斥锁。
接下来,我们使用条件变量来实现进程间的等待和唤醒操作。
条件变量是一种同步机制,它可以让进程在某个条件满足时等待,直到被唤醒。
在我们的实验中,服务员需要等待厨师烹饪好菜品之后才能上菜,因此我们创建了一个条件变量,并在服务员的代码中使用了等待和唤醒操作。
实验结果:经过实验,我们成功地实现了进程间的同步。
在我们的实验场景中,厨师会不断地烹饪菜品,并在烹饪完成后通知服务员上菜。
服务员会等待厨师的通知,然后上菜给客人。
通过互斥锁和条件变量的使用,我们保证了服务员只会在厨师烹饪完成后才会上菜,避免了资源竞争和错误的上菜行为。
讨论与总结:通过本次实验,我们深入理解了进程同步的概念和实现方式。
互斥锁和条件变量是常见的同步机制,它们可以有效地解决进程间的竞争和协调问题。
在实际的操作系统中,进程同步是一个非常重要的概念,它保证了多个进程之间的正确执行和合作。
然而,进程同步也可能引发一些问题。
例如,如果互斥锁的使用不当,可能会导致死锁的发生。
死锁是一种进程无法继续执行的状态,它会导致系统的停滞。
操作系统实验-进程同步(模拟生产者与消费者问题)
#include <stdio.h>#include <malloc.h>int processnum=0;struct pcb{int flag;int numlabel;char product;char state;struct pcb* processlink;}*exe=NULL,*over=NULL;typedef struct pcb PCB;PCB* readyhead=NULL,*readytail=NULL;PCB* consumerhead=NULL,*consumertail=NULL; PCB* producerhead=NULL,*producertail=NULL;int productnum=0;int buffersize=100;int full=0,empty=buffersize;char buffer[100];int bufferpoint=0;void linkqueue(PCB* process,PCB**tail);PCB* getq(PCB* head,PCB**tail);bool hasElement(PCB* pro);void display(PCB* p);void linklist(PCB* p,PCB* listhead);void freelink(PCB *linkhead);bool processproc();bool waitempty();bool waitfull();void signalempty();void signalfull();void producerrun();void comsuerrun();bool hasElement(PCB* pro);void linklist(PCB* p,PCB* listhead){PCB* cursor=listhead;while(cursor->processlink!=NULL){cursor=cursor->processlink;}cursor->processlink=p;}void freelink(PCB* linkhead){PCB* p;while(linkhead!=NULL){p=linkhead;linkhead=linkhead->processlink;free(p);}}void linkqueue(PCB* process,PCB** tail){if((*tail)!=NULL){(*tail)->processlink=process;(*tail)=process;}else{printf("队列未初始化!");}}PCB* getq(PCB* head,PCB** tail){PCB* p;p=head->processlink;if(p!=NULL){head->processlink=p->processlink;p->processlink=NULL;if(head->processlink==NULL)(*tail)=head;}elsereturn NULL;return p;}bool processproc(){int i,f,num;char ch;PCB*p=NULL;PCB** p1=NULL;printf("\n请输入希望产生的进程个数?");scanf("%d",&num);getchar();//if(num>=100){//printf("您怎么要产生这么多进程! Demands Denied!");//return false;//}for(i=0;i<num;i++){printf("\n请输入您要产生的进程:输入1为生产者进程:输入2为消费者进程\n");scanf("%d",&f);getchar();p=(PCB*)malloc(sizeof(PCB));if(!p){printf("内存分配失败");return false;}p->flag=f;processnum++;p->numlabel=processnum;p->state='w';p->processlink=NULL;if(p->flag==1){printf("您要产生的进程是生产者,它是第%d个进程。
操作系统-进程管理与进程同步-实验报告
实验一、进程管理与进程同步一、实验目的了解进程管理的实现方法,理解和掌握处理进程同步问题的方法。
二、实验内容实现银行家算法、进程调度过程的模拟、读者-写者问题的写者优先算法。
实验步骤:理解安全性算法和银行家算法的核心机制:针对3类资源、5个进程的情况,设计相应的数据结构,分别表示每个进程占用各类资源的情况;编程实现安全性算法函数,编制主函数,动态输入资源的占用情况,进程的资源申请,调用安全性函数,实现银行家算法;测试:输入可分配和不可分配的请求,测试系统的正确性。
三、实验环境Windows 2000;Microsoft Visual C++ 6.0四、程序源码与运行结果银行家算法代码:#include "malloc.h"#include "stdio.h"#include "stdlib.h"#define alloclen sizeof(struct allocation)#define maxlen sizeof(struct max)#define avalen sizeof(struct available)#define needlen sizeof(struct need)#define finilen sizeof(struct finish)#define pathlen sizeof(struct path)struct allocation{int value;struct allocation *next;};struct max{int value;struct max *next;};struct available /*可用资源数*/{int value;struct available *next;};struct need /*需求资源数*/{int value;struct need *next;};struct path{int value;struct path *next;};struct finish{int stat;struct finish *next;};int main(){int row,colum,status=0,i,j,t,temp,processtest;struct allocation *allochead,*alloc1,*alloc2,*alloctemp;struct max *maxhead,*maxium1,*maxium2,*maxtemp;struct available *avahead,*available1,*available2,*workhead,*work1,*work2,*worktemp,*worktemp1; struct need *needhead,*need1,*need2,*needtemp;struct finish *finihead,*finish1,*finish2,*finishtemp;struct path *pathhead,*path1,*path2;printf("\n请输入系统资源的种类数:");scanf("%d",&colum);printf("请输入现时内存中的进程数:");scanf("%d",&row);printf("请输入已分配资源矩阵:\n");for(i=0;i<row;i++){for (j=0;j<colum;j++){printf("请输入已分配给进程 p%d 的 %c 种系统资源:",i,'A'+j);if(status==0){allochead=alloc1=alloc2=(struct allocation*)malloc(alloclen);alloc1->next=alloc2->next=NULL;scanf("%d",&allochead->value);status++;}else{alloc2=(struct allocation *)malloc(alloclen);scanf("%d,%d",&alloc2->value);if(status==1){allochead->next=alloc2;status++;}alloc1->next=alloc2;alloc1=alloc2;}}}alloc2->next=NULL;status=0;printf("请输入最大需求矩阵:\n");for(i=0;i<row;i++){for (j=0;j<colum;j++){printf("请输入进程 p%d 种类 %c 系统资源最大需求:",i,'A'+j);if(status==0){maxhead=maxium1=maxium2=(struct max*)malloc(maxlen);maxium1->next=maxium2->next=NULL;scanf("%d",&maxium1->value);status++;}else{maxium2=(struct max *)malloc(maxlen);scanf("%d,%d",&maxium2->value);if(status==1){maxhead->next=maxium2;status++;}maxium1->next=maxium2;maxium1=maxium2;}}}maxium2->next=NULL;status=0;printf("请输入现时系统剩余的资源矩阵:\n");for (j=0;j<colum;j++){printf("种类 %c 的系统资源剩余:",'A'+j);if(status==0){avahead=available1=available2=(struct available*)malloc(avalen); workhead=work1=work2=(struct available*)malloc(avalen);available1->next=available2->next=NULL;work1->next=work2->next=NULL;scanf("%d",&available1->value);work1->value=available1->value;status++;}else{available2=(struct available*)malloc(avalen);work2=(struct available*)malloc(avalen);scanf("%d,%d",&available2->value);work2->value=available2->value;if(status==1){avahead->next=available2;workhead->next=work2;status++;}available1->next=available2;available1=available2;work1->next=work2;work1=work2;}}available2->next=NULL;work2->next=NULL;status=0;alloctemp=allochead;maxtemp=maxhead;for(i=0;i<row;i++)for (j=0;j<colum;j++){if(status==0){needhead=need1=need2=(struct need*)malloc(needlen); need1->next=need2->next=NULL;need1->value=maxtemp->value-alloctemp->value;status++;}else{need2=(struct need *)malloc(needlen);need2->value=(maxtemp->value)-(alloctemp->value); if(status==1)needhead->next=need2;status++;}need1->next=need2;need1=need2;}maxtemp=maxtemp->next;alloctemp=alloctemp->next;}need2->next=NULL;status=0;for(i=0;i<row;i++){if(status==0){finihead=finish1=finish2=(struct finish*)malloc(finilen); finish1->next=finish2->next=NULL;finish1->stat=0;status++;}else{finish2=(struct finish*)malloc(finilen);finish2->stat=0;if(status==1){finihead->next=finish2;status++;}finish1->next=finish2;finish1=finish2;}}finish2->next=NULL; /*Initialization compleated*/status=0;processtest=0;for(temp=0;temp<row;temp++){alloctemp=allochead;needtemp=needhead;finishtemp=finihead;worktemp=workhead;for(i=0;i<row;i++)worktemp1=worktemp;if(finishtemp->stat==0){for(j=0;j<colum;j++,needtemp=needtemp->next,worktemp=worktemp->next) if(needtemp->value<=worktemp->value)processtest++;if(processtest==colum){for(j=0;j<colum;j++){worktemp1->value+=alloctemp->value;worktemp1=worktemp1->next;alloctemp=alloctemp->next;}if(status==0){pathhead=path1=path2=(struct path*)malloc(pathlen);path1->next=path2->next=NULL;path1->value=i;status++;}else{path2=(struct path*)malloc(pathlen);path2->value=i;if(status==1){pathhead->next=path2;status++;}path1->next=path2;path1=path2;}finishtemp->stat=1;}else{for(t=0;t<colum;t++)alloctemp=alloctemp->next;finishtemp->stat=0;}}elsefor(t=0;t<colum;t++){needtemp=needtemp->next;alloctemp=alloctemp->next;}processtest=0;worktemp=workhead;finishtemp=finishtemp->next;}}path2->next=NULL;finishtemp=finihead;for(temp=0;temp<row;temp++){if(finishtemp->stat==0){printf("\n系统处于非安全状态!\n"); exit(0);}finishtemp=finishtemp->next;}printf("\n系统处于安全状态.\n"); printf("\n安全序列为: \n");do{printf("p%d ",pathhead->value);}while(pathhead=pathhead->next);printf("\n");return 0;}运行结果:备注:输入数据为P110 银行家算法之例所用数据《计算机操作系统》(第三版)西安电子科技大学出版社银行家算法原理说明:银行家算法是一种最有代表性的避免死锁的算法。
操作系统进程同步实验报告
实验三:进程同步实验一、实验任务:(1)掌握操作系统的进程同步原理;(2)熟悉linux的进程同步原语;(3)设计程序,实现经典进程同步问题。
二、实验原理:(1)P、V操作PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:P(S):①将信号量S的值减1,即S=S-1;②如果S³0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
(2)信号量信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。
信号量的值与相应资源的使用情况有关。
当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。
注意,信号量的值仅能由PV操作来改变。
一般来说,信号量S³0时,S表示可用资源的数量。
执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。
而执行一个V操作意味着释放一个单位资源,因此S 的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。
(3)linux的进程同步原语①wait();阻塞父进程,子进程执行;②#include <sys/types.h>#include <sys/ipc.h>key_t ftok (char*pathname, char proj);它返回与路径pathname相对应的一个键值。
③int semget(key_t key, int nsems, int semflg)参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与msgget()中的key 相同;参数nsems指定打开或者新创建的信号灯集中将包含信号灯的数目;semflg参数是一些标志位。
实验1进程的同步
WaitForSingleObject(hSemaphore_condutor,INFINITE); //等待司机停车的信号
ReleaseSemaphore(hSemaphore_dirver,1,NULL);//让司机开车的信号
}
三、操作界面
cout<<"********************the end pork************************"<<endl;
return 0;
}
//司机线程
DWORD WINAPI ThreadProc_Driver(LPVOID lpParameter)
{while(NUM_PASSENGER_CURRENT<50) //车上未满座
srand(time(0));
NUM_PASSENGER_ON=rand()%10;
cout<<NUM_PASSENGER_ON<<" passengers get on the bus"<<endl;
if(!pork_begin) //如果汽车从起始站出发
{cout<<"no passengers down"<<endl;
pork_begin++;
NUM_PASSENGER_CURRENT=NUM_PASSENGER_ON+NUM_PASSENGER_INITIAL;//起始站上车的人数
}
else
{NUM_PASSENGER_CURRENT=NUM_PASSENGER_CURRENT+NUM_PASSENGER_ON;
北邮大三上-操作系统-进程同步实验报告
操作系统实验二进程同步实验班级:2009211311 学号:姓名:schnee目录1. 实验目的 (2)2. 实验要求 (2)3. 环境说明 (2)4. 实验前期思考 (2)5. 实验知识点储备 (3)5.1.进程 (3)5.2.线程 (3)5.3.同步和互斥 (3)5.4.库函数和类型储备 (4)6. 编程实现: (6)6.1. 调整和框架 (6)6.2. 源程序实现(详细框架见注释) (6)6.3. 实现中遇到过的困难和解决方法 (9)6.4. 运行示例及结果截图 (10)7. 心得和优化 (11)1.实验目的1)理解进程/线程同步的方法,学会运用进程/线程同步的方法解决实际问题;2)了解windows系统或unix/linux系统下中信号量的使用方法。
2.实验要求编写一个有关生产者和消费者的程序:每个生产者每次生产一个产品存入仓库,每个消费者每次从仓库中取出一个产品进行消费,仓库大小有限,每次只能有一个生产者或消费者访问仓库。
要求:采用信号量机制。
3.环境说明此实验采用的是Win7下Code::blocks 10.05编译器,采用Win API的信号量机制编程。
此word实验文档中采用notepad++的语法高亮。
4.实验前期思考可能有多个生产者和消费者。
可以假设输入P表示创建一个生产者线程,输入C表示创建一个消费者线程。
生产者线程等待仓库有空位并且占据此空位,,然后等待仓库的操作权,执行操作,最后释放仓库操作权。
一开始以为是占位的操作在获得操作权后,疑惑:若是等待空位后在等待获得操作权时又没有空位了,岂不是又不能放入了?若是先获得操作权再等空位,则在无空位时会进入无穷等待状态,因为没有人来改变空位个数。
这两个问题如何克服呢?其实第一个疑问是因为我对wait函数的具体操作还有点模糊,实际上wait操作便是一等到空位就顺便占了,而不是我想的等位和占位分离。
而第二个问题自然是不行的,这种操作顺序应该抛弃。
操作系统实验第六讲进程的同步解析
操作系统实验报告哈尔滨工程大学计算机科学与技术学院一、实验概述1. 实验名称进程的同步2.实验目的使用 EOS 的信号量,编程解决生产者—消费者问题,理解进程同步的意义。
调试跟踪 EOS 信号量的工作过程,理解进程同步的原理。
修改 EOS 的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。
3.实验类型验证+设计4.实验内容 3.1 准备实验3.2 使用 EOS 的信号量解决生产者-消费者问题3.3 调试 EOS 信号量的工作过程3.3.1 创建信号量3.3.2 等待、释放信号量3.3.2.1 等待信号量(不阻塞)3.3.2.2 释放信号量(不唤醒)3.3.2.3 等待信号量(阻塞)3.3.2.4 释放信号量(唤醒)3.4 修改 EOS 的信号量算法二、实验环境操作系统windos xp编译器OS Lab语言c语言三、实验过程1. 设计思路和流程图3. 需要解决的问题及解答(1)生产者在生产了13号产品后本来要继续生产14号产品,可此时生产者为什么必须等待消费者消费了4号产品后,才能生产14号产品呢?生产者和消费者是怎样使用同步对象来实现该同步过程的呢?答:这是因为临界资源的限制。
临界资源的数值范围是0到10,只有当临界资源不满10时才能让生产者生产东西,每次生产一个临界资源数量加一,当临界资源数值到10时,无法继续生产,所以它必须等到消费者,消耗掉一个,临界资源数值才会减一并腾出空间,才能继续生产14号产品。
(2)修改EOS的信号量算法修改PsWaitForSemaphore函数:PsWaitForSemaphore(IN PSEMAPHORE Semaphore,IN ULONG Milliseconds)/*++功能描述:信号量的Wait操作(P操作)。
参数:Semaphore--Wait操作的信号量对象。
Milliseconds--等待超时上限,单位毫秒。
返回值:STATUS_SUCCESS。
操作系统进程同步与互斥实验报告0204192337
学生实验报告姓名:年级专业班级学号成绩#define N 1 //N定义为临界资源!printf("请输入三个进程:\n"); //初始状态为:临界资源处于空闲状态!loop:scanf("%d %d %d",&a,&b,&c); //输入的进程名为:a,b,c!进程名输入的先后代表进程的访问顺序!if(a==N) //判断进程a是否占据临界资源!若a==N,表明a访问临界资源!{printf("a=%d\n",a); //a正在访问临界资源!printf("b=0,c=0\n"); //b,c不能进入自己的临界区,需等待a释放临界资源!printf(“临界资源正在被进程a访问,进程b,c必须等待.\n”);}else if(b==N){printf("b=%d\n",b); //b正在访问临界资源!printf("a=0,c=0\n"); //a,c不能进入自己的临界区,需等待b释放临界资源!printf(“临界资源正在被进程b访问,进程a,c必须等待.\n”);}5.编译链接所编写的程序,在编译正确的情况下执行程序.6.记录程序执行的结果(如下图所示).注意:初始状态为:临界资源处于空闲状20 10年12 月16 日【实验结果或总结】(对实验结果进行相应分析,或总结实验的心得体会,并提出实验的改进意见)1.进程a,b,c分别访问临界资源时程序执行的结果如下.(a) (b) (c)2.该程序初始化N为临界资源,根据输入a,b,c,的值是否等于N来判断进程分别是否进入自己的临界区。
当a=N 表明进程a正在访问临界资源。
此时程序执行的输出为:a=1,b=c=0表示进程b,c不能进入自己的临界区。
3.该程序能较好地体现程序并发执行时的一种制约关系-互斥,但不能较好的反映进程的同步关系,所以该算法有待改进,用以同时实现进程的同步和互斥。
操作系统实验报告-进程同步与互斥
操作系统实验报告-进程同步与互斥(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《进程同步与互斥》实验报告学号姓名专业、班实验地点指导教师时间一、实验目的1、掌握基本的进程同步与互斥算法,理解生产者-消费者问题。
2、学习使用Windows 2000/XP中基本的同步对象,掌握相关API的使用方法。
3、了解Windows 2000/XP中多线程的并发执行机制,实现进程的同步与互斥。
4、设计程序,实现生产者-消费者进程(线程)的同步与互斥;二、实验环境Windows 2000/XP + Visual C++三、实验内容以生产者-消费者模型为依据,在Windows 2000/XP环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。
四、设计思路和流程框图生产者进程的功能:生产东西,供消费者消费;消费者进程的功能:消费生产者生产的东西。
生产者生产产品并存入缓冲区供消费者取走使用,消费者从缓冲器内取出产品去消费。
在生产者和消费者同时工作时,必须禁止生产者将产品放入已装满的缓冲器内,禁止消费者从空缓冲器内取产品。
五、源程序(含注释)清单六、测试结果以及实验总结1、通过实验进一步了解了基本的进程同步与互斥算法,理解生产者-消费者问题2、掌握了相关API的使用方法。
3、了解到进程是一个可以拥有资源的基本单位,是一个可以独立调度和分派的基本单位。
而线程是进程中的一个实体,是被系统独立调度和分配的基本单位,故又称为轻权(轻型)进程(Light Weight Process)。
4、了解到同步对象是指Windows中用于实现同步与互斥的实体,包括信号量(Semaphore)、互斥量(Mutex)、临界区(Critical Section)和事件(Events)等。
本实验中使用到信号量、互斥量和临界区三个同步对象。
成绩备注:实验报告文档的名称:姓名_实验编号(例如:张三_1、张三_2);实验报告发送到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统实验报告哈尔滨工程大学计算机科学与技术学院第四讲进程的同步一、实验概述1. 实验名称进程的同步2. 实验目的使用EOS的信号量,编程解决生产者—消费者问题,理解进程同步的意义。
调试跟踪EOS信号量的工作过程,理解进程同步的原理。
修改EOS的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。
3. 实验类型验证+设计4. 实验内容(1)准备实验(2)使用EOS的信号量解决生产者-消费者问题(3)调试EOS信号量的工作过程(4)修改EOS的信号量算法二、实验环境EOS操作系统和OS Lab集成实验环境,主要运用了C语言。
三、实验过程3. 需要解决的问题及解答(1)P143,生产者在生产了13号产品后本来要继续生产14号产品,可此时生产者为什么必须等待消费者消费了4号产品后,才能生产14号产品呢?生产者和消费者是怎样使用同步对象来实现该同步过程的呢?这是因为临界资源的限制。
临界资源就像产品仓库,只有“产品仓库”空闲生产者才能生产东西,有权向里面放东西。
因此它必须要等到消费者,取走产品,临界资源空闲时,才能继续生产14号产品。
(2)P147-四思考与练习-2. 绘制ps/semaphore.c文件内PsWaitForSemaphore和PsReleaseSemaphore函数的流程图。
5. 源程序并附上注释#include "psp.h"VOIDPsInitializeSemaphore(IN PSEMAPHORE Semaphore,IN LONG InitialCount,IN LONG MaximumCount)/*++功能描述:初始化信号量结构体。
参数:Semaphore -- 要初始化的信号量结构体指针。
InitialCount -- 信号量的初始值,不能小于0 且不能大于MaximumCount。
MaximumCount -- 信号量的最大值,必须大于0。
返回值:无。
{ASSERT(InitialCount >= 0 && InitialCount <= MaximumCount && MaximumCount > 0); Semaphore->Count = InitialCount;Semaphore->MaximumCount = MaximumCount;ListInitializeHead(&Semaphore->WaitListHead);}STATUSPsWaitForSemaphore(IN PSEMAPHORE Semaphore,IN INT Milliseconds,IN STATUS i )/*++功能描述:信号量的Wait 操作(P 操作)。
参数:Semaphore -- Wait 操作的信号量对象。
Milliseconds -- 等待超时上限,单位毫秒。
返回值:STATUS_SUCCESS。
--*/{BOOL IntState;ASSERT(KeGetIntNesting() == 0); // 中断环境下不能调用此函数。
IntState = KeEnableInterrupts(FALSE); // 开始原子操作,禁止中断。
// 目前仅实现了标准记录型信号量,不支持超时唤醒功能,所以PspWait 函数的第二个参数的值只能是INFINITE。
if(Semaphore->Count > 0){ Semaphore->Count--;i=STATUS_SUCCESS;}else {i=PspWait(&Semaphore->WaitListHead,Milliseconds );}KeEnableInterrupts(IntState); // 原子操作完成,恢复中断。
return i;}STATUSPsReleaseSemaphore(IN PSEMAPHORE Semaphore,IN LONG ReleaseCount,OUT PLONG PreviousCount)/*++功能描述:信号量的Signal 操作(V 操作)。
参数:Semaphore -- Wait 操作的信号量对象。
-- 信号量计数增加的数量。
当前只能为1。
当你修改信号量使之支持超时唤醒功能后,此参数的值能够大于等于1。
PreviousCount -- 返回信号量计数在增加之前的值。
返回值:如果成功释放信号量,返回STATUS_SUCCESS。
--*/{STATUS Status;BOOL IntState;IntState = KeEnableInterrupts(FALSE); // 开始原子操作,禁止中断。
if (Semaphore->Count + ReleaseCount > Semaphore->MaximumCount) {Status = STATUS_SEMAPHORE_LIMIT_EXCEEDED;} else {if (NULL != PreviousCount) {*PreviousCount = Semaphore->Count;}INT j=Semaphore->Count;while((!ListIsEmpty(&Semaphore->WaitListHead))&&(ReleaseCount)){PspWakeThread(&Semaphore->WaitListHead, STATUS_SUCCESS);PspThreadSchedule();ReleaseCount--;}Semaphore->Count=j+ReleaseCount;Status = STATUS_SUCCESS;}KeEnableInterrupts(IntState); // 原子操作完成,恢复中断。
return Status;}POBJECT_TYPE PspSemaphoreType = NULL;// 用于初始化semaphore 结构体的参数结构体。
typedef struct _SEM_CREATE_PARAM{LONG InitialCount;LONG MaximumCount;}SEM_CREATE_PARAM, *PSEM_CREATE_PARAM;// semaphore 对象的构造函数,在创建新semaphore 对象时被调用。
VOIDPspOnCreateSemaphoreObject(IN PVOID SemaphoreObject,IN ULONG_PTR CreateParam){PsInitializeSemaphore( (PSEMAPHORE)SemaphoreObject,((PSEM_CREATE_PARAM)CreateParam)->InitialCount,((PSEM_CREATE_PARAM)CreateParam)->MaximumCount ); }//// semaphore 对象类型的初始化函数。
//VOIDPspCreateSemaphoreObjectType(VOID){STATUS Status;OBJECT_TYPE_INITIALIZER Initializer;Initializer.Create = PspOnCreateSemaphoreObject;Initializer.Delete = NULL;Initializer.Wait = (OB_WAIT_METHOD)PsWaitForSemaphore;Initializer.Read = NULL;Initializer.Write = NULL;Status = ObCreateObjectType("SEMAPHORE", &Initializer, &PspSemaphoreType);if (!EOS_SUCCESS(Status)) {KeBugCheck("Failed to create semaphore object type!");}}//// semaphore 对象的构造函数。
//STATUSPsCreateSemaphoreObject(IN LONG InitialCount,IN LONG MaximumCount,IN PSTR Name,OUT PHANDLE SemaphoreHandle){ STATUS Status;PVOID SemaphoreObject;SEM_CREATE_PARAM CreateParam;if(InitialCount < 0 || MaximumCount <= 0 || InitialCount > MaximumCount){return STATUS_INV ALID_PARAMETER;}// 创建信号量对象。
CreateParam.InitialCount = InitialCount;CreateParam.MaximumCount = MaximumCount;Status= ObCreateObject( PspSemaphoreType, Name, sizeof(SEMAPHORE), (ULONG_PTR)&CreateParam &SemaphoreObject);if (!EOS_SUCCESS(Status)) { return Status; }Status = ObCreateHandle(SemaphoreObject, SemaphoreHandle);if (!EOS_SUCCESS(Status)) {ObDerefObject(SemaphoreObject);}return Status;}//// semaphore 对象的signal 操作函数。
//STATUSPsReleaseSemaphoreObject(IN HANDLE Handle,IN LONG ReleaseCount,IN PLONG PreviousCount){STATUS Status;PSEMAPHORE Semaphore;if (ReleaseCount < 1) {return STATUS_INV ALID_PARAMETER;}// 由semaphore 句柄得到semaphore 对象的指针。
Status = ObRefObjectByHandle(Handle, PspSemaphoreType, (PVOID*)&Semaphore);if (EOS_SUCCESS(Status)) {Status = PsReleaseSemaphore(Semaphore, ReleaseCount, PreviousCount);ObDerefObject(Semaphore);}return Status;}#include "EOSApp.h"// 缓冲池。