人教版六年级数学下册圆锥的体积

合集下载

小学数学新人教版六年级下册课件:第3单元圆锥的体积

小学数学新人教版六年级下册课件:第3单元圆锥的体积

习题二解答
总结词
理解圆锥体积与圆柱体积关系
详细描述
这道题目考查了学生对圆锥和圆柱体积关系的理解。根据题意,这个圆柱的体积是圆锥的3倍,因此可以通过计 算圆柱的体积来得出圆锥的体积。根据圆柱体积公式 V = πr²h,可以计算出圆柱的体积为75.36立方厘米,进而 得出圆锥的体积为25.12立方厘米。
圆锥的体积计算公式推导
圆锥的体积计算公式是基于圆柱的体积公式推导出来的。首先,将圆锥的底面半 径设为r,高设为h,然后通过与等底等高的圆柱进行比较,发现圆柱的体积是圆 锥体积的3倍。因此,圆锥的体积计算公式为V=1/3πr²h。
在推导过程中,利用了圆柱的体积公式V=πr²h,通过比较两者的体积关系,得 出圆锥的体积公式。这种方法有助于学生理解圆锥体积的计算原理,加深对几何 知识的理解。
圆锥的体积公式
圆锥的体积公式为:V = (1/3)πr²h,其中r为底面半径 ,h为高。
该公式是计算圆锥体积的基础,通过代入具体的数值可 以求出圆锥的体积。
圆锥的体积性质
圆锥的体积与其底面积和高有关,底面积越大、高越高,体积越大。 圆锥的体积是与其同底等高的圆柱体积的1/3。
02
圆锥的体积计算方法
圆锥的体积计算实例
举一个具体的例子,比如要计算一个底面半径为3 厘米,高为5厘米的圆锥的体积。根据圆锥的体积 计算公式V=1/3πr²h,将已知数值代入公式中, 即可得出该圆锥的体积。
在计算过程中,需要注意单位换算和计算精度, 确保结果的准确性。通过实例计算,可以帮助学 生更好地掌握圆锥体积的计算方法,提高解决实 际问题的能力。
通过对比可以看出,圆锥的体积是圆柱体积的1/3 03 。
圆锥的体积与棱锥的关系
棱锥的体积公式为

人教版数学六年级下册教学课件《圆锥的体积》

人教版数学六年级下册教学课件《圆锥的体积》

Ⅴ圆锥
= 13Ⅴ圆柱
=
1 3
Sh
圆锥的体积=
1 3
× 底面积×高
探究新知
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙子 的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大 约重多少吨?
1.5m
Ⅴ圆锥
=
13Ⅴ圆柱=
1 3
Sh
想一想要求什么?先求 什么?再求什么?
4m
直径化 成半径
探究新知
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙子 的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大 约重多少吨?
1.5m
(1)沙堆的底面积:
3.14×(42)2=3.14×4=12.56(m2)
4m
(2)沙堆的体积:
13×12.56×1.5=6.28(m3)
(3)沙堆重: 6.28×1.5=9.42(t) 答:这堆沙子大约重9.42t。
人教版 数学 六年级 下册
3 圆柱与圆锥
圆锥的体积
情境导入
看一看:学过的立体图形中,哪个图形 与圆锥有相似的地方?
情境导入
这想思堆一考沙想:子:其是怎它什么立么才体形能图状知形的道的?这体堆积沙都子可的以体用积公?式 现计在算给,出圆一锥些是数不,是你也的可以办?法还合适吗?
5m
2m
探究新知
说一说:哪个体积大?你发现了什么?
(1)沙堆的体积:
(2)所铺公路的长度:
13×28.26×2.5 =9.42×2.5
=23.55(m³)
2cm=0.02m
注意单位 转换哦!
23.55÷10÷0.02 =2.355÷0.02 =117.75(m)
答:能铺117.75了哪些知识?

人教版六年级下册数学圆锥的体积教案

人教版六年级下册数学圆锥的体积教案
①、引导学生观察用来实验的圆锥、圆柱的特点。
其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?
②、学生实验:
你想怎么实验?(小组可以议一议)(老师指导:倒一下)
请大家以小组为单位进行实验,在实验中,注意思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)
A:你们小组是怎样进行实验的?
(学生发现等底等高)
生:我们把圆锥装满水,倒入这个圆柱体当中,正好倒了3次倒满,得出圆锥的体积等于这个圆柱的体积的1/3,因为圆柱的体积v=sh,所以圆锥的体积v =1/3sh
设计意图:这个实验验证的活动是解决本节课教学重点和突破本节课教学难点的关键所在,我把全班的同学分成了十二个小组,为了节约课堂宝贵的时间,每一组就发了一个圆锥、一个圆柱,有两个小组是等高不等底的,有两个小组是等底不等高的,其余的小组都是等底等高的。为了能从多方面来进行验证,有的小组用水来进行实验,有的小组用沙子来进行验证。实验的过程学生参与的积极性很高,能在数学课上摸一摸沙子,装一装水可想而知是多么开心的一件事。
强调:圆锥的体积等于与它等底等高的圆柱的体积的1/3。
这节课你有什么收获?
生:把圆柱的底面分成许多相等的小扇形,然后把圆柱切开,就拼成了一个近似的长方体。这个长方体的底面积等于圆柱的底面积,高就是圆柱的高。因为长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。
老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)
上节课我们还认识了圆锥体,圆锥的体积怎样计算呢?他又是怎样推导出来了呢?你们想不想知道?这节课我们就来研究这个问题。
1、引导学生借助圆柱,探讨圆锥的体积公式。
①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?

人教版小学六年级数学下册《圆锥的体积》

人教版小学六年级数学下册《圆锥的体积》

拓展延升:
谁做的房子的体积大呢?
明明 聪聪
(S=12.5c㎡
h=9cm)
(s=6c㎡ h=6.3cm)
1 V1= ___ ×12.5×9=37.5(立方厘米) V = 2 6×6.3=37.8(立方厘 3
米)
因为:v 1
< v2
所以:聪聪做的房子的体积大。
课后小结:
通过本节的学习,你有哪些 收获呢?
你有什么 发现?
活动二: 实验验证我最棒
等底、等高的圆柱体和圆锥体: 1.实验时,把圆锥体里的水倒入圆柱里。 2.实验时,把圆柱里的水倒入圆锥体里。 底和高不相等的圆柱体和圆锥体: 1.实验时,把圆锥体里的水倒入圆柱里。 2.实验时,把圆柱里的水倒入圆锥体里。
活动三: 实践应用我也会
3
活动三: 达标测评我第一
我自信 我成功 我进步观察下面两组数据: 底面积 高 体积 圆柱 5c㎡ 3cm 15cm³ 圆锥 5c㎡ 3cm 5cm³ 圆柱 3d㎡ 9dm 27dm³ 圆锥 3d㎡ 9dm 9cm³ 1.两组数据中圆柱与圆锥的底面积和高有什么特征?
2.两组数据中圆柱与圆锥的体积有什么关系? 3.你能得出什么结论?
解决问题:
1.一堆大米,近似于圆锥形,量得底面周 长是9.42厘米,高5厘米。它的体积是多少立方 厘米? 2.把一个棱长是6厘米的正方体木块,加工 成一个最大圆锥体,圆锥的体积是多少立方厘 米? 3.把一块长6厘米,宽4厘米,高5厘米的铁 块熔铸成一个高15厘米的圆锥,这个圆锥的底 面积是多少平方厘米?
1 3
填空:
1.等底等高的圆柱体和圆锥体,圆柱体的体积是 这个圆锥体体积的( )倍。 2.一个圆柱体和一个圆锥体等底等高。已知圆柱 体的体积是2.7立方米,圆锥的体积( )立方米。 3.一个圆锥的体积是6立方分米。和这个圆锥的 底面直径相等,高也相等的圆柱的体积是( )立 方分米。 4.把一个圆柱体木块削成一个和它同底等高的圆 锥体,体积减少了( )。

(人教版)六年级数学下册课件_圆锥的体积_4

(人教版)六年级数学下册课件_圆锥的体积_4
3 2
1.2 米 4米
×3.14×(4 ÷ 2)×1.2 × )
3
1) = 3.14×(4 ÷ 2)×(1.2 ×—) × )
=12.56 ×0.4 = 5.024(立方米) (立方米) 735×5.024 ≈ 3693 (千克) × 千克) 答:这堆小麦大约有3693千克 这堆小麦大约有 千克
解决问题: 解决问题:
体积等于圆柱体积的— 体积等于圆柱体积的 3
用字母表示: 用字母表示: 1 V= Sh 3
已知: 已知:等底等高的圆锥和圆柱
根据左图体积填写右图体积: 根据左图体积填写右图体积: (1) ) (2)
90立方厘米 立方厘米

30)立方厘米
80立方厘米 立方厘米 ( )立方厘米 240
例1:一个圆锥的零件,底面积是 :一个圆锥的零件, 19平方厘米,高是 厘米。这个零 平方厘米, 厘米。 平方厘米 高是12厘米 件的体积是多少? 件的体积是多少?
圆锥的体积
实验小学
情景引入: 情景引入: 谁做的房子的体积大呢? 谁做的房子的体积大呢?
明明说: 明明说:我做的房子的底面比你做的 房子的底面大,高也比你的高, 房子的底面大,高也比你的高,所以 我做的房子的体积大。 我做的房子的体积大。
(s=6 h=6.3)
(S=12.5 h=9)
聪聪说:我做的房子上下一样粗呀, 聪聪说:我做的房子上下一样粗呀, 而你做的房子却越向上越细呀, 而你做的房子却越向上越细呀,所 以我做的房子的体积大。 以我做的房子的体积大。
已知圆锥的底面半径r h,如 1.已知圆锥的底面半径r和高h,如 已知圆锥的底面半径 和高h, 何求体积V? 何求体积V? 2 1
S=π
r

人教版数学六年级下册圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册圆锥的体积教学设计(推荐3篇) 人教版数学六年级下册圆锥的体积教学设计【第1篇】2、思考:求圆锥的体积,还可能出现那些情况?(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)练一练3、求下面的体积。

(只列式不计算)(1)底面半径是2 厘米,高3厘米。

3.14×22×3(2)底面直径是6分米,高6分米。

3.14×(6 ÷2)2 ×6(3)底面周长是12.56厘米,高是6厘米3.14×(12.56 ÷6.28)2 ×62、求下面各圆锥的体积如图(单位厘米)(1)底面直径是8分米,高9分米(2)底面半径3分米和高7分米通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高a、底面积和高b、底面半径和高c、底面直径和高d、底面周长和高三、巩固练习1、判断:⑴、圆锥的体积等于圆住体积的1/3。

()⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3 ()⑶圆柱的体积比和它等底等高圆锥的体积大2倍。

()⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的2、填空⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,圆柱的体积是()。

⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12 厘米,圆锥的高是()。

⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是()。

3、拓展练习工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数) (引导学生说出怎样测量沙堆的底面的周长、直径、和高。

)用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。

将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

人教版数学六年级下册圆锥的体积教学设计【第2篇】教学目标:1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

六年级下册数学说课稿-《圆锥的体积》(人教版)

六年级下册数学说课稿-《圆锥的体积》(人教版)
3.重点难点解析:在讲授过程中,我会特别强调圆锥体积的计算公式V=1/3πr²h和圆锥与圆柱体积的关系这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆锥体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,用沙土堆成圆锥体,演示圆锥体积的计算过程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆锥体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.教学难点
(1)圆锥体积计算公式的推导:理解圆锥体积公式V=1/3πr²h的推导过程。
(2)空间想象能力的培养:在解决圆锥体积问题时,能够根据实际情况进行空间想象,正确判断圆锥的底面半径和高。
(3)解决实际问题时,如何将现实情境抽象为数学模型:将现实生活中的圆锥体积问题转化为数学计算问题。
举例:
-在推导圆锥体积公式时,通过引导学生观察圆锥与等底等高圆柱体积的关系,解释圆锥体积为1/3圆柱体积的原因。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆锥体积的基本概念。圆锥体积是指圆锥形状的物体所占空间的大小。它是几何体积计算中的一个重要部分,广泛应用于工程、建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用圆锥体积的计算公式解决实际问题,如计算沙堆的体积。

人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。

本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。

为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。

学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。

因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。

但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。

你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。

所以对于新的知识教学,他们一定能表现出极大的热情。

教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。

2.能运用圆锥的体积计算公式解决有关的实际问题。

过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。

情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。

难点:理解圆锥的体积计算公式的推导过程。

课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。

把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。

2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。

生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。

生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。

生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。

3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。

(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)人教版数学六年级下册圆锥的体积说课稿【第1篇】大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。

一、说教材《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。

二、说学情本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。

在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。

三、说教学重难点根据对教材和学情的分析,我制定以下三维教学目标:知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的.实际问题。

过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。

情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。

四、说教学重难点教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。

教学难点:理解圆锥体积公式的推导过程。

说教法学法为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。

学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。

说教学过程课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:第一环节:自主学习第二环节合作学习第三环节:教师讲导第四环节:精练强化五、说板书设计圆锥的体积=×圆柱的体积=×底面积×高S=sh人教版数学六年级下册圆锥的体积说课稿【第2篇】教学内容:第25-26页,例2及练习四的第3、4题。

六年级数学下册圆锥的体积教案(优秀5篇)

六年级数学下册圆锥的体积教案(优秀5篇)

六年级数学下册圆锥的体积教案(优秀5篇)教学重点篇一圆锥体体积计算公式的推导过程.小学数学《圆锥的体积》教案篇二教学目标:1、渗透转化思想,培养学生的自主探索意识。

][2、初步学会用转化的数学思想和方法,解决实际问题的能力3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学准备:主题图、圆柱形物体教学过程:一、复习:1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课:1、圆柱体积计算公式的推导:(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。

(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题:(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。

它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.①V=Sh50×2.1=105(立方厘米)答:它的体积是105立方厘米。

人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件

人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件
答:这座房子的体积是31.4m3。
明明把一块底面周长是18.84cm,高5cm的圆柱体橡皮泥 捏成一个底面直径是8cm的圆锥体,这个圆锥体的高是多 少厘米?(得数保留一位小数)
圆柱体变成圆锥体,形状变了,前后体积没变。 Ⅴ锥 = V 柱
18.84÷3.14÷2=3(cm) 3×3.14×32×5÷[3.14×(8÷2)2 =423.9÷50.24 ≈8.4(cm) 答:圆锥体的高是8.4cm。
利用圆锥的体积公式计算 2.计算下面各圆锥的体积。
13×36×5=60(cm3)
3.14×42×12×13=200.96(cm3) 3.14×(4÷2)2×5.4×13=22.608(cm3)
圆锥体积公式的逆用
3.(易错题)一个圆柱形铁块,底面半径是2 cm,高是 12 cm。将这个圆柱形铁块熔铸成一个底面半径是 4 cm的圆锥,圆锥的高是多少厘米? 3.14×22×12=150.72(cm3) 150.72×3÷3.14÷42=9(cm) 答:圆锥的高是9 cm。
1000×25%=250(万立方米)
250>200
答:该日该地区总降水为1000万立方米。
这些雨水的25%能满足绿化所需。

这节课你们都学会了哪些知识?
速记宝典
圆锥体积容易算,它与圆柱有关联。 等底等高不能忘,三分之一记心间。 题中条件亮红灯,单位一致需看清。 计算一定要仔细,这样才能出成绩。
圆锥的特点
3 圆柱与圆锥
练习六
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ

人教版六年级数学下册《圆锥的体积》(课件)

人教版六年级数学下册《圆锥的体积》(课件)

V圆锥= 3
π 2Cπ
2
h
解决问题
1.一个圆锥形的零件,底面积是19cm²,高是 12cm。这个零件的体积是多少?
1 3
V圆锥= Sh
1 3
×19 ×12=76(cm³)
答:这个零件的体积是76cm³ 。
巩固练习
(1)一个圆柱的体积是75.36m3,与它等底、
等高的圆锥的体积是(25.12
义务教育人教版六年级下册
第3单元 圆柱与圆锥 2.圆 锥
第 2 课时 圆锥的体积
情境导入
蛋卷宝 宝想知道可以装 多少冰淇淋该怎 么办呢?
情境导入 如何求圆锥的体积?
讲授新课
圆柱的底面是圆,圆锥的底面也是圆。 圆锥的体积和圆柱的体积有没有关系呢?
讲授新课
探究圆锥和圆柱体积 之间的关系时,要注 意圆柱和圆锥形容器 要等底、等高。
如果用v表示圆锥的体积,s表示底面积,h表示 高,那么,可以得到下面的公式。
V圆锥= Sh
1 3
V圆柱=13
归纳总结
如果知道圆锥的底面半径r、直径d、底面周长c
和高h,如何表示圆锥的体积计算公式呢?
底面积和高
V圆锥=
1 3
Sh
1
底面半径和高 V圆锥= 3
底面直径和高
Vπ圆r锥2=h
1 3
π d2
2
动手操作
等底
等高
倒沙子或倒水的方法试一试
动手操作
我装满沙子,再往圆 锥里倒。
我装满后,把沙子倒 进盒子里,正好倒了 三次。
思考交流
你能发现圆锥的体积与同它等底等高的圆柱的体 积之间的关系吗?
归纳总结
圆柱的体积等于圆锥体积的3倍

人教六年级数学下册圆锥的体积(练习课)

人教六年级数学下册圆锥的体积(练习课)

稻谷的占地面积
米稻谷重650kg,每千克稻谷售价
稻谷的质量
为2.8元,这些稻谷能卖多少钱?
①稻谷的体积:
②稻谷的质量:
平均每公顷产稻谷多少千克? ③每公顷的质量:
①稻谷的体积: ②稻谷的质量: ③每公顷的质量:
×3.14×(23)²×2=4.71(m³) 4.71×650 = 3061.5(kg) 3061.5÷0.4=7653.75(kg)
答:平均每公顷产稻谷7653.75kg。
4. 考考你
把一个棱长是6厘米的正方体木块,加工成一个最大
的圆锥,圆锥的体积是多少立方厘米? 可以画一个
简单的示意
×3.14×(62)²×6=56.52(cm³)
图帮助我们 思考哦!
答:圆锥的体积是56.52立方厘米。
现在可以按下暂停键,独立解答
状元成才路
12
3
V圆柱
V圆锥∶V圆柱∶V削=1∶3∶2
综合练习,提升能力 1. 一个圆锥形谷堆,高1.5米,占地面积16平方米,将 其装入粮仓,正好占粮仓容积的15%,求粮仓的容积。 (得数保留整数) 单位“1”
①谷堆体积:
×16×1.5=8(m³)
②求粮仓的容积: 8÷15% ≈ 53(m³) 答:粮仓的容积约是53m³。
圆柱
h=V圆锥 ×3 ÷ S
专项练习,归纳方法 1. 算一算
V圆锥=
1 3
V圆柱
(1)一个圆柱的体积是6cm³,与它等底等高的圆
锥的体积是多少立方厘米?6÷3=2(cm³)
(2)有一个圆柱和一个圆锥,它们的底面半径相
等,高也相等,圆锥的的体积是18dm³,圆柱的体
积是多少立方分米?
18×3=54(dm³)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。

”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。

五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。

让学生观察一下,得出:这两个容器等底等高。

(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。

用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。

2、圆柱体积的与和它()的圆锥的体积相等。

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

学生练习,教师总结。

四、巩固练习:求下面各圆锥的体积,只列算式。

(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。

第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

《圆锥的体积》说课稿15篇

《圆锥的体积》说课稿15篇

《圆锥的体积》说课稿15篇《圆锥的体积》说课稿1一、教材分析教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积的计算公式V=1/3sh。

也就是等底等高的圆锥体积是圆柱体积的三分之一。

教课书43页例1是直接利用公式求体积,例2是已知圆锥形小麦堆的底面直径和高,求小麦的重量,这是一个简单的实际问题,通过这个例子教学,使学生初步学会解决一与计算圆锥形物体的体积有关的实际问题。

二、学生基本情况六年级四班,共有学生49人,其中男生20人,女生29人,以前学生对长方体、正方体等立体图形有了初步的认识和了解,七学期对圆锥、圆柱立体图形的特征进行了研究,通过学习,学生对圆柱,圆锥的特征有了很深刻的认识,对圆柱的体积,表面积,侧面积能熟练地计算,但也有少数学生立体观念不强,抽象思维能力差,因此学习效率差。

三、教学方法由于本节课是立体图形(圆锥的体积)的学习,要培养学生学习的积极性,必须通过具体教具进行教学,从而给学生建立空间观念,培养学生的空间想象能力。

本节课我采用具体的实验,让学生发现圆柱体积与它等底等高的圆锥体积的关系,从而推导出圆锥的体积公式,然后让学生利用圆锥的体积公式,尝试计算圆锥的体积,以达到解决一些常见的实际问题的能力。

四、教学过程本节课一开始,用口算,口答的形式引入课题,一是培养了学生的计算能力,二是为新授课作为辅垫,为学习圆锥的体积打下基础。

紧接着提示课题,以实验的方法让学生观察其规律,总结出圆锥的体积公式,这一环节是本节的难点,必须让学生理解清楚,特别是对三分之一的理解。

然后出示例题,让学生尝试解答例1,直接告诉底面积和高,可以直接利用公式计算,教师不必多的提示,只要学生会做就行。

例2是已知圆锥形的小麦堆的底面直径和高,要求小麦重量,实际旧就要先求体积。

学生尝试解答后,教师特别引导,要求体积,这个题不知道底面积,则要先求底面积,二是要让学生讨论,如果这堆小麦知道直径和高,你能想办法测出来吗?这样培养了学生空间想象力。

[人教版电子课本]人教版小学六年级数学下册圆锥的体积教案

[人教版电子课本]人教版小学六年级数学下册圆锥的体积教案

[人教版电子课本]人教版小学六年级数学下册圆锥的体积教案圆锥,数学领域术语,有两种定义。

解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。

该直角边叫圆锥的轴。

小编为大家整理的相关的人教版小学六年级数学下册圆锥的体积教案供大家参考选择。

人教版小学六年级数学下册圆锥的体积教案新人教版六年级下册数学《圆锥的体积》教案学习内容分析学习目标描述: 1.引导学生通过实验推导出圆锥体积计算公式。

并能运用公式计算圆锥的体积。

解决有关的实际问题。

2.使学生经历小组合作、自主探究圆锥体积计算公式的过程。

培养学生团结协作的集体主义精神和不怕困难、勇于探索的优良品质。

3.培养学生的应用意识和观察、猜测、动手实践能力。

学习内容分析:本节课是在学生学习过圆柱的体积以及对圆锥体特征有了初步的认识后进行教学的,本节课的设计始终围绕着解决实际问题这一学习目标。

首先,引导学生从实际生活中发现问题;然后,小组合作、自主探究解决问题,突出学生的主体地位,使学生更加主动地参与教学,正确地掌握圆锥的体积公式。

教学重点:通过实验推导出圆锥体积计算公式。

并能运用公式计算圆锥的体积。

解决有关的实际问题。

教学难点:使学生经历小组合作、自主探究圆锥体积计算公式的过程。

学生学情分析本节课的设计力求接近学生的实际生活,提高学生的学习兴趣,但圆锥体积的推导过程学生较难理解。

针对此难点,教师引导学生亲身经历、感受知识的产生过程,通过自主比较、猜测、动手操作、争辩等形式总结出圆锥体积的计算公式,从而突破难点。

获取新知。

教学策略设计教学环节:一、创设情境,引入本课二、合作探究,获取新知(一)亲自实验,推导公式1.学生拿出圆锥体积计算公式操作材料,比较三个圆锥体分别与圆柱有什么异同。

在小组内说一说。

再汇报交流。

2.学生根据观察到的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积的三分之一。
= =
高333米.131.1是14,4×48(高××2厘平5是1(米×0方9,222厘分90它米米)2的),7体它5=积的(831是3×体7立多331积方1(少是4立分×?多方米8厘少米)?)
答:答它:的它体的积体是积8是377315立立方方分厘米米。。
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
12 3
× 1
圆锥体的体积等于圆柱体体积的 三分
之一 。
()
用一段圆柱形木料,削成一个最大的
√ 2 圆锥,削去部分是圆柱形木料的三分
Hale Waihona Puke 之二。()
× 3
一个圆柱的体积等于和它等高的圆锥
体积的3倍。


课堂小结:
圆锥的体积V等于和它等底等高的圆柱体
76 (立方厘米)
答:这个零件的体积是76立方厘米。
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
演示
2.一个圆锥的底面直径是20厘米,
1高.是一8个厘圆米锥,的它底的面体积积是是2多5平少方?分
(2米1.1.,)一一底高个面个是积圆圆9:锥分锥的米的,底底它面面的直积体径(是2积是)25体是2平0积多厘:方少米分?,
演示
等底 等高 底面
圆柱的高
圆锥的高
底面
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
圆锥体积公式的推导
h
结论: S
演示
等底等高 圆锥的体积V等学于生和它用学具动手操作的圆.柱实体验积的。三分之一。
V
1 3
Sh
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
12 34
1 一个圆柱和一个圆锥等底等高,圆柱的
体积是圆锥体积的( 3倍 )。
2
一个圆柱和一个圆锥等底等高,圆锥的 体积是圆柱体积的( 1 )。
3
3 等底等高的圆柱和圆锥,圆柱的体积是 6立方米,圆锥的体积是(2立方米 )。
4 等底等高的圆柱和圆锥,圆锥的体积是 6立方米,圆柱的体积是(18立方米)。
演示
V
1 3
Sh
1
这个公式里,Sh是求什么?
为什么要乘
1 3

运用这个公式计算圆锥的体 2 积,一定要知道什么条件?
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
帮助 解答
1 一个圆锥形的零件,底面积是19平方厘
米,高是12厘米。这个零件的体积是多
少?
V
1 3
Sh
1 3
×19×12
人教版小学六年级数学下册
圆锥体的体积计算
六年级(3)班
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
演示
口算
321
底面直 半积径是是5平62分方厘 米,高160厘分米米,,体 体积积= =? ?
h 圆柱的高
底面 S
圆柱体的体积v=sh
封面 复 习 引入 推导 讨论 例题 练 习 填 空 判 断 退出
相关文档
最新文档