分子晶体和原子晶体解析
分子晶体和原子晶体
学与问
1、怎样从原子结构角度理解金刚石、硅 和锗的熔点和硬度依次下降?
解释:结构相似的原子晶体,原子半径越小, 键长越短,键能越大,晶体熔点越高 金刚石 > 碳化硅 > 晶体硅
2、“具有共价键的晶体叫做原子晶体”。这 种说法对吗?为什么?
知识拓展-石墨
一种结晶形碳,有天然出产的矿物。铁黑 色至深钢灰色。质软具滑腻感,可沾污手指成 灰黑色。有金属光泽。六方晶系,成叶片状、 鳞片状和致密块状。密度2.25g/cm3,化学性 质不活泼。具有耐腐蚀性,在空气或氧气中强 热可以燃烧生成二氧化碳。石墨可用作润滑剂, 并用于制造坩锅、电极、铅笔芯等。
因此,比较分子晶体的熔、沸点高低, 实际上就是比较分子间作用力(包括范力 和氢键)的大小。
(1)组成和结构相似的物质,
分子量越大,熔沸点越高。 ___________________________________
烷烃、烯烃、炔烃、饱和一元醇、醛、 羧酸等同系物的沸点均随着碳原子数的增 加而升高。
因为CO2是分子晶体,SiO2是原子晶体, 所以熔化时CO2是破坏范德华力而SiO2是破 坏化学键。所以SiO2熔沸点高。
破坏CO2分子与SiO2时,都是破坏共价 健,而C-O键能>Si-O键能,所以CO2分子更 稳定。
4、原子晶体熔、沸点比较规律 在共价键形成的原子晶体中,原子半
径小的,键长短,键能大,晶体的熔、沸 点高。如:金刚石 > 碳化硅 > 晶体硅
2 、分子晶体和原子晶体
一、分子晶体
1、概念 分子间以分子间作用力(范德华力,氢键)相 结合的晶体叫分子晶体。
构成分子晶体的粒子是分子,
粒子间的相互作用是分子间作用力 .
分子晶体有哪些物理特性,为什么?
(立体图,好理解)分子晶体与原子晶体
例、如右图所示, 在石墨晶体的层 状结构中,每一 个最小的碳环完 全拥有碳原子数 2 为___,每个C 完全拥有C-C 数为___ 3
石墨中C-C夹 ☉ 角为120 , C-C键长为 1.42×10-10 m 层间距
3.35× 10-10 m
小结:金刚石、石墨的比较
项目 晶体形状 晶体中的键或作用力 由最少碳原子形成环的形状 与个数 碳原子成键数 键的平均数 金刚石 石墨
小结:
1、分子晶体:由分子构成。相邻分子靠分子间作用力 相互吸引。 2、分子晶体特点:低熔点、升华、硬度很小等。 3、常见分子晶体分类:(1)所有非金属氢化物 (2)部分非 金属单质, (3)部分非金属氧化物(4)几乎所有的酸(而碱 和盐则是离子晶体 (5)绝大多数有机物的晶体。 晶体分子结构特征
物质 熔点 沸点
干冰 很低 很低
金刚石 3550℃ 4827℃
二、原子晶体
1、定义:原子间以共价键相结合而形成的 空间网状结构的晶体。
2、构成微粒: 原子
3、微粒之间的作用:共价键 4、气化或熔化时破坏的作用力:共价键 5、物理性质: 熔沸点高,硬度大,难溶于一般溶剂。 (共价键键能越大,熔沸点越高,硬度越大)
(1)只有范德华力,无分子间氢键-分子密堆积(每 个分子周围有12个紧邻的分子,如:C60、干冰 、I2、O2 (2)有分子间氢键-不具有分子密堆积特征 (如:HF 、冰、NH3 )
1996年诺贝尔化学奖授予对发现C60有重大贡献的 三位科学家。C60分子是形如球状的多面体,分子 中每个碳原子只跟相邻的3个碳原子形成化学键; C60分子只含有五边形和六边形;碳与碳之间既有 单键又有双键,每个碳原子仍然满足四个价键饱 和;多面体的顶点数、面数和棱边数的关系,遵 循欧拉定理:顶点数+面数-棱边数=2。 请回答: (1)一个C60分子中有几个五边形和几个六边形? (2)一个C60分子中有多少个C=C? (3)已知C70分子的结构模型也遵循C60的那些规律, 请确定C70分子结构中上述几项参数。
高中化学选修3之知识讲解_晶体的常识 分子晶体与原子晶体_基础-
晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。
【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。
晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。
非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。
周期性是晶体结构最基本的特征。
许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。
晶体的熔点较固定,而非晶体则没有固定的熔点。
区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。
特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。
所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。
例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。
②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。
无机化学——原子晶体与分子晶体
B
B
C A
A
面心立方 紧密堆积
六方紧密堆积
Body-centered cubic cell (BCC)
体心立方紧密堆积 CN=12,利用率 =68% K、Rb、Cs、Li、 Na A B
A
体心立方 紧密堆积
7.4.2 金属键 金属键:金属原子的价电子可以完全失去成为自由电子,并在 晶格中运动,自由电子把金属阳离子胶合成金属晶体,这种胶 合作用就叫金属键。金属键无饱和性和方向性。
氯化氢、氨、三氯化磷、冰等由极性键构成的极性分子,晶体 中分子间存在色散力、取向力、诱导力,有的还有氢键,所以 它们的结点上的粒子间作用力大于分子量相近的非极性分子之 间的引力。
分子晶体的特性 分子晶体是以独立的分子出现的 ,化学式就是分子式。
分子晶体可以是非金属单质,如卤素、H2、N2、O2; 非金属化合物,如CO2、H2S、HCl、HN3等 绝大多数有机化合物,稀有气体的晶体
7.6.3 离子极化对物质性质的影响 一、离子的电子构型
外层电子结构 电子构型 阳离子实例
ns2np6
8
Na+, Mg2+,Al3+,Ti4+
ns2np6 nd1-9
9-17
Cr3+,Mn2+,Fe3+,Cu2+
ns2np6 nd10
18
Ag+,Zn2+,Cd2+,Hg2+
s2p6d10ns2
18+2
7.3 原子晶体与分子晶体 Atomic Crystals
在原子晶体的晶格结点上排列着中性原子,原子间以极强的 共价键相结合,如单质硅(Si)、二氧化硅(SiO2)、碳化 硅(SiC)金刚砂、金刚石(C)和氮化硼BN(立方)等。
分子晶体和原子晶体
分子晶体和原子晶体
1、分子晶体和原子晶体区别:
(1)单体结构不同。
分子晶体一般是有物质分子构成,而原子晶体一般有单个原子构成;
(2)晶体内作用力不同。
分子晶体一般是通过分子间范德华力作用形成,而原子晶体一般通过原子共价键作用形成;
(3)物理性质不同。
分子晶体一般硬度、熔点较低,而原子晶体一般硬度、熔点很高。
比如白糖属于分子晶体,而钻石属于原子晶体,二者硬度、熔点差别很大;
(4)存在形式有差异。
分子晶体一般有固、液、气三种存在形式,而原子晶体一般只有固体存在形式。
分子晶体典型代表:
1、所有非金属氢化物;
2、大部分非金属单质(稀有气体形成的晶体也属于分子晶体),如:卤素(X2)、氧气、硫(S8)、氮(N2)、白磷(P4)、C60等(金刚石,和单晶硅等是原子晶体);
3、部分非金属氧化物,如:CO2、SO2、SO3、P4O6、P4O10等(如SiO2是原子晶体) ;
4、几乎所有的酸;
5、绝大多数有机化合物,如:苯、乙酸、乙醇、葡萄糖等 ;
6、所有常温下呈气态的物质、常温下呈液态的物质(除汞外)、
易挥发的固态物质。
原子晶体类型:
1、某些金属单质:晶体锗(Ge)等;
2、某些非金属化合物:氮化硼(BN)晶体、碳化硅、二氧化硅等;
3、非金属单质:金刚石、晶体硅、晶体硼等。
分子晶体与原子晶体
一、分子晶体
回顾:分子间作用力(分子与分子之间的相互作用),存在于分子之间。
分子间作用力
范德华力 氢键
分子间作用力大小的影响因素:
①相对分子质量:同类型分子,相对分子质量越大, 分子间作用力越大。
②分子的极性:分子的极性影响分子间作用力,极性>非极性。
分子通常指的是小分子,不是指高分子。
• 典型的分子晶体:
对于组成和结构相似、晶体中又不含氢键的物质来说,相对分子质量增大, 分子间作用力增强,熔沸点升高。
对于分子间不含氢键的物质来说,由于分子间的作用力无方向性也使得分子 在堆积时会尽可能利用空间并采取紧密堆积方式,这一点与金属晶体和离子晶体 相似,分子的形状、极性以及氢键的存在都会影响分子的堆积方式。
思考与交流
小结:怎么比较晶体的熔点呢?
三、晶体熔、沸点的比较 (1)不同类型晶体熔、沸点的比较: ①不同类型晶体的熔、沸点高低的一般规律:
原__子__晶__体_____>_离__子__晶__体____>_分__子__晶__体____。 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点
很高,汞、铯等熔、沸点很低。
晶胞
金刚石中 每个C原子都以SP3杂化轨道与周围4个碳原子以共价键结合,构成正四面体。 C—C键间的夹角为109.5°。因为中心原子周围排列的原子的数目是有限的,所以这 种比较松散的排列与金属晶体和离子晶体中的紧密堆积排列有很大的不同。
(1)每个碳与①________以共价键结合,形成正四面体结构 (2)键角均为②________ (3)最小碳环由③____个C组成且六原子不在同一平面内 (4)每个C参与4条C—C键的形成,C原子数与C—C键之比为④______
阴离子,如金属晶体。 (4)易误认为金属晶体的熔点比分子晶体的熔点高,其实不一定,如Na
离子晶体、分子晶体、金属晶体、原子晶体
即Si原子与O原子的个数比为1∶2。
二、物质熔沸点高低判断的方法
1.原子晶体中原子间键长越短,共价键越稳定,物质熔沸点越高,反熔沸点越高,反之越低。
3.分子晶体中分子间作用力越大,物质熔沸点越高,反之越低。其中组成和结构相似的分子,相对分子质量越大,分子间作用力越大。(但这不包括具有氢键的分子晶体其熔沸点出现反常得高的现象,
5.原子晶体的熔点高低与其内部的结构密切相关:对结构相似的原子晶体来说,原子半径越小,键长越短,键能越大,晶体的熔点就高。
二、分子晶体
1.分子晶体定义:分子间通过分子间作用力构成的的晶体称为分子晶体。
(1)构成分子晶体的粒子是分子,粒子间的相互作用是分子间作用力
(2)原子首先通过共价键结合成分子,分子作为基本构成微粒,通过分子间作用力结合成分子晶体。
2. 分子晶体的类别:多数非金属单质(除了金刚石、晶体硅、晶体硼、石墨等),多数非金属氧化物(如干冰、CO、冰等)、非金属气态氢化物(如NH3,CH4等)、稀有气体、许多有机物等。
3.常见的分子晶体的晶体结构
(1)碘晶体的晶胞是长方体,碘分子除了占据长方体的每个顶点外,在每个面上还有一个碘分子。
⑵CsCl型
CsCl型离子晶体中,每个离子被8个带相反电荷的离子包围,阴离子和阳离子的配位数都为8。常见的CsCl型离子晶体有铯的卤化物(氟化物除外)、TlCl的晶体等。
⑶ZnS型
ZnS型离子晶体中,阴离子和阳离子的排列类似NaCl型,但相互穿插的位置不同,使阴、阳离子的配位数不是6,而是4。常见的ZnS型离子晶体有硫化锌、碘化银、氧化铍的晶体等。
(3)大多数离子晶体易溶于极性溶剂(如水)中,难溶于非极性溶剂(如汽油、煤油)中。当把离子晶体放在水中时,极性水分子对离子晶体中的离子产生吸引作用,使晶体中的离子克服了离子间的作用而电离,变成在水中自由移动的离子。
分子晶体和原子晶体
分子晶体和原子晶体作者:余梦蓝来源:《科学与财富》2018年第12期摘要:随着科学技术的发展,晶体在生活中的用途越来越多,如光导纤维就是晶态的二氧化硅,再如水晶,也是生活中常见的晶体。
下面我将对各类晶体分类表述。
所谓晶体就是具有规则几何外形的固体。
晶体之所以能呈多面体外形,主要是因为内部质点在三维空间呈周期性有序排列。
依据粒子间成键微粒不同和作用力不同,可以把晶体简单的分为分子晶体、原子晶体、金属晶体和离子晶体四大类,除了这四大类晶体外还有特殊的混合型晶体。
第一大类分子晶体。
化学中属于分子晶体的类别较多,总的可分为五类:(1)大多数非金属元素的氢化物,如硫化氢、水、氟化氢、氯化氢、溴化氢和碘化氢等。
(2)某些非金属元素的氧化物,如二氧化碳、二氧化硫、一氧化碳、二氧化氮、四氧化二氮等。
(3)几乎所有的酸,如硫酸、硝酸、亚硝酸、高氯酸、亚硫酸等。
(4)部分非金属单质,如氮气、氧气、氢气、氯气等。
(5)几乎所有的有机物,如乙醇、乙酸、乙酸乙酯、乙醛等。
分子晶体的构成微粒为分子,那么分子晶体中存在什么样的作用力呢?在分子晶体内部一般存在共价键(稀有气体除外,因为其是单原子分子没有共价键),分子和分子之间是范德华力,个别分子晶体内部分子之间还存在氢键。
分子的稳定性与共价键的强弱有关,影响物质的化学性质。
而分子晶体的物理性质如熔沸点,硬度等,与分子间作用力有关。
分子晶体熔沸点的高低在没有氢键的前提下与两个因素有关:第一,组成和结构相似的前提下,相对分子质量越大,熔沸点越高。
碘第二,相对分子质量相似的前提下,分子极性越大,熔沸点越高。
大多数分子晶体有如下结构特征:如果构成分子晶体的微粒之间只有分子间作用力,若以其中的一个分子为中心,其周围有十二个距离相等并且最近的微粒,如氧气和碳六十就具有这样的特征,这一特征称为分子密堆积。
然而,有些分子之间还存在另外一种特殊的作用力——氢键,所谓氢键是指已经与电负性很强的原子结合的氢原子与另一个电负性很强的原子之间存在的一种特殊的作用力。
分子晶体与原子晶体
1.晶体类型:原子晶体>分子晶体
2.常温下状态:固态>液态>气态 3.同一类型晶体:
同为原子晶体:原子半径↓,键长↓,键能↑, (共价键强弱) 共价键越稳定,熔沸点↑
a.组成、结构相似:相对分子质量↑,熔沸点↑
同为分子晶体:
(分子间作用力强弱)
b.不相似:分子极性↑,熔沸点↑ c.有氢键:熔沸点↑ d.同分异构体:支链↑,熔沸点↓
1:在SiO2晶体中每个硅原子周围紧邻的氧原 子有多少个?每个氧原子周围紧邻的硅原子有 多少个?在SiO2晶体中硅原子与氧原子个数之 比是多少? 4mol 2:1mol二氧化硅的晶体含几摩尔的Si-O键? 3:在二氧化硅的晶体结构中,最小的环由几个 原子构成? 12
2018年12月15日星期六8时3分4秒
分子的密堆积:
若分子间只存在范德华力,则每个分子周围 通常有12个紧邻的分子,分子晶体的这一特 征称为分子密堆积。
2018年12月15日星期六8时3分4秒
分子的非密堆积:
氢键具有方向性
冰中1个水分子周围有4个水分子
冰的结构
2018年12月15日星期六8时3分4秒
分子晶体结构特征
(1)密堆积
只有范德华力,无分子间氢键——分子 密堆积。这类晶体每个分子周围一般有12个 紧邻的分子,如:C60、干冰 、I2、O2。
B)
B.无色晶体,熔点3 550℃,不导电,质硬,难溶于水
和有机溶剂 C.无色晶体,能溶于水,质硬而脆,熔点为800℃, 熔化时能导电 D.熔点-56.6℃,微溶于水,硬度小,固态
1、依据结构—组成晶体的微粒和微粒间的作用力判断: 原子晶体:微粒是原子,作用力是共价键; 分子晶体:微粒是分子,作用力是分子间作用力。 2、依据物质种类判断 3、依据性质: 熔点:原子晶体的熔点很高,一般在1部分分子溶于水能导电;
晶体结构(3, 原子晶体与分子晶体)
金刚石晶体
金刚石晶体
①每个碳 原子与 4 个碳原子 相连; 相连;
基本单元: 基本单元: 六元环
6 个碳
原子形成一 个六 元 环
金刚石晶体
②晶体中碳原子与C-C键数 晶体中碳原子与C 目比 1:2 。
SiO2晶体
①构成SiO2晶体的微粒是什么? 构成SiO 晶体的微粒是什么? Si原子和 原子和O Si原子和O原子
CO2
SiO2
课堂练习
° 1、 白磷分子中的键角为 60° ,分子的空间结 、 每个P原子与 构为正四面体 ,每个 原子与 3 个P原子结合成共 原子结合成共 价键。若将1分子白磷中的所有 分子白磷中的所有P-P键打开并各插 价键。若将 分子白磷中的所有 键打开并各插 个氧原子, 若每个P 入一个氧原子, 入一个氧原子,共可结合 6 个氧原子, 若每个P 原子上的孤对电子再与氧原子配位, 原子上的孤对电子再与氧原子配位,就可以得到 填分子式)。 磷的另一种氧化物 P4O10 (填分子式)。
SiO2晶体
④晶体中最小的环有 12 个 原子。 原子。
小结: 小结:三种化学键的比较
化学键 成键本质
由电子静电作用 键的方 影响键强弱 的因素 向性和 饱和性
金属键 金属阳离子和自 离子键 阴阳离子间的 静电作用 共价键 共用电子对
无 无 有
原子半径和 价电子数 离子半径和 离子电荷 键长
课堂练习 1、下列物质属于原子晶体的 化合物是 ( C ) A.金刚石 A.金刚石 B.NaOH C.二氧化硅 D.干冰 C.二氧化硅 D.干冰
小试牛刀】 【小试牛刀】
下列物质在变化过程中, 例1.下列物质在变化过程中,只需克服分子 下列物质在变化过程中 间作用力的是 ( C ) A.食盐溶解 食盐溶解 C.干冰升华 干冰升华 B.铁的熔化 铁的熔化 D.氯化铵的“升华” 氯化铵的“ 氯化铵的 升华”
分子晶体和原子晶体
分子晶体和原子晶体
图2-15 金刚石原子晶体示意图
分子晶体和原子晶体
二氧化碳和方石英都是第Ⅳ A元素化合物, 由于前者是分子晶体,后者是原子晶体,导致 物理性质差别较大。CO2在-78.5 ℃时即升华, 而SiO2的熔点却高达1610 ℃,说明晶体结构 不同,微粒间的作用不同,物质的物理性质也 不同。
分子晶体和原子晶体
在原子晶体中,不存在独立的小分子,而只能把整个晶体看成是 一个大分子,没有确定的相对分子质量。由于共价键具有饱和性和方 向性,所以原子晶体的配位数一般不高。以典型的金刚石原子晶体为 例,每一个碳原子在成键时以sp3等性杂化形成4个sp3共价键,构成 正四面体,所以碳原子的配位数为4。无数的碳原子相互连接构成, 如图2-15所示晶体结构。原子晶体中,原子间以共价键相连,所以 表现出有较高的硬度和较高的熔点(金刚石硬度最大,熔点为3849 K)。 通常这类晶体不导电、不导热,熔化时也不导电,但硅、碳化硅等具 有半导体性质,可以有条件地导电。
分子晶体和原子晶体
图2-14 CO2分子晶体示意图
分子晶体和原子晶体
二、 原子晶体
在晶格结点上排列的微粒为原子,原子之间以 共价键结合构成的晶体称为原子晶体,如碳(金刚 石)、硅(单晶硅)、锗(半导体单晶)及第Ⅳ A族元素 的单质都属于原子晶体,化合物中的碳化硅(SiC)、 砷化镓(GaAs)、方石英(SiO2)等也属于原子晶体。
无机化学
分子晶体和原子晶体
一、 分子晶体
在晶格结点上排列着分子,通过分子间力而形成的晶体, 称为分子晶体,如非金属单质和非金属元素之间的固体化合物 CO2是分子晶体,其晶体结构如图2-14所示。分子晶体中存在 着独立的分子,分子晶体内是共价键,分子晶体间的作用力是 分子间力,由于分子间力很弱,因此分子晶体的熔点低,具有 较大的挥发性,硬度较小,易溶于非极性溶剂,通常是电的不 良导体。若干极性分子晶体在水中解离生成离子,则其水溶液 导电,如HCl溶液。
分子晶体和原子晶体
HXC60P106, P1010都形成分子晶体,只有很少的一部分和______SiO2,碳化硅,第二节分子晶体和原子晶体一、分子晶体(一)、概念:分子间以______________________ (_____________ , ________________ )相结合的晶体叫分子晶体。
注意:(1)构成分子晶体的粒子是 ______________________ 。
(2 )在分子晶体中,分子内的原子间以结合,而相邻分子靠或相互吸引。
(3 )范德华力化学键的作用:(4 )分子晶体熔化破坏的是O(二)•分子晶体的物理特性:(1)___ 的熔点和沸点,(2) ______________ 的硬度,________ 挥发, _________ 升华(3)—般都是________ 体,固体和熔融状态都__________________ 导电。
(4)分子晶体的溶解性与溶质和溶剂的分子的___________________ 相关一一____________________思考:1、为什么分子晶体熔沸点低、易挥发、易升华、硬度小?原因:分子晶体发生这些变化时_只破坏 __________________________ , ________________ 很弱,克服它时需要的能量小。
所以分子晶体熔沸点低、易挥发、易升华、硬度小。
2、为什么分子晶体在晶体和熔融状态均不导电?它们在晶体和熔融状态均不存在_______________________ 。
部分分子晶体溶于水在水分子作用下发生_____________ 导电,如HCI, H2S04 ;有些溶于水与水反应生成_______________________________ 而导电,晶体硼等。
)(四)分子晶体结构特征1. ______________________________ __ 分子密堆积每个分子周围有______________ 个紧邻的分子,如:C60、干冰、12、02——不具有分子密堆积特征P1,CH4,2,冰中1个水分lmol冰周I韦]有mol氢键。
分子晶体和原子晶体1解析
2 分子晶体与原子晶体第一课时分子晶体[教材内容分析]晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
本节延续前面一节离子晶体,以“构成微粒---晶体类型---晶体性质”的认知模式为主线,着重探究了典型分子晶体冰和干冰的晶体结构特点。
并谈到了分子间作用力和氢键对物质性质的影响。
使学生对分子晶体的结构和性质特点有里一个大致的了解。
并为后面学习原子晶体做好了知识准备,以形成比较。
[教学目标设定]1.使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。
2.使学生了解晶体类型与性质的关系。
3.使学生理解分子间作用力和氢键对物质物理性质的影响。
4.知道一些常见的属于分子晶体的物质类别。
5.使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。
[教学重点难点]重点掌握分子晶体的结构特点和性质特点难点是氢键的方向性和氢键对物体物理性质的影响从三维空间结构认识晶胞的组成结构[教学方法建议]运用模型和类比方法诱导分析归纳[教学过程设计]复问:什么是离子晶体?哪几类物质属于离子晶体?(离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体)投影晶体类型离子晶体结构构成晶体的类型粒子间的相互作用力性质硬度熔沸点导电性溶解性展示实物:冰、干冰、碘晶体教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的?学生分组讨论回答板书分子通过分子间作用力形成分子晶体二、分子晶体1.定义:含分子的晶体称为分子晶体也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体问:还有哪些属于分子晶体?2.较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。
3.分子间作用力和氢键过度:首先让我们回忆一下分子间作用力的有关知识阅读必修2P22科学视眼教师诱导:分子间存在着一种把分子聚集在一起的作用力叫做分子间作用力,也叫范徳华力。
高中化学必修三 分子晶体和原子晶体
思考:你怎么理解 “巨分子” “共价晶体
”? 2、结构特点:
(1)构成粒子:原子。
三态变化、 化学反应 都破坏它
(2)粒子间的作用:共价键。
3、原子晶体的物理特性及影响因素:
–熔点和沸点很高 –硬度大(金刚石在自然界中硬度最大) –一般不导电 –难溶于一些常见的溶剂
分子的非密堆积 氢键具有方向性
氢键具有饱和性 冰的结构 冰中1个水分子周围有4个水分子
排列方式:冰晶体与C60、CO2相比,结构上有何特点? 对性质有何影响?
冰晶体
✓液态水中有无氢键?和冰在结构上有何区别? 这种区别导致冰融化成水时体积有何变化?密度呢?
6、分子晶体结构特征
(1)只有范德华力,无分子间氢键-分子密堆积
分子的密堆积
每个CO2分子周围有12个CO2分子
分子的密堆积
O2的晶体结构
C60的晶胞
(与每个分子距离最近的相同分子共有12个 )
6、分子晶体的结构特征
(1)只有范德华力,无分子间氢键-分子密堆积
分子密堆积-- 每个分子周围有 :C60、干冰 、O2
个紧邻的分子。 如
• 冰晶体中,每个水分子周围有几个紧邻的分子? 他们是什么样的空间关系?为什么会这样排列?
分子间: 分子间作用力(范德华力、氢键)
4、分子晶体物理性质的共性: 熔点低、易升华、硬度小
导电性: 通常,晶体本身不导电,熔融状态也 不能导电,但某些分子晶体的水溶液能导电。
溶解性: 相似相溶原理
思考:以下晶体中哪些属于分子晶体?
S、 H2SO4、 C60、 尿素、 He 、 NH3、 SiO2、 SO2、 P4O6、 P、 Cl2、 C(金刚石)、 H2S、 冰醋酸
原子晶体与分子晶体
2NA 。 (4)12克金刚石中C—C键数为_______
(2)二氧化硅 若在硅晶体结构中的每个Si-Si键中“插入”一个 氧原子,便可得到以硅氧四面体为骨架的SiO2晶体的 结构
Si O
109º 28´
共价键
Байду номын сангаас
Si O
注意:
原子晶体的化学式并不表示其实际的组成,只 基本结构单元: 正四面体 表示原子的个数比。 1 个Si连接____ 4 个 ,___ 2 个Si, (1)___ 1 个 连接____ 1:2 的比例组成的立体空间网状结构。 SiO 是由Si和O按_____
练习:
1.下列晶体中不属于原子晶体的是 (A ) A.干冰 B.金刚砂 C.金刚石 D.水晶
2、下列叙述正确的是 (AD ) A.离子晶体都是化合物 B.原子晶体都是单质 C.分子晶体内部都存在共价键 D.金属单质形成的晶体都是金属晶体
3.在金刚石的网状结构中,含有共价键形 成的碳原子 环,其中最小的环上,碳原子 数是 ( D ) A.2个 B.3个 C.4个 D.6个 4,下列各物质中,按熔点由低到高排列 正确的是( B ) A.O2、I2、Hg B.CO2、KCl、SiO2 C.Na、K、Rb D.SiC、NaCl、SiO2
12
。
氢键具有方向性 和饱和性
(3)冰
冰晶体主要是水分子依靠氢 键形成的(亦有范德华力)。 由于氢键的方向性和饱和性, 分子间距比较大,有很多空 隙,结构比较松散。每个水 分子周周有4个水分子,故 配位数为4。
(4)其他分子晶体
①硫黄:硫的同素异形体最稳定的是S8,不溶于水, 微溶于酒精和乙醚,易溶于CS2。 试管壁上的硫如何洗涤?
③ 一般都是绝缘体,熔融状态不导电。
原子晶体、分子晶体、离子晶体的比较 PPT
3.物理性质:①熔沸点低[破坏分子间的作用力],硬度小。
②一般不导电,在固态和熔融状态下也不导电
③溶解性一般符合“相似相溶规律”
二、常见的晶体结构分析:
(一)干冰: 1.分子堆积方式: 分子密堆积(只含范德华力) 2.均摊法计算CO2分子数:
顶角—— 8个 面心—— 6个 1个晶胞中CO2分子数= 8×18+6×12= 4 3.每个CO2分子周围离该分子距离最近且相等的 CO2分子有:12个 [同层+上层+下层]×4=12 (二)冰:
配位数: 8 配位空间构型:正六面体
离其最近的Cs+的个数为: 6
[上、下、左、右、前、后]
2.Cl-为中心:离其最近的Cs+的个数为: 8
配位数:8 配位空间构型:正六面体
离其最近的Cl-的个数为:6
3.均摊法计算1个晶胞中:
Cs+个数:8×18= 1
Cl-个数:1
二、三种常见的离子晶体的结构:
2.晶胞的结构:——均摊法 结合《课本》P64/图3-8
体心粒子—— 完全属于该晶胞
面心粒子—— 有12属于该晶胞
棱心粒子—— 有14该晶胞
顶角粒子—— 有18属于该晶胞
二、晶胞:
3.晶胞中微粒个数的计算:
1个金属铜晶胞
的原子数
=8×18+6×12= 4
X2Y
ACB3
DE
4.晶胞的基本类型:
简单立方
③熔点: ④能使X-
有固定的熔 射线产生衍
沸点
射
最科学的
鉴别依据
⑤均一性:组成和密度一致 ⑥对称性: ⑦稳定性: 晶格能
一、晶体:
5.形成途径: ①熔融状态物质凝固(注意凝固的速率适当)
原子晶体 分子晶体
原子晶体分子晶体
摘要:
一、原子晶体和分子晶体的概念
二、原子晶体和分子晶体的区别
三、原子晶体和分子晶体的性质和应用
正文:
原子晶体和分子晶体是两种常见的晶体类型,它们在结构、性质和应用上都有所不同。
原子晶体是由原子通过共价键以空间网状结构形成的晶体。
例如,金刚石、晶体硅和二氧化硅等物质都是原子晶体。
在原子晶体中,原子之间通过共价键结合在一起,形成一个三维的、有序的结构。
这种结构具有较高的熔点、沸点和硬度,因此在工业上具有广泛的应用。
分子晶体是由分子通过分子间作用力结合而成的晶体。
例如,冰、干冰和氧气等物质都是分子晶体。
在分子晶体中,分子之间通过范德华力或氢键结合在一起,形成一个二维的、无序的结构。
这种结构具有较低的熔点、沸点和硬度,因此在制冷、保鲜和运输等领域具有广泛的应用。
原子晶体和分子晶体的区别在于它们的结构和结合方式。
原子晶体是由原子通过共价键结合而成的,具有较高的熔点、沸点和硬度;分子晶体是由分子通过分子间作用力结合而成的,具有较低的熔点、沸点和硬度。
原子晶体和分子晶体的性质和应用也不同。
原子晶体具有较高的熔点、沸点和硬度,因此在工业上广泛应用于制造高强度、高硬度的材料,如切削刀
具、钻头和模具等。
分子晶体具有较低的熔点、沸点和硬度,因此在制冷、保鲜和运输等领域具有广泛的应用。
综上所述,原子晶体和分子晶体在结构、性质和应用上都有所不同。
晶体的常识、分子晶体与原子晶体
晶体的常识、分子晶体与原子晶体一、晶体和非晶体1.晶体与非晶体结构特征晶体结构微粒周期性有序排列非晶体结构微粒无序排列性质特征自范性熔点异同表现有(能自发呈现多面体外形)固定各向异性无(不能自发呈现多面体外形)不固定各向同性二者区别方法间接方法科学方法看是否有固定的熔点对固体进行X-射线衍射实验注意:(1)、晶体与非晶体的本质差异表现在有无自范性和微观结构特征上。
本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性的有序排列的宏观表象;相反,非晶体中粒子的排列相对无序,因而无自范性。
(2)、晶体的特点并不仅限于外形和内部质点排列的高度有序性,它们的许多物理性质,如强度、导热性、光学性质等,常常会表现出各向异性。
2.得到晶体的途径熔融态物质凝固;气态物质冷却不经液态直接凝固(凝华);溶质从溶液中析出。
如:从熔融态结晶出来的硫晶体;凝华得到碘;从硫酸铜饱和溶液中析出的硫酸铜晶体。
二、晶胞1.晶胞:描述晶体结构的基本单元叫晶胞。
2.晶体中晶胞的排列——无隙并置①无隙:相邻晶胞之间没有任何间隙。
②并置:所有晶胞都是平行排列的,取向相同。
晶胞计算是晶体考查的重要知识点之一,也是考查学生分析问题、解决问题能力的较好素材。
晶体结构的计算常常涉及如下数据:晶体密度、N A、M、晶体体积、微粒间距离、微粒半径、夹角等,密度的表达式往往是列等式的依据。
1.“均摊法”原理原子 金属键特别提醒 ①在使用均摊法计算晶胞中微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被 6、3、4、2 个晶胞所共有。
三棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被 12、6、4、2 个晶胞所共有。
②在计算晶胞中粒子个数的过程中,不是任何晶胞都可用均摊法。
2.晶体微粒与 M 、ρ之间的关系若 1 个晶胞中含有 x 个微粒,则 1 mol 晶胞中含有 x mol 微粒,其质量为 xM g(M 为微粒的相对“分子”质量);1 个晶胞的质量为 ρa 3 g(a 3 为晶胞的体积,ρ 为晶胞的密度),则 1 mol 晶胞的质量为 ρa 3N A g ,因此有 xM =ρa 3N A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子晶体和原子晶体第一课时教学目标知识与技能1、了解分子晶体的概念2、了解冰、二氧化碳的晶体结构及晶体中分子间作用力类型3、掌握分子晶体关于熔、沸点等方面的物理性质过程与方法联系旧知识,学习新知识,通过列举各种晶体及其特征,达到逐个掌握的目的情感、态度与价值观通过对水结冰密度减小这一学生已知事实的讲解,激发学生探究物质内部结构奥秘的兴趣教学重点分子晶体的概念、结构特点教学难点氯键对冰晶体结构和性质的影响教学过程【问题讨论】雪花、冰糖、食盐、水晶和电木(酚醛树脂)这些固体,是否属于晶体?若不是晶体,请说明理由。
雪花、冰糖、食盐、水晶都是晶体。
电木不是晶体。
它是高聚物,无固定的熔点。
【阅读】教材P 66碘晶胞、P 70干冰晶胞这两个晶胞有何共同点?组成这两个晶胞的微粒都是分子。
【师】这节课我们来学习第二节——分子晶体和原子晶体【板书】第二节——分子晶体和原子晶体一、分子晶体1.定义:只.含有分子的晶体。
【师】1、既然组成分子晶体的微粒都是分子,那这些微粒之间存在着哪些作用呢? 范德华力(分子间作用力)与氢键2、据此,可推断出分子晶体有哪些特点?熔、沸点低、硬度小【板书】2.分子晶体的特点有单个分子存在,化学式就是分子式。
熔、沸点低、硬度小,易升华。
【师】根据分子晶体的概念,哪些物质的晶体属于分子晶体呢?【板书】3.分子晶体的形成⑴所有非金属气态氢化物。
⑵多数非金属单质。
如卤素(X2)、氧(O2)、氢(H2)、氮(N2)、白磷(P4)、硫(S8)、C60等。
⑶多数非金属氧化物。
如:CO2、P4O6、P4O10、SO2等。
⑷所有的酸。
⑸绝对大多数有机物。
【师】下面,我们来看一下分子晶体都有哪些物理性质。
【板书】4.分子晶体的物理性质⑴分子晶体不导电。
【师】物质导电的条件是存在自由移到的电子或离子。
由于构成分子晶体的粒子都是分子,不管是晶体还是晶体熔化成的液体,都没有带电荷的离子存在。
因此,分子晶体及它熔化成的液体都不导电(但碲能导电)。
分子晶体溶于水时,有的能导电(如:HCl),有的不能导电(如:CH3CH2OH)。
【板书】⑵分子晶体的溶解性和熔、沸点。
【师】组成分子的分子不同,分子晶体的性质也不同。
如在溶解性以及熔沸点上,不同晶体之间存在着较大的差异。
【板书】溶解性:相似相溶、氢键;熔、沸点:氢键、分子间作用力、分子的极性。
5.分子晶体的结构特征和结构模型⑴如果分子间作用力只是范德华力,若以一个分子为中心,其周围通常可以有12个紧邻的分子。
如干冰晶体。
⑵如果分子间还有其他作用力,如存在氢键的分子晶体,由于氢键具有方向性,必然要对这些分子的堆积方而成的晶体的构型产生影响。
如晶体冰。
⑶干冰的晶体模型【师】提问:1、与一个CO2分子距离最近且相等的CO2分子共有多少个?2、一个干冰晶胞中平均有几个CO2分子?3、干冰晶体中,CO2分子的排列方向有几种?答案:1、12个;2、4个;3、4种(顶点一种,三个面心各一种)。
【板书】⑷冰晶胞模型【师】由上图可以看出,每个水分子最多可以形成4个氢键(每个H原子各1个,O 原子两个)。
氢键对冰晶体结构的影响是很明显的。
在整个冰的晶体结构中,每个H原子都参与了氢键的形成,这是因为它服从“最大限度生成氢键原理”,尽可能多地生成氢键,可以最大限度地降低体系的能量,以增强晶体结构的稳定性。
这样每个O原子周围都有4个H原子,由图可以看出,2个H原子距O原子较近,以共价键结合;另2个H原子距O原子较远,则以氢键相连。
O的配位数为4,为了形成较稳定的车面体结构,水分子中原有的键角(105º)也稍有扩张,使各键之间都形成正四面体角(109º28¹)。
这种结构是比较疏松的,因此冰表现出密度比水小的特殊性质。
当冰熔化成水时,部分氢键遭破坏,而水中仍然保持有许多运动自由的以氢键构成的水分子小集团,且不断变动改组。
由于这些小集团可以堆积得较为紧密,因而冰熔化时体积反而缩小。
冰的结构属于六方晶系,从冰的这种六方晶系模型出发,即不难推想出雪花为六角晶形由来的基本内在因素。
【总结】本节课我们主要学习了分子晶体的概念、组成及结构特点,大家不但要能从晶体类型来判断它的物理性质,而且要能根据该物质的物理性质来判断其晶体类型。
【随堂练习】1、四氯化硅的结构和四氯化碳类似,对其性质的推断,正确的是:①四氯化碳晶体是分子晶体;②通常情况下为液态;③熔点高于四氯化碳;④属于正四面体的分子构型。
其中正确的是()A.仅有①②③④B.仅有①④C.仅有②③④D.①②③④2、HgCl2的稀溶液可作手术刀的消毒剂,已知其熔点是227℃,熔融状态的HgCl2不能导电,HgCl2的稀溶液有弱的导电能力,由下列关于HgCl2的叙述中正确的是()①属于共价化合物;②属于离子化合物;③属于非电解质;④属于弱电解质。
A.①③B.①④C.②③D.②④3、右图所示为干冰晶胞。
观察图形,试说明每个CO2分子周围有个与之紧邻等距离的CO2分子;在晶胞中截取一个最小的正方形,使正方形的四个顶点都落到CO2分子的中心,则这个正方形平面上,有个CO2分子。
4、白磷分子(P4)如右图所示,则31 g白磷分子中存在共价键的数目为()A.4N A B.N A C.105N A D.0.25N A5、1996年的诺贝尔贝尔奖授予三位发现C60的化学家。
现已知C60属于晶体,其分子中只含有正五边形和正六边形,且每个碳原子只和与其相邻的三个碳原子成键(如右图),则:⑴试计算C 60分子中,碳碳单键和碳碳双键的个数;⑵试计算C 60分子中,正五边形和正六边形的个数;⑶试判断C 60能否与F 2反应?什么?【作业】《学习与评价》P 35课时12【板书】第二节 分子晶体和原子晶体一、分子晶体 1、定义:只含有分子的晶体。
2、特点:有单个分子的存在,化学式既分子式。
熔、沸点较低,硬度较小,易升华。
3、分子晶体的形成⑴所有非金属气态氢化物。
⑵多数非金属单质。
如卤素(X 2)、氧(O 2)、氢(H 2)、氮(N 2)、白磷(P 4)、硫(S 8)、C 60等。
⑶多数非金属氧化物。
如:CO 2、P 4O 6、P 4O 10、SO 2等。
⑷所有的酸。
⑸绝对大多数有机物。
4、分子晶体和物理性质⑴分子晶体不导电。
⑵分子晶体的溶解性和熔、沸点。
溶 解 性:相似相溶、氢键熔、沸点:氢键——分子间形成氢键的熔、沸点升高;分子间作用力——对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,熔、沸点越高;分子的极性——分子的极性越大,熔、沸点越高。
5、分子晶体的结构特征和结构模型⑴如果分子间作用力只是范德华力,若以一个分子为中心,其周围通常可以有12个紧邻的分子。
如干冰晶体。
⑵如果分子间还有其他作用力,如存在氢键的分子晶体,由于氢键具有方向性,必然要对这些分子的堆积方而成的晶体的构型产生影响。
如晶体冰。
⑶干冰的晶体模型⑷冰晶胞模型分子晶体和原子晶体第二课时教学目标知识与技能1、了解原子晶体的概念,掌握原子晶体的熔、沸点,硬度等物理性质。
2、掌握金刚石、晶体硅、二氧化硅等典型晶体的晶胞。
3、理解并掌握原子晶体内原子间作用力的类型。
过程与方法从结构理解原子晶体的性质,明确原子晶体的物理性质及化学变化特点和空间结构。
情感、态度与价值观学会知识的运用,培养学以致用的能力教学重点晶体类型与性质之间的关系教学难点原子晶体的结构特点教学过程【问题引入】C、Si都是第ⅣA主族元素,它们的氧化物CO2和SiO2都是酸性氧化物,在化学性质上有着不少相似之处。
大家来看一下这一张表:那为什么两者的熔、沸点相差这么大?二氧化硅又符不符合分子晶体的特征呢?【板书】二、原子晶体1、定义:相邻原子间以共价键相结合形成的空间网状结构的晶体。
2、特点:不存在间个分子,化学式只表示其原子个数比。
基本粒子是原子,并以共价键结合向空间发展形成空间网状结构。
【师】原子晶体为什么呈空间网状结构呢?【生】因原子晶体中原子间相互作用是共价键,由于共价键不同于金属键,又不同于离子键;它既有饱和性,又有方向性。
因而在共价型晶体中,在微粒间相互位置上,就既不可能像金属晶体那样,主要按等径圆球尽可能堆积的规律,尽量以高配位数配置;又不能像离子晶体那样,主要根据正、负离子的半径大小和数量的不同比不同取其可能的堆积方式,以一定的配位数相互配置。
共价键的饱和性和方向性在晶体结构中表现出十分明显的决定作用。
首先在种类型晶体中,微粒(原子)的配位数由具有饱和性的键的数量决定。
其次,原子之间的联结(键合),都必须采取一定的方向。
这样,就从根本上决定了晶体结构的空间构型。
可见原子晶体的结构特征是键的饱和性和方向性,它决定了其配位数比一般金属晶体和离子晶体都要小。
【板书】3、原子晶体的物理性质很高和熔、沸点,很大的硬度,不导电,难溶于一般溶剂。
【师】原子晶体中,各个原子都和数个其他原子以共价键相结合,使整个晶体形成了一个牢固的整体。
由于原子晶体内键的饱和性和方向性,决定了这类晶体不具有象金属那样的延性、展性和良好的导电性;又由于共价键的结合能力比离子键的结合能力强,故一般来说,其熔点、沸点较高,硬度较大。
【学与问】1、怎样从原子结构的角度理解金属石、硅和锗的熔点和硬度依次下降?答案:从碳到锗,核电荷数增大,电子层数增多,原子半径增大,C—C键、Si—Si键和Ge—Ge键的键长依次增大。
键长越短,共价键越牢固,而熔化时破坏的是共价键,因此共价键的稳定性是C—C键>Si—Si键>Ge—Ge键。
所以,金刚石、晶体硅和晶体锗的熔点和硬度依次下降。
2、“含有共价键的晶体叫做原子晶体。
”这种说法对吗?为什么?答案:不对。
如:HCl、H2O、CO2、CH3CH2OH分子中都有共价键,而它们都是分子晶体;又如:金刚石、晶体硅、SiC、SiO2中也都有共价键,它们却都是原子晶体。
只有相邻原子间以共价键结合形成空间网状结构的晶体才是原子晶体。
【板书】4、常见原子晶体少数非金属单质(如金刚石、单晶硅、晶体硼、晶体锗等);少数非金属化合物(碳化硅SiC、二氧化硅SiO2、氮化硼BN等)。
【板书】5、常见原子晶体模型⑴金刚石【师】金刚石是世上已知最硬的物质,且熔点很高,人很名贵的宝石。
人们把天然金刚石当作宝石珍藏已有三千余年历史。
经过琢磨的金刚石称钻石,透光度高,纯净的钢厂无色透明,含杂质则呈蓝、黄、棕、绿、黑等色。
至今世界上最大的金刚石是“非洲之星”,发现于1906年,质量为3025克拉。
金刚石是最典型的原子晶体。
宏观世界是由碳原子以共价单键结合而成的,其中,每一个碳原子都和三个与其相邻的碳原子形成典型的正四面体共价键基团CC4,所有的CC4在空间连续分布,每一个碳原子的配位数均为4(如图所示);若从图中取出一个立方单位,即为金刚石的晶胞(如图所示)。