七年级数学上册 第3章 一次方程与方程组 3.6 综合与实践 一次方程组与CT技术学案 (新版)沪科
2024年沪科版七年级数学上册 3.6 三元一次方程组及其解法(课件)
3x + 2y + z = 39, 2x + 3y + z = 34, x + 2y + 3z = 26.
?
由三个一次方程组成,且含三个未知数的方程组, 叫作三元一次方程组.
新知探究 知识点 三元一次方程组
下列方程组是三元一次方程组的是( B )
x + 2y = 1,
A. y + 2z = 2,
z+
下面解由④⑤联立成的二元一次方程组.
④ - ⑤,得
11z = 11. z = 1. ⑥
将⑥代入④,得
y = -2.
将 y,z 的值代入①,得 x = 3. 所以
x = 3, y = -2, z = 1.
新知探究 知识点 三元一次方程组
练一练
解:①×2 + ②,得 5x + 8y = 7. ④
解下列三元一次方程组: ③×8 + ④,得 21x = 63,
2 x
= 3.
x2 - 4 = 0, C. y + 1 = x,
x – z = -3.
a + b + c = 1, B. a - b = 4,
4a – 2b + c = 7.
-x + y + 3z = -1,
D. x – y + z = 3,
2x + m - z = 0.
新知探究 知识点 三元一次方程组
新知探究 知识点 三元一次方程组
解:① + ②,得 3x + 2z = 4. ④
解下列三元一次方程组: ①×4 + ③,得 5x-6z = 2.⑤
(2)
x + y - z = 2, ① 2x - y + 3z = 2, ② x–4y - 2z = -6. ③
初中数学沪科版教材目录(七上-九下全)
沪科七年级上册第1章有理数1.1正数和负数1.2数轴、相反数和绝对值1.3有理数的大小1.4有理数的加减1.5有理数的乘除1.6有理数的乘方1.7近似数第2章整式加减2.1代数式2.2整式加减第3章一次方程与方程组3.1一元一次方程及其解法3.2一元一次方程的应用3.3二元一次方程组及其解法3.4二元一次方程组的应用3.5三元一次方程组及其解法3.6综合与实践一次方程组与CT技术第4章直线与角4.1几何图形4.2线段、射线、直线4.3线段的长短比较4.4角4.5角的比较与补(余)角4.6用尺规作线段与角第5章数据的收集与整理5.1数据的收集5.2数据的整理5.3用统计图描述数据5.4从图表中的数据获取信息5.5综合与实践水资源浪费现象的调查七年级下册第6章实数6.1平方根6.2实数第7章一元一次不等式与不等式组7.1不等式及其基本性质7.2一元一次不等式7.3一元一次不等式组第8章整式乘法与因式分解8.1幂的运算8.2整式乘法8.3完全平方公式与平方差公式8.4因式分解8.5综合实践纳米材料的奇异特性第9章分式9.1分式及其基本性质9.2分式的运算9.3分式方程第10章相交线、平行线与平移10.1相交线10.2平行线的判定10.3平行线的性质10.4平移八年级上册第11章平面直角坐标系11.1平面内点的坐标11.2图形在坐标系中的平移第12章一次函数12.1函数12.2一次函数12.3一次函数与二元一次方程12.4综合与实践一次函数模型的应用第13章三角形中的边角关系、命题与证明13.1三角形中的边角关系13.2命题与证明第14章全等三角形14.1全等三角形14.2三角形全等的证明第15章轴对称图形与等腰三角形15.1轴对称图形15.2线段的垂直平分线15.3等腰三角形15.4角的平分线八年级下册第16章二次根式16.1二次根式16.2二次根式的运算第17章一元二次方程17.1一元二次方程17.2一元二次方程的解法17.3一元二次方程根的判别式17.4一元二次方程的根与系数的关系17.5一元二次方程的应用第18章勾股定理18.1勾股定理18.2勾股定理的逆定理第19章四边形19.1多边形内角和19.2平行四边形19.3矩形、菱形、正方形19.4综合与实践多边形的镶嵌第20章数据的初步分析20.1数据的频数分布20.2数据的集中趋势与离散程度20.3综合与实践体重指数九年级上册第21章二次函数与反比例函数21.1 二次函数21.2 二次函数的图象和性质21.3 二次函数与一元二次方程21.4 二次函数的应用21.5 反比例函数21.6 综合与实践获取最大利润第22章相似形22.1 比例线段22.2 相似三角形的判定22.3 相似三角形的性质22.4 图形的位似变换22.5 综合与实践测量与误差第23章解直角三角形23.1 锐角的三角函数23.2 解直角三角形及其应用九年级下册(估计)第24章圆24.1 旋转24.2 圆的基本性质24.3 圆周角24.4 直线与圆的位置关系24.5 三角形的内切圆24.6 正多边形与圆24.7 弧长与扇形面积24.8 综合与实践进球线路与最佳射门角第25章投影与视图25.1 投影25.2 三视图第26章概率初步26.1 随机事件26.2 等可能情形下的概率计算26.3 用频率估计概率26.4 综合与实践概率在遗传学中的应用。
2024七年级数学上册第3章一次方程与方程组3.6三元一次方程组及其解法课件新版沪科版
次方程;
(4) 求解: 解这个一元一次方程,求出最后一个未知数的值;
(5) 写解: 将求得的三个未知数的值用符号“ {”合写在一起 .
感悟新知
知2-讲
特别解读 解三元一次方程组时,消去哪个“元”都
是可以的,得到的结果都一样,我们应该根据方 程组中各方程的特点,选择最为简便的解法,灵 活地确定消元步骤和消元方法,不要盲目消元 .
x=2, 所以这个三元一次方程组的解为ቐy=1,
z=3.
感悟新知
2-1. 解下列方程组:
4x-9z=17, ① (1) ൞3x+y+15z=18, ②
x+2y+3z=2; ③
知2-练
感悟新知
解:②×2-③,得 5x+27z=34.④ ①和④联立成二元一次方程组45xx- +92z7=z=173, 4,
将 z=2 代入②,得 y=53.
x=-34, 故这个三元一次方程组的解为y=53,
z=2.
感悟新知
知识点 3 列三元一次方程组解决实际问题
列三元一次方程组解决实际问题的步骤
知3-讲
(1) 弄清题意和题目中的数量关系,用三个未知数表示题目中
的未知量;
(2) 找出能够表达应用题全部含义的三个等量关系;
第三章 一次方程与方程组
*3.6 三元一次方程组及其解法
学习目标
1 课时讲解 2 课时流程
三元一次方程组 解三元一次方程组 列三元一次方程组解决实际问题
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 三元一次方程组
知1-讲
1. 三元一次方程 含有三个未知数,并且含有未知数的项的次数都是1,
3.6 综合与实践 一次方程组与CT技术(课件)-七年级数学上册同步备课系列(沪科版)
x 0.25 解得y 0.20
z 0.19
组织类型 健康器官
肿瘤 骨质
答:体素A、B、C的吸收值分别是0.25,0.20,0.19.
体素吸收值 0.1625~0.2977 0.2679 ~ 0.3930 0.3857 ~ 0.5108
3.6 一次方程组与CT技术
新知讲解 假如有A、B、C、D四个体素组成的断层,如何求一个断层上各体素的吸收值呢?
体体
素 素 X射线
AB
X射 线
研究发现:体素A的吸收值为0.1,体素B的吸收 值为0.3,则由体素A、B组成的断层的总吸收值
P=0.1+0.3=0.4.
3.6 一次方程组与CT技术
新知讲解 如图,由三个体素A,B,C组成的断层, X射线束 从三个不同方向穿过该断层. X射线束1、2、3分 别穿过体素A和B,体素A和C, 体素B和C后,由 探测器测得的总吸收值分别P1,P2,P3.怎样求出 三个体素A,B,C的吸收值呢?
X射线束1 X射线束2
X射线束4
AD BC
0.67 探测器1 探测器2 0.59
探测器4 0.66 0.63
3.6 一次方程组与CT技术
解:设体素A、B、C、D的吸收值分别为x、y、z、m。
x+y =0.67 z+m=0.59 x+z =0.63 x+m=0.66
组织类型 健康器官
肿瘤 骨质
体素吸收值 0.1625~0.2977 0.2679 ~ 0.3930 0.3857 ~ 0.5108
二、CT的成像原理
得到该断层的图像,要发现受检 体有无病变,就需要把它上面的各体 素的吸收值都求出来。
我们可以把一个断面等成分 160×160个单元,也就是有25600个 体素,如何求这些体素的吸收值呢?
3.6 三元一次方程组及其解法(课件)2024-2025 沪科版(2024)数学七年级上册
1.下列方程组是三元一次方程组的是( B )
+ = ,
A.
− + =
+ + = ,
B. − + = ,
+ − =
− = ,
C. + = −,
− =
− = ,
就可以考虑消去哪个未知数.变式演练中可供的选择较多,应选
择最简便的途径.
素养小测
+ + = , ①
1.解方程组: − + = , ②
− + = . ③
= −,
,
解: =
= .
− 2 = −, ①
2.解方程组: − = , ②
知识讲解三元一次方程组的源自念揭示概念:由三个 一次的方程组叫做三元一次方程组.
方程组成的含有
三个
未知数
解三元一次方程组
【归纳总结】解三元一次方程组时,通过 代入
加减
法或
法先消去一个未知数,将“三元”化为“二元”,使解
三元一次方程组转化为解二元一次方程组. 解得原方程组中两个
未知数的值,再将其代入原方程,得到第三个未知数的值.
+ + = . ③
= ,
解: = ,
= .
方法归纳交流
本题中z的系数相等或互为相反数,可以先消去z.
+ + = ,
[变式演练]解方程组: − = ,
− + = .
= ,
解: = ,
= .
方法归纳交流 方程组中哪个未知数的系数成倍数关系,
七年级数学上册 第3章 一次方程与方程组 3.6 综合与实践 一次方程组与CT技术学案 (新版)沪科
. 3.6 综合与实践 一次方程组与CT 技术【学习目标】1.了解什么是CT 技术,CT 技术有什么作用.2.体会CT 技术与一次方程组的关系.【学习重点】用一次方程组分析CT 数据.【学习难点】CT 技术与一次方程组的关系.行为提示:创景设疑,帮助学生知道本节课学什么.情景导入 生成问题旧知回顾:1.什么是三元一次方程组,解三元一次方程组基本思路是什么?答:(1)由三个一次方程组成的含有三个未知数的方程组,叫做三元一次方程组.(2)解三元一次方程组的基本方法是消元,即通过消元把三元一次方程组转化为二元一次方程组,进而转化为一元一次方程,然后通过回代解得三元一次方程组.2.写出二元一次方程3x -2y =5的一个正整数解为⎩⎨⎧x =3,y =2.说明:求二元一次方程组的正整数解,要考虑x 、y 均为正整数的情况.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研 生成能力知识模块一 二元一次方程组的正整数解1.小赵要把面额是20元的人民币换成零钱,现在只有5元和1元两种面额的人民币可供选择,那么他换零钱的不同方法有( B )A .4种B .5种C .6种D .7种. 2.方程x +2y =7的所有自然数解是⎩⎨⎧x =1,y =3,⎩⎨⎧x =3,y =2,⎩⎨⎧x =5,y =1,⎩⎨⎧x =7,y =0.3.求二元一次方程3x +2y =15的正整数解.解:⎩⎨⎧x =1,y =6,⎩⎨⎧x =3,y =3. 知识模块二 一次方程组在实际生活中的应用1.有甲、乙、丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需150元.2.已知甲、乙、丙三人各有一些钱,其中甲的钱是乙的2倍,乙比丙多1元,丙比甲少11元,则三人的钱共有( D )A .30元 B.33元 C .36元D .39元3.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播一次收费0.6万元,30秒广告每播一次收费1万元.若要求每种广告播放不少于2次.问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益较大?解:(1)设15秒广告插播x 次,30秒广告插播y 次,可得15x +30y =120,x ≥2,y ≥2,且x ,y 为正整数.可得⎩⎨⎧x =2,y =3,⎩⎨⎧x =4,y =2;(2)第一种收益为2×0.6+3×1=4.2,第二种收益为4×0.6+2×1=4.4,第二种收益较大.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 二元一次方程组的正整数解知识模块二 一次方程组在实际生活中的应用课后反思 查漏补缺1.收获:________________________________________________________________________2.困惑:________________________________________________________________________感谢您的支持,我们会努力把内容做得更好!。
2024七年级数学上册第3章3.6三元一次方程组及其解法课件新版沪科版
− = ,
= ,
所以ቐ + = , 解得ቐ = ,
− + = ,
= − .
1
2
3
4
5
6
7
8
9
返回
10
11
− + = ,
3. 解方程组൞+ − = , 若要使运算简便,消元的
+ − = ,
B
方法应选(
)
A. 先消去 x
B. 先消去 y
C. 先消去 z
D. 以上说法都不对
【点拨】
因为 y 的系数的绝对值都是1,所以消去 y 较简便.
1
2
3
4
5
6
7
8
9
10
11
所以此三元一次方程组的解为ቐ = ,
= − .
所以三个“
”里的数之和为71,三个“
”里应填入
的数按先上后下,先左后右的顺序依次为50,33,-12.
返回
1
2
3
4
5
6
7
8
9
10
11
11. 已知甲、乙二人解关于 x , y 的方程组ቊ
+ = ,
甲
− = ,
= ,
= ,
④-③,得 y =2.所以原方程组的解为ቐ = ,
= .
返回
1
2
3
4
5
6
7
8
9
10
11
10. 如图是一个有三条边的算法图,每个“
数,这个数等于它所在边的两个“
你通过计算确定三个“
“
”里有一个
”里的数之和,请
”里的数之和,并且确定三个
七年级数学上册 第三章 一次方程与方程组 (知识归纳+考点攻略+方法技巧)复习课件 沪科版
第3章 |复习(二)
[解析] 方程组中 y 项的系数相等,可以采用减法消去 y. 方法技巧 用加减消元法解方程组的一般步骤: (1)方程组的两个方程中,如果同一个未知数的系数既不互为 相反数又不相等,那么就用适当的数乘方程的两边,使同一个未 知数的系数互为相反数或相等; (2)把两个方程的两边分别相加或相减,消去一个未知数,得 到一个一元一次方程; (3)解这个一元一次方程,求得一个未知数的值; (4)将这个求得的未知数的值代入原方程组中的任意一个方 程中,求出另一个未知数的值,并把求得的两个未知数的值用符 号“{”联立起来.
数学·沪科版(HK)
第3章 |复习(一) 针对第9题训练 1.如图 3-1,下列四个天平中,相同形状的物体的 质量是相等的,其中第①个天平是平衡的,根据第①个天 平,后三个天平仍然平衡的有( C ) A.0 个 B.1 个 C.2 个 D.3 个
数学·沪科版(HK)
第3章 |复习(一)
2.设“●,■,▲”分别表示三种不同的物体,如图 3-2 所示,前两个天平保持平衡,如果要使第三个天平也
平衡,那么“?”处应放“■”的个数为( A )
A.5 B.4 C.3 D.2
数学·沪科版(HK)
第3章 |复习(一)
针对第16题训练
关于 x 的方程13x+2=-16(4x+m)的解是-161,则(m -1)2013=____0____.
[解析] 解这个方程13x+2=-16(4x+m),得出 m= -6x-12.把 x=-161代入,得 m=-1,从而求出式子的 值.
(1)根据题意列出方程(组); (2)所列方程(组)是二元一次方程组吗?
数学·沪科版(HK)
第3章 |复习(二)
解:(1)5xx==26y-y,40. (2)是二元一次方程组.
初中数学七年级上册 6 综合与实践 一次方程组与CT技术-省赛一等奖
3.6 综合与实践一次方程组与CT技术调查分享了解普通可见光被物体反射、吸收、透过。
1、用手电筒、遮光板做可见光反射、吸收、透过的小实验。
2、生活实例说明可见光被物理反射、吸收、透过的现象。
学生观察、思考,得出结论。
了解X光安检机,介绍X光的物理特性。
X光几乎不被物体反射,能够被物体吸收一部分,x射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。
学生观察、思考,得出结论。
了解X光安检机原理,为后面CT技术的学习打下基础。
了解CT的相关基础知识:什么是CT,CT的工作原理,工作程序,成像原理;体素,体素的吸收值,两个体素的总吸收值,常见体素的吸收值。
前面,我们学习了一次方程、方程组在实际中的应用。
课后,我班数学综合实践小组的同学,经过调查发现:医学中的CT技术与我们现在所学的方程组有密切的联系。
1.介绍CT图象的成像原理和简单的图象解读)2.分享CT方面的理论知识.了解CT一种断层扫描技术,不同层面对应不同的图象,为后面研究CT的图象与体素吸收值的关系铺垫,更专业的介绍CT在临床上的应用价值。
教学环节环节目标教学内容学生活动媒体作用及分析思考探索了解一次方程组在CT技术中的应用。
掌握列方程解决两个问题,体会一次方程组与CT技术的关系。
问题1:如图,由三个体素A,B,C组成的断层, X射线束从三个不问题1:师生共同探究,列出三元一次方程组,学生解三元一次方程组。
动画演示X射线穿过一个体素衰减的过程,形象直观。
组解决实际问题的一般步骤。
同方向穿过该断层。
X 射线束1、2、3分别穿过体素A 和B ,体素A 和C, 体素B 和C 后,由探测器测得的总吸收值分别P1,P2, P3。
怎样求出三个体素A,B,C 的吸收值呢再动画演示X 射线穿过两个体素衰减的过程,化抽象为直观。
最后再模拟X 射线从不同的方向穿过由三个体素衰减的变化过程。
问题2: 推广: 一般的断层至少也得划分成160 X 160 =25 600个体素,X 射线束从不同位置、不同方向穿过该断层,因此需要解由此而建立的25 600个元的一次方程组,才能求出各体素的吸收值。
3.6二元一次方程组的解法3.6.2 加减消元法(课件)2024-2025学年湘教版七年级数学上册
发现:方程①中y的系数和方程②中y的系数互为相反数. 启发:若把方程①②的左右两边分别相加,就可消去y,
从而得到关于x的一元一次方程.
新知探究 知识点 加减消元法
已知二元一次方程组ቊ72xx+−33yy==18,. ① ②
①+②,得
9x=9 ,
两边都除以9,得
x=1 .
把x用1代入方程①,得 7×1+3y=1 ,
将③代入②,得 2x 4(35 x) 94
x 23 代入③,得
y 12
解:①×4-② ,得 2x 46 x 23
代入①,得 23 y 35
y 12
பைடு நூலகம்堂练习
3.已知关于x,y的二元一次方程组 的解解:为根据 xy题意23,,,求得a,33b(aa的2值bb).123a, 9
ax by 13, (a b)x ay 9
把x用-3代入①式,得 -2×(-3)+5y=11,
解得
y=1.
因此, ቊxy==−13,是原二元一次方程组的解.
随堂练习
1.用加减消元法解下列二元一次方程组【:课本P124 练习 第1题】
(3)
3x 2 y 6x-5 y
8, ① 47;②
(4)
3x-4 y 7, 5x+2 y 10.
(3) ①×2-②,得
新知探究 知识点 加减消元法
ቊ26xx+−35yy==−9.11,① ②
①×3,得
6x+9y=-33 . ③
③-②,得
(6x+9y)-(6x-5y)=-33-9 ,
去括号,得
6x+9y-6x+5y=-33-9 ,
沪科版七年级数学上册3.6 综合与实践 一次方程组与CT技术
3.6 综合与实践一次方程组与CT技术【知识与技能】1.了解什么是CT技术,CT技术有什么作用.2.体会CT技术与一次方程组的关系.3.经历把实际问题抽象为数学问题的过程,体会数学与生活的密切联系,知道数学的实用价值.同时感受“化归”思想的广泛应用.【过程与方法】在实际生活问题中经历列一次方程组解决问题的过程,会将实际问题抽象成数学问题,通过列方程解决问题.进一步理解一次方程组的解法,体会“消元”的基本思想和“化归”思想.【情感态度】针对问题的探究,鼓励学生大胆尝试,通过交流、合作、讨论,享受学习的乐趣和成功感,增强应用数学的意识.激发学生学习数学的热情.【教学重点】重点是用一次方程组分析CT数据.【教学难点】难点是CT技术与一次方程的关系一、情境导入,初步认识【情境1】实物投影,并呈现问题:脑梗死CT图像阅读教材第121页至122页,通过阅读说一下你对CT技术的认识?【情境2】实物投影,并呈现问题:如果把断面等分成256×256个单元,X线在每个角度上投影256次,这样每一角度上可建立256×256个方程式,求得256×256单元所对应的衰减系数.然后电子计算机求解这些方程式,从而得出每一小单元的衰减系数.体素A、B、C的吸收值分别为x、y、z.X射线束1穿过A、B后总吸收值为x+y=p1①,X射线束2穿过A、C后总吸收值为x+z=p2②,X射线束3穿过B、C后总吸收值为y+z=p3③.若p1=0.45,p2=0.44,p3=0.39,求体素A、B、C的吸收值.【教学说明】通过阅读教材使学生初步认识CT技术,并使学生在解决问题的过程中,自己经过观察、归纳、总结出CT技术与一次方程组联系,通过解一次方程来解决实际问题.情境1中CT的基本结构:(1)扫描部分:x线管、探测器和扫描架(2)计算机系统:将扫描收集到的信息数据进行储存和运算(3)图像显示和存储系统:经计算机处理,重建的图像显示在电视屏上或用多幅照相机或激光相机将图像摄下.CT扫描如何成像:(1)CT将头部分成多个连续的横断面即断层,再进行扫描获得各断层图像,最后将断层图像复合.(2)将断层表面按一定大小分成很小的部分,这些小块称为体素.(3)X射线照射穿过体素后被吸收的程度叫吸收值.将这些体素的吸收值求出后就会得到该断层的图像.情境2中解:设体素A、B、C的吸收值分别为x、y、z.列方程组0.450.440.39 x yx zy z+=+=+=⎧⎪⎨⎪⎩解得0.250.200.19 xyz⎧===⎪⎨⎪⎩【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知1.CT技术问题1CT扫描如何成像?问题2什么是体素?什么是吸收值?【教学说明】学生通过阅读教材,在经过分析、归纳后能得出结论.【归纳结论】CT扫描如何成像:(1)CT将头部分成多个连续的横断面即断层,再进行扫描获得各断层图像,最后将断层图像复合.(2)将断层表面按一定大小分成很小的部分,这些小块称为体素.(3)X射线照射穿过体素后被吸收的程度叫吸收值.将这些体素的吸收值求出后就会得到该断层的图像.2.CT技术与一次方程组问题CT技术与一次方程组有怎样的关系?【教学说明】学生通过解决CT技术问题后,在经过分析、归纳后能得出结论.【归纳结论】CT数据的分析可通过一次方程组来实现,按照程序列出方程组,求出方程组的解,在通过数据的对比就可以得出CT的分析结果.三、运用新知,深化理解体素A、B、C的吸收值分别为x、y、z.X射线束1穿过A、B后总吸收值为x+y=p1①,X射线束2穿过A、C后总吸收值为x+z=p2②,X射线束3穿过B、C后总吸收值为y+z=p3③.如下图,已知甲乙丙三个病人的总吸收值如下,求三人的体素A、B、C的吸收值设X射线穿过健康器官、肿瘤、骨质的体素吸收值如上图,对照数据表,分析3个病人的检测情况,判断哪位患有肿瘤?【教学说明】通过新课的讲解以及学生的练习,让学生更好巩固知识.通过本环节的讲解与训练,让学生对CT技术与一次方程组有了更加明确的认识,同时也尽量让学生明白数学的实用价值,真正体会出,学好数学才能更好地处理问题,把握好我们的生命健康.【答案】完成表格如下对比数据表可知丙患有肿瘤.四、师生互动,课堂小结1.什么是CT技术?CT技术与一次方程有怎样的关系?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:阅读教材第124页.2.利用网络查阅与CT技术有关的知识.3.完成同步练习册中本课时的练习.本节课从生活中的CT图像分析着手,吸引了学生的兴趣和关注.并使学生通过自己已掌握的方程组的知识来解决身边的生活问题,在学习的过程中体会了CT技术与一次方程组的关系,同时也体会了数学的实用价值,明白了学习数学的重要性.增强了学习数学的主动性,激发学生学习数学的热情.。
2024年湘教版七年级数学上册 3.6二元一次方程组的解法3.6.1 代入消元法(课件)
2x=4y , x=2y . ③ 5×2y-7y=3 , y=1 . x=2 .
因此,ቊxy==21,是原二元一次方程组的解.
新知探究 知识点 代入消元法
做一做
用消去未知数y的方法求出例1方程组的解.
解:将方程①移项,得 两边都除以4,得
4y=2x , y=12x . ④
ቊ25xx−−47yy==03
解得
y=-151
将因y此的,值൞代yx=入=−−③1158式11 ,,是得二元x一=-次181方.程组的解.
随堂练习
2.用代入消元法解下列二元一次方程组: 【课本P122 练习】
(3)
ቊ
3x−7y=1, x+5y=−3;
(4)ቊ−5x2+xy+=31y,=−34.
① ②
(4)将方程①移项,得
y=1-5x ③
因此, ቊxy==5−,3 是原二元一次方程组的解.
随堂练习
2.用代入消元法解下列二元一次方程组: 【课本P122 练习】
(1) ቊ23xx−+5yy==1225,;
(2)ቊ32xx+−2yy==15;,① ②
(2)将方程②移项,得 将③式代入①式,得 解得 将x的值代入③式,得
y=2x-1 ③ 3x+2×(2x-1)=5 .
将③式代入②式,得 解得
-2x+3×(1-5x)=-34 . x=3177
将因x此的,值൞代yx入==−③31771式16,78,得是二元一y=次-11方678程组的解.
课堂小结
代入消元法解方程组的一般步骤: ①选择其中一个方程,用含有一个未知数的式子
表示另一个未知数; ②把变形后的方程代入另一个方程中,消元后求
第3章一次方程与方程组本章小结与复习-2024-2025学年初中数学七年级上册(沪科版)上课课件
1.从教材习题中选取. 2.完成练习册本课时的习题.
解:方程 2x=43的两边同时除以 2,得 x=23. 将 x=23代入方程 3(x+a)=a-5x,得 3×(32+a)=a-5×23,解得 a=-83.
例 3 已知方程组a4xx+-by=y=5-,1和33xa+ x+y=4b9y=,18 有相同的解,求(2a+3b)2017 的值.
解:将4x-y=5和3x+y=9组成方程组,得
本章小结与复习
沪科版七年级上册
1 等式的基本性质
1
性质1:等式的两边都加上(或减去)同一 个整式,所得结果仍是等式. 即
如果 a=b,那么 a+c=b+c,a-c=b-c.
2
性质2:等式的两边仍是等式. 即
如果
a=b,那么
ac=bc,
a c
=
bc(c≠0).
(2)如果方程组中不存在某个未知数的系数绝对值相等, 那么应选出一组系数求出它们的最小公倍数,然后将原方程组 变形,使新方程组的这组系数的绝对值相等,再加减消元.
(3)对于较复杂的二元一次方程组,应先化简,再作如上 加减消元的考虑.
6 三元一次方程组
由三个一次方程组成,且含三个未知数的方 程组,叫作三元一次方程组.
三元一次方程组的解法:通过消元转化成解 二元一次方程组的问题,再消元转化成解一元一 次方程的问题.
解三元一次方程组与解二元一次方程组有什 么联系和区别?
联系:都是消元,转化为一元一次方程, 最后求出方程组的解。
区别:未知数和方程的个数不同。
x=6-2y, 例 1 已知方程组 x-y=9-3k 求 k 的值.
3
性质3:如果 a=b,那么 b=a.(对称性).
3.6一次方程组与CT技术
沪科版七上3.6 一次方程组与CT 技术教学设计ct 技术中的应用,学会从日常生活中搜集、整理数学信息,用数学的思维方式去观察、分分析 析、解决日常生活中的数学问题。
在应用一元一次方程解决实际问题的教学中,要让学生的思维得到充分的展示, 让他们自己来分析题目形成良好的分析问题的策略,同时设计解题的策略,让学生从“怕”应用题到 喜欢应用题。
知识与能力:1、了解什么是ct 技术,ct 技术有什么作用。
2、体会ct 技术与一次方程组 学习 的关系。
目标 过程与方法:会将实际问题抽象成数学问题,通过列方程解决问题。
情感态度与价值观:增强用数学的意识。
激发学生学习数学的热情。
重点 ct 技术与一次方程的关系难点 用一次方程组分析 ct 数据。
教学过程扫描部分:x 线管、 探测器和扫描架。
课题单元 第三章 学科 数学 年级学情分析教学环节教师活动观看图片学生活动 学生观看图 设计意图 通过创设情境, 导入新课片,回答问题。
引入新课,能吸 引学生的注意力,提高学生学 习的兴趣。
讲授新课【思考】什么是CT ?CT 是X 射线计算机断层成像的简称,它显著地改善 了X 射线检查的分辨能力,其分辨率大大高于一般 X 光机,能清楚地显示出器官是否有病变,因而被 广泛地用于医学诊断。
【思考】CT 基本结构是什么?积极思考问 题,根据课前 预习,积极回 答问题。
了解CT 的构造以 及工作程序。
七3.6 一次方程组与CT 技术计算机系统:将扫描收集到的信息数据进行储存和运算。
图像显示和存储系统:经计算机处理,重建的图像显示在电视屏上或用多幅照相机或激光相机将图像摄下。
【思考】CT机的工作程序是什么?根据人体不同组织对X射线吸收程度的不同,运用灵敏度极高的仪器对人体进行检查,然后将检查所获取的数据输入计算机,由计算机对数据进行处理,得到不同组织的吸收值,从而得到人体被检查部位的各断层的图像,进而发现体内任何部位的细小病变。
CT图像的显示CT图像是由一定数目的由黑到白不冋灰度小方块(像素)按矩阵排列所构成的。
沪科版数学七年级上册:第3章 一次方程与方程组 复习课件(30张PPT)
►考点三 一次方程与方程组的应用
例 4 [2012·铁岭] 为奖励在文艺汇演中表现突出的同学, 班主任派生活委员小亮到文具店为获奖同学购买奖品。小 亮发现,如果买 1 个笔记本和 3 支钢笔,则需要 18 元; 如果买 2 个笔记本和 5 支钢笔,则需要 31 元。求购买每 个笔记本和每支钢笔各多少元?
2.已知等式 3a=2b+5,则下列等式中不一 定成立的是(C ) A.3a-5=2b B.3a+1=2b+6
C.3ac=2bc+5 D.a=23b+53
3.下列结论错误的是( D) A.若 a=b,则 a-c=b-c B.若 a=b,则c2+a 1=c2+b 1 C.若 x=2,则 x2=2x D.若 ax=bx,则 a=b
►考点二 二元一次方程组的解法
例 2 用代入法解方程组: 3x-y=7, 5x+2y=8.
解:35xx- +y2=y=7,8.②① 由①,得 y=3x-7,③ 把③代入②,得 5x+2(3x-7)=8 解得 x=2。把 x=2 代入③, 得 y=-1,即xy==-2,1.
[解析] 观察两个方程系数的特点,可以发现方程 3x-y=7 中的 y 的系数是-1,所以选择方程 3x-y =7 变形比较简便。
第3章 一次方程与方程组 复习课件
第3章复习(一)
知识归纳
1.方程的有关概念
(1)方程:含有未知数的 等式 就叫做方程。 (2)一元一次方程:只含有 一 个未知数(元), 未知数的次数都是 1 ,这样的整式方程叫做一元
一次方程。
(3)二元一次方程:含有 两 个未知数,并且
未知数的次数都是 1 的整式方程叫二元一次
A.5 B.4 C.3 D.2
6.关于 x 的方程13x+2=-16(4x+m)的解是-161,则(m-
沪科版数学教材目录(新)
沪科版数学七年级上册(新)第1章有理数1.1正数和负数1.2数轴、相反数和绝对值1.3有理数的大小1.4有理数的加减1.5有理数的乘除1.6有理数的乘方1.7近似数本章复习与测试第2章整式加减2.1 代数式2.2 整式加减本章复习与测试第3章一次方程与方程组3.1一次方程及其解法3.2一次方程的应用3.3二元一次方程及其解法3.4二元一次方程组的应用3.5三元一次方程组及其解法3.6综合与实践一次方程组与CT技术本章复习与测试第4章直线与角4.1 几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角4.5 角的比较与补(余)角4.6 用尺规作线段与角本章复习与测试第5章数据的收集与整理5.1 数据的收集5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践水资源良妃现象的调差本章复习与测试沪科版数学七年级下册(新)第6章实数6.1 平方根、立方根6.2 实数本章复习与测试第7章一元一次不等式与不等式组7.1 不等式及其基本性质7.2 一元一次不等式7.3 一元一次不等式组本章复习与测试第8章整式乘法与因式分解8.1 幂的运算8.2 整式乘法8.3 完全平方公式与平方差公式8.4 因式分解8.5 综合实践纳米材料的奇异特性本章复习与测试第9章分式9.1 分式及其基本性质9.2 分式的运算9.3 分式方程第10章相交线、平行线与平移10.1 相交线10.2 平行线的运算10.3 平行线的性质10.4 平移本章复习与测试沪科版数学八年级上册(新)第11章平面直角坐标系11.1 平面内的坐标11.2 图形在坐标系中的平移本章复习与测试第12章一次函数12.1 函数12.2 一次函数12.3 一次函数与二元一次方程12.4 综合实践一次函数模型的应用本章复习与测试第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系13.2 命题与证明本章复习与测试第14章全等三角形14.1 三角形全等14.2 三角形全等的判定本章复习与测试第15章轴对称图形与等腰三角形15.1 轴对称图形15.2 线段的垂直平分线15.3 等腰三角形15.4 角的平分线本章复习与测试沪科版数学八年级下(新)第17章二次根式16.1 二次根式16.2 二次根式的运算本章复习与测试第17章一元二次方程17.1 一元二次方程17.2 一元二次方程的解法17.3 一元二次方程的根的判别式17.4 一元二次方程的根与系数的关系17.5 一元二次方程的应用本章复习与测试第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理本章复习与测试第19章四边形19.1 多边形内角和19.2 平行四边形19.3 矩形、菱形、正方形19.4 综合实践多边形的镶嵌本章复习与测试第20章数据的初步分析20.1 数据的频数分布20.2 数据的集中趋势与离散程度20.3 综合与实践体重指数本章复习与测试沪科版数学九年级上册(新)第21章二次函数与反比例函数21.1 二次函数21.2 二次函数的图像和性质21.3 二次函数与一元二次方程21.4 二次函数的应用21.5 反比例函数21.6 综合实践获取最大利润本章复习与测试第22章相似形22.1 比例线段22.2 相似三角形的判定22.3 相似三角形的性质22.4 图形的位似变换22.5 综合实践测量与误差本章复习与测试第23章解直角三角形23.1 锐角三角函数23.2 解直角三角形及其应用本章复习与测试沪科版数学九年级下册(新)第24章圆24.1 旋转24.2 圆的基本性质24.3 圆周角24.4 直线与圆的位置管你西24.5 三角形的内切圆24.6 正多边形与圆24.7 弧长与扇形面积24.8 综合实践进球线路与最佳射门角本章复习与测试第25章投影与视图25.1 投影25.2 三视图本章复习与测试本章复习与测试第26章概率初步26.1 随机事件26.2 等可能情形下的概率计算26.3 用频率估计概率26.4 综合实践概率在遗传学中的应用本章复习与测试。
沪教版七年级数学上册电子书
沪教版七年级数学上册电子书第1章有理数
1.1 正数和负数
1.2 数轴
1.3 有理数的大小
1.4 有理数的加减
1.5 有理数的乘除
1.6 有理数的乘方
1.7 近似数
第2章整式加减
2.1 代数式
2.2 整式加减
第3章一次方程与方程组
3.1一元一次方程及其解法
3.2一元一次方程组的应用
3.3二元一次方程组及其解法
3.4二元一次方程组的应用
3.5三元一次方程组的应用
3.6一次方程组与CT课件
第4章直线与角
4.1几何图形
4.2线段、射线、直线
4.3线段的长短比较
4.4角
4.5角的比较与补(余)角4.6用尺规作线段与角
第5章数据收集与整理
5.1数据的收集
5.2数据的整理
5.3用统计图描述数据
5.4综合与实践浪费水资源现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h 3.6 综合与实践 一次方程组与CT 技术
【学习目标】
1.了解什么是CT 技术,CT 技术有什么作用.
2.体会CT 技术与一次方程组的关系.
【学习重点】
用一次方程组分析CT 数据.
【学习难点】
CT 技术与一次方程组的关系.
行为提示:创景设疑,帮助学生知道本节课学什么.
情景导入 生成问题
旧知回顾:
1.什么是三元一次方程组,解三元一次方程组基本思路是什么?
答:(1)由三个一次方程组成的含有三个未知数的方程组,叫做三元一次方程组.
(2)解三元一次方程组的基本方法是消元,即通过消元把三元一次方程组转化为二元一次方程组,进而转化为一元一次方程,然后通过回代解得三元一次方程组.
2.写出二元一次方程3x -2y =5的一个正整数解为⎩⎪⎨⎪⎧x =3,y =2.
说明:求二元一次方程组的正整数解,要考虑x 、y 均为正整数的情况.
行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.
行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目
和组内演练的时间.自学互研 生成能力
知识模块一 二元一次方程组的正整数解
1.小赵要把面额是20元的人民币换成零钱,现在只有5元和1元两种面额的人民币可供选择,那么他换零钱的不同方法有( B )
A .4种
B .5种
C .6种
D .7种
h 2.方程x +2y =7的所有自然数解是⎩⎪⎨⎪⎧x =1,y =3,⎩⎪⎨⎪⎧x =3,y =2,⎩⎪⎨⎪⎧x =5,y =1,⎩⎪⎨⎪⎧x =7,y =0. 3.求二元一次方程3x +2y =15的正整数解.
解:⎩⎪⎨⎪⎧x =1,y =6,⎩
⎪⎨⎪⎧x =3,y =3. 知识模块二 一次方程组在实际生活中的应用
1.有甲、乙、丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需150元.
2.已知甲、乙、丙三人各有一些钱,其中甲的钱是乙的2倍,乙比丙多1元,丙比甲少11元,则三人的钱共有( D )
A
.30元 B .33元
C .36元
D .39元
3.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播一次收费0.6万元,30秒广告每播一次收费1万元.若要求每种广告播放不少于2次.问:
(1)两种广告的播放次数有几种安排方式?
(2)电视台选择哪种方式播放收益较大?
解:(1)设15秒广告插播x 次,30秒广告插播y 次,可得15x +30y =120,x ≥2,y ≥2,且x ,y 为正整
数.可得⎩
⎪⎨⎪⎧x =2,y =3,⎩⎪⎨⎪⎧x =4,y =2; (2)第一种收益为2×0.6+3×1=4.2,第二种收益为4×0.6+2×1=4.4,第二种收益较大.
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 二元一次方程组的正整数解
知识模块二 一次方程组在实际生活中的应用
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.困惑:________________________________________________________________________
欢迎您的下载,资料仅供参考!。