多级低通有源滤波器的设计考虑因素

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多级低通有源滤波器的设计考虑因素

2010年10月27日 11:03 本站整理作者:佚名用户评论(0)

关键字:有源滤波器(13)

概要

常见的多级低通有源滤波器的增益排序方法是把大部分乃至全部增益放在第一级。如果只考虑要降低低频的输入参考噪声,这是正确的设计方法。然而,其它的几种考虑因素可能会使您改变这种增益排序,以实现更为出色的实施方案。这些需要考虑因素包括:每级特征频率范围内的噪声峰值效应、高 Q 值高增益级的过冲导致压摆范围受限和/或削波、可靠实施所需的放大器带宽。本文将对上述情况进行描述,为其找出相应实施方案,并对这些方案的效果进行详解。

多级低通有源滤波器的设计考虑因素

每个多级有源滤波器设计人员都不得不为各级 Q 值的排序和每级该分配多少增益之间的折衷而大伤脑筋。如果滤波器的总增益要大于 1,最简单的设计方法就是把大部分乃至全部的增益放在第一级。经过正确分析得出这种方法可以实现最低输入参考点噪声(当噪声频率远低于滤波器特性频率时)。另外,对于标准的多极点设计,需要从低到高布置一系列的 Q 值。在哪里布置 Q 值最高的一级是一个非常重要的考虑因素,实际上也是实施方案成功与否的关键。这些 Q 值最高的一级会出现最高的输出噪声峰值,也是最有可能导致压摆范围受限和/或者削波的阶跃响应过冲的地方。许多设计工具把这一级放在最前面,这恰与将大多数增益放在第一级的目标相冲突。有些设计工具则把大多数增益放在最后一级,结果导致噪声峰值远远超过必要水平,增大了滤波器输出的整体噪声。某些设计工具则采用折中方法,把 Q 值最高的一级放在中间(针对 4 阶以上而言),这种方法似乎非常适用于某些应用。欢迎转载,本文来自电子发烧友网( )

在采用有自身性能限制的真实部件来真正构建这些滤波器时,上述的考虑就不再是纸上谈兵。使用一种近期开发的在线设计工具(参考资料 1),可以开发出多种能够实现相同目标频率响应的案例。在选择不同的增益和 Q 值排序的情况下,它们的阶跃响应、噪声以及要求的放大器性能裕量会大相径庭。

当然,只有在设计的低频通带总增益大于 1 的情况下才需要考虑增益排序。尽管增益和 Q 值排序问题也适用于多级反馈(MFB) 或无穷大增益拓扑,这里将使用 Sallen Key 滤波器 (SKF) 来说明问题和结果。有资料显示特定 SKF 级实现的增益是受限的(参考资料 2)。这只在阻容解决方案受到某些其它限制时才会出现。一般假设需要等电容设计,实际上这将限制每级可实现的最小增益。然而,对于板级实施方案来说,等电容假设是人为的,可能对于针对集成的设计流程更有用处。这里的设计不局限于等阻或是等容,让设计可以实现通带内任何需要的增益。不过,需要注意的是,随着增益的增加,这会加剧滤波器对组件变化和增益变化的灵敏度。一级增益的增加要求该级用于设置滤波器和增益的阻容元件具有更小的阻容容差。当然现在已经可以提供这样的元件。

参考资料 1 的设计流程倾向于增大电阻,让电阻产生的噪声与运算放大器固有噪声相比可忽略不计。同时设置 1/R2C2 极点,使之降低滤波器级的内部噪声增益峰值(图 1)

图1. 基本的 SKF 二阶低通滤波器

在各级增益分配中对要求的运算放大器带宽的考虑

图 1 所示的设计要成功实施,必须估算出最低的放大器闭环带宽。通常,如果要求放大器带宽乘数是目标 Fo 的 100 倍到 200 倍,就比较容易实现。更为复杂的设计会根据该级增益和目标 Q 值来计算目标带宽,从而得到放大器带宽随 Fo 和 Q 值变化而变化的理想灵敏度。

带宽乘数计算随 Q 值变化(在给定增益下)的示例见图 2。该图显示的是图 1 电路的放大器带宽与 Fo 之比,其目的是提供恰好足够的放大器带宽,实现高精度的滤波器实施方案,从而在带宽变化为 15% 的情况下,Fo 变化不超过 2%(参考资料 3)。使用带宽裕量高于本设计的放大器当然是可以的,不过本设计的目的是降低成功设计的门槛。

图 2. 所需的运算放大器带宽与增益和 Q 值的关系

要注意的是,本图重点强调带宽。这样可以使用电流反馈放大器 (CFA) 或电压反馈放大器 (VFA) 器件来实现 SKF 拓扑。CFA 器件在一定的增益范围内,能够保持恒定的闭环带宽,故特别适合用于实现高增益。本图(根据参考资料 1 的算法得出)在这个方面表现得特别明显。举例来说,在增益为 2,Q 值为 0.5 的情况下,它只需要 7 倍的带宽裕量。在 25 倍带宽裕量下,增益可以达到10,Q 值达到 4.5。这些相对适度的设计裕量允许使用更多种类的物理器件来实现特定的滤波器标准,但需要使用某些支持该带宽的可以调整组件的算法,才能达成滤波器的设计标准。采用理想等式来计算阻容值的设计流程需要放大器带宽具有更大的裕量。

若使用 VFA 器件,需要进行如下修正:将每个数据点与增益相乘,得到所需的增益带宽积与 Fo 的比例。如图 3所示,所有的曲线都上移并展开。

图 3. 给定增益条件下所需的带宽增益积与 Q 值参数

这里我们可以开始研究使用 VFA 器件构建的简单二阶 SKF 实现更高 Q 值和更高放大级增益所需的某些极端乘数。举例来说,如果增益为 10、Q 值为 1,本曲线说明我们需要增益带宽积至少为 215xFo 的放大器。在 Fo 为 1KHz 时,这个要求并不难实现。但是如果 Fo 大于 1MHz,就会比较困难。这就是为什么具有级增益的更高速 SKF 倾向于使用 CFA 运算放大器的原因。

设计一款实用、分立式运算放大器的多级有源滤波器要求每一级的带宽只要满足本级的需要即可。一般来说,过大的带宽裕量是有代价的,或会增加功耗,或会增加购买成本。此外,在各级的带宽和压摆率要求能够保持在大致相当的范围内的条件下,还可以使用由统一基础放大器型号构成的多通道器件来实现多级滤波器。在理想条件下,可以通过在图 2 或者图 3 上画一条水平线来获得完全相同的带宽要求,然后使用水平线与参数曲线的交叉点来设置每一级的增益和 Q 值。然而,由此引申的更加直观的解读足以满足我们的需要。这些曲线明确地说明,随着一级 Q 值或者 Fo 的增加,该级分配的增益应该减少。除了Butterworth 滤波器的每一级Fo 值都相等,其他滤波器在大于三阶的情况下,每级的 Fo 都会发生变化。多数典型的低通滤波器的形态是 Fo随 Q 值增大。这使所需放大器的带宽受到的影响大于图2和图3中显示的Q 值相关性的影响(如图 2 和图 3 所示),但这种影响很大程度上要取决于所选择的特定滤波器的形状。

下面将举例说明这种影响。以一个六阶、0.5 度等纹波相位低通滤波器为例。该滤波器 Fcutoff 为200KHz,总体增益为 10。我们首先采用增益逐级递增, Q 值逐级递减的方法,然后采用反向操作,增益逐级递减的方法,然后将每种方法估算的最低放大器带宽和增益带宽积记录在表格里。后者对是否只能对这些级采用 VFA 非常重要。该滤波器形状在输出端具有非常出色的低过冲阶跃响应,但在滤波器内部各级会产生一定程度的振铃和过冲现象。

图 4 所示的设计按照参考资料 1 的思路,共分为三级。Q 值最高的一级放在第一级,增益最低;中间一级 Q 值略低,增益略比第一级大;最后一级 Q 值最低,增益最大。可见从左到右 Fo 逐渐减小,增益逐渐变大。

相关文档
最新文档