《创新设计·高考一轮总复习》数学 立体几何 第1讲
高考数学(理科)一轮复习课件:立体几何 第1节 空间几何体的结构、三视图和直观图
答案:B
数学(人教A版 ·理科)(AH)
基础梳理
考点突破
课时训练
4. (2014河北石家庄二检)如图是两个全等的正三角 形.给定下列三个命题:①存在四棱锥,其正视图、侧视 图如图;②存在三棱锥,其正视图、侧视图如图;③存在 圆锥,其正视图、侧视图如图.其中真命题的是 ________.(填正确序号)
2. 如图,直观图所表示的平面图形是( )
A.正三角形
B.锐角三角形
C.钝角三角形
D.直角三角形
数学(人教A版 ·理科)(AH)
基础梳理
考点突破
课时训练
解析:由直观图中,A′C′∥y′轴,B′C′∥x′轴, 还原后原图AC∥y轴,BC∥x轴. 直观图还原为平面图是 所以△ABC是直角三角形. 故选D. 答案:D
数学(人教A版 ·理科)(AH)
基础梳理
考点突破
课时训练
(1)紧扣结构特征是判断的关键,熟悉 空间几何体的结构特征,依据条件构建几何模型,在条件 不变的情况下,变换模型中的线面关系或增加线、面等基 本元素,然后再依据题意判定.
(2)通过反例对结构特征进行辨析,即要说明一个命题 是错误的,只要举出一个反例即可.
提示:不一定成立,如图所示几何体有两个面互相平 行,其余各面都是平行四边形,但不是棱柱.
数学(人教A版 ·理科)(AH)
基础梳理
考点突破
课时训练
2.旋转体的形成
几何体 圆柱
圆锥
圆台 球
旋转图形 矩形
直角三角形
直角梯形 半圆
旋转轴
矩形一边所在的直线
一直角边 所在的直 线
直角腰 所在的直线 直径 所在的直线
数学(人教A版 ·理科)(AH)
2019版-创新设计-高考总复习-数学-人教A版-理科-第八章-第1节
法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又 V 圆柱=π×32×10=90π,∴45 π<V 几何体<90π.观察选项可知只有 63π符合. 答案 B
5.正△AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是 ________.
解析 画出坐标系 x′O′y′,作出△OAB 的直观图 O′A′B′(如图).D′为 O′A′的中点.易知 D′B′=12DB(D 为 OA 的中点),∴S△O′A′B′=12× 22S△OAB= 42× 43a2=166a2.
解析 由直观图知,俯视图应为正方形,又上半部分相邻两曲面的交线为可见线, 在俯视图中应为实线,因此,选项B可以是几何体的俯视图. 答案 B
命题角度2 由三视图判断几何体
【例2-2】 (1)(2014·全国Ⅰ卷)如图,网格纸的各小格都是正
方形,粗实线画出的是一个几何体的三视图,则这个几何体
是( )
4.直观图 空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z 轴两两垂直,直观图中,x′轴、y′轴的夹角为_4_5_°__(_或__1_3_5_°__)_,z′轴与x′轴、y′轴所 在平面__垂__直__. (2)原图形中平行于坐标轴的线段,直观图中仍分别__平__行__于___坐标轴.平行于x轴 和z轴的线段在直观图中保持原长度_不__变___,平行于y轴的线段长度在直观图中变 为原来的__一__半__.
(2)由三视图可知,该几何体是半个圆锥和一个三棱锥的组合体,半圆锥的底面半径
为 1,高为 3,三棱锥的底面积为12×2×1=1,高为 3. 故原几何体体积为:V=12×π×12×3×13+1×3×13=π2 +1. 答案 (1)B (2)A
2021届高考数学人教版一轮创新课件:第7章+第1讲 空间几何体的结构及其三视图和直观图
第七章 立体几何
第1讲 空间几何体的结构及其三视图和直观图
[考纲解读] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
2.能画出简单空间几何体的三视图,并能根据三视图识别几何体,会用斜二测画法画出它们的直观图.(重点、难点)
[考向预测] 从近三年高考情况来看,本讲一直是高考的重点内容之一.预测2021年会一如既往地进行考查,以三视图和直观图的联系与转化为主要命题方向,考查题型有:①根据三视图还原几何体;②根据几何体求体积.试题以客观题形式呈现,难度一般不大,属中档题.
1基础知识过关PART ONE
平行
相等
平行
平行且相等一点
一点
平行四边形三角形梯形
垂直
一点一点
圆矩形等腰三角形等腰梯形
斜二测画法
垂直
平行于坐标轴
不变
一半
正侧俯
正侧正俯侧俯
答案
2经典题型冲关PART TWO
题型一 空间几何体的结构特征
答案
解析
解析
解析
解析
答案
答案
3课时作业PART THREE。
创新设计高考数学北师大理科一轮复习练习:第章 立体几何 第讲 含答案
基础巩固题组 (建议用时:40分钟)一、选择题1.(2016·景德镇模拟)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010B.15C.31010D.35解析 以D 为坐标原点,建立空间直角坐标系,如图, 设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),E (1,0,1),D 1(0,0,2).所以BE →=(0,-1,1),CD 1→=(0,-1,2), 所以cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →|·|CD 1→|=32×5=31010. 答案 C2.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC →1,N 为B 1B的中点,则|MN →|为( )A.216aB.66aC.156aD.153a解析 以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A ( a ,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ), ∵点M 在AC 1上且AM →=12MC →1,(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3.得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216 a . 答案 A3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22解析 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1, 则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=⎝ ⎛⎭⎪⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎨⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎨⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧ y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23. 答案 B4.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且 SO =OD ,则直线BC 与平面P AC 所成的角是( ) A.30°B.45°C.60°D.90°解析 如图,以O 为原点建立空间直角坐标系O -xyz . 设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2.则CA→=(2a ,0,0),AP →=⎝ ⎛⎭⎪⎫-a ,-a 2,a 2, CB→=(a ,a ,0),设平面P AC 的一个法向量为n ,设n =(x ,y ,z ),则⎩⎨⎧n ·CA →=0,n ·AP →=0,解得⎩⎪⎨⎪⎧x =0,y =z ,可取n =(0,1,1),则 cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12, ∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°. 答案 A5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0), 设平面A 1BD 的法向量 n =(x ,y ,z ),则⎩⎨⎧n ·DA 1→=0,n ·DB →=0,∴⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.答案 D 二、填空题6.(2016·郑州模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为__________.解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z )为平面A 1BC 1的法向量.则n ·A 1B →=0,n ·A 1C 1→=0,即⎩⎪⎨⎪⎧2y -z =0,-x +2y =0,令z =2,则y =1,x =2,于是n =(2,1,2),D 1C 1→=(0,2,0)设所求线面角为α,则sin α=| cos 〈n ,D 1C 1→〉|=13. 答案 137.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为________. 解析 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝⎛⎭⎪⎫0,0,32,B ⎝ ⎛⎭⎪⎫0,-12,0, D ⎝ ⎛⎭⎪⎫32,0,0.∴OA →=⎝ ⎛⎭⎪⎫0,0,32,BA →=⎝⎛⎭⎪⎫0,12,32,BD→=⎝ ⎛⎭⎪⎫32,12,0. 设平面ABD 的法向量为n =(x 0,y 0,z 0),则BA→·n =0,且BD →·n =0,∴y 02+32z 0=0,且32x 0+y 02=0,因此⎩⎪⎨⎪⎧y 0=-3z 0,y 0=-3x 0,取x 0=1,得平面ABD 的一个法向量n =(1,-3,1), 由于OA→=⎝⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量, ∴ cos 〈n ,OA →〉=55,∴ sin 〈n ,OA →〉=255.答案 25 58.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是__________.解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案 60° 三、解答题9.(2015·安徽卷)如图所示,在多面体A 1B 1D 1-DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D -B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D 面A 1DE ,B 1C 面A 1DE ,于是B 1C ∥面A 1DE .又B 1C面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.10.如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE , ∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2. (1)证明:DE ⊥平面ACD ; (2)求二面角B -AD -E 的大小.(1)证明 在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC , 又平面ABC ⊥平面BCDE ,平面ABC ∩平面BCDE =BC ,AC 平面ABC ,从而AC ⊥平面BCDE ,又DE 平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,DC ∩AC =C ,从而DE ⊥平面ACD . (2)解 以D 为原点,分别以射线DE ,DC 为x 轴,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示. 由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2), B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2),可算得AD→=(0,-2,-2),AE →=(1,-2,-2),DB →=(1,1,0),由⎩⎪⎨⎪⎧m ·AD →=0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·BD →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n = (1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33·2=32,由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.能力提升题组 (建议用时:20分钟)11.(2016·西安质检)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55B.53C.255D.35解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. 答案 A12.在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15B.255C.55D.25解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴, z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1. ∴P A →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1. 设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·DE →=0,n ·DF →=0得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线P A 与平面DEF 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=55,∴直线P A 与平面DEF 所成角的正弦值为55. 答案 C13.(北师大选修2-1P47习题改编)如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__________. 解析 ∵CD →=CA →+AB →+BD →, ∴|CD →|=(CA→+AB →+BD →)2=36+16+64+2CA →·BD→=116+2CA →·BD→=217.∴CA →·BD →=|CA →|·|BD →|· cos 〈CA→,BD →〉=-24. ∴ cos 〈CA→,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补, ∴所求的二面角为60 °. 答案 60 °14.(2015·广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且AF =2FB ,CG =2GB . (1)证明:PE ⊥FG ;(2)求二面角P -AD -C 的正切值; (3)求直线P A 与直线FG 所成角的余弦值.解 在△PCD 中,∵E 为CD 的中点,且PC =PD ,∴PE ⊥CD .又∵平面PCD ⊥平面ABCD ,且平面PCD ∩平面ABCD =CD ,PE 平面PCD ,∴PE ⊥平面ABCD ,取AB 的中点H ,连接EH , ∵四边形ABCD 是长方形,则EH ⊥CD ,如图所示,以E 为原点,EH ,EC ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,∵PD =PC =4,AB =6,BC =3,AF =2FB ,CG =2GB ,∴E (0,0,0),P (0,0,7),F (3,1,0),G (2,3,0),A (3,-3,0),D (0,-3,0),C (0,3,0). (1)证明 ∵EP→=(0,0,7),FG →=(-1,2,0), 且EP →·FG →=(0,0,7)·(-1,2,0)=0, ∴EP→⊥FG →,即EP ⊥FG . (2)∵PE ⊥平面ABCD ,∴平面ABCD 的法向量为EP →=(0,0,7).设平面ADP 的一个法向量为n =(x 1,y 1,z 1), AP→=(-3,3,7),DP →=(0,3,7), 由于⎩⎪⎨⎪⎧AP →·n =0,DP →·n =0,即⎩⎨⎧-3x 1+3y 1+7z 1=0,3y 1+7z 1=0,令z 1=3,则x 1=0,y 1=-7,∴n =(0,-7,3).由图可知二面角P -AD -C 是锐角,设为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪n ·EP →|n ||EP →|=3747=34,∴sin α=74,tan α=73.(3)∵AP →=(-3,3,7),FG →=(-1,2,0),设直线P A 与直线FG 所成角为θ, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AP →·FG →|AP →||FG →|=3+69+9+7×5=9525,95∴直线P A与FG所成角的余弦值为25.。
2021届高考数学一轮复习第1讲空间几何体的结构及其三视图和直观图创新教学案(含解析)
第1讲 空间几何体的结构及其三视图和直观图[考纲解读] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间几何体的三视图,并能根据三视图识别几何体,会用斜二测画法画出它们的直观图.(重点、难点)[考向预测] 从近三年高考情况来看,本讲一直是高考的重点内容之一.预测2021年会一如既往地进行考查,以三视图和直观图的联系与转化为主要命题方向,考查题型有:①根据三视图还原几何体;②根据几何体求体积.试题以客观题形式呈现,难度一般不大,属中档题.1.多面体的结构特征 名称棱柱棱锥棱台图形底面 互相□01平行且□02相等 多边形互相□03平行 侧棱 □04平行且相等 相交于□05一点,但不一定相等延长线交于□06一点 侧面 形状□07平行四边形 □08三角形 □09梯形 2.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等, □01垂直于底面 相交于□02一点 延长线交于□03一点 —轴截 面全等的□04矩形 全等的□05等腰三角形 全等的□06等腰梯形□07圆3.直观图(1)画法:常用□01斜二测画法. (2)规则①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴与y ′轴的夹角为45°(或135°),z ′轴与x ′轴(或y ′轴)□02垂直. ②原图形中平行于坐标轴的线段,直观图中仍□03平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度□04不变,平行于y 轴的线段的长度在直观图中变为原来的□05一半. 4.三视图(1)几何体的三视图包括□01正视图、□02侧视图、□03俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:□04正侧一样高,□05正俯一样长,□06侧俯一样宽;看不到的线画虚线.1.概念辨析(1)棱柱的侧棱都相等,侧面都是全等的平行四边形.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)棱台各侧棱的延长线交于一点.( )(4)夹在圆柱的两个平行截面间的几何体还是旋转体.( ) 答案 (1)× (2)× (3)√ (4)× 2.小题热身(1)如图所示,在三棱台A ′B ′C ′-ABC 中,沿A ′BC 截去三棱锥A ′-ABC ,则剩余的部分是( )A .三棱锥B .四棱锥C .三棱柱D .组合体答案 B解析 剩余的部分是四棱锥A ′-B ′C ′CB .(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )答案 A解析由斜二测画法的原理可知.(3)若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4答案 D解析由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.(4)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案五棱柱三棱柱题型一空间几何体的结构特征下列结论正确的个数是________.①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱;②棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;③有两个平面互相平行,其余各面都是梯形的多面体是棱台;④直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;⑤若在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线.答案0解析①③④错误,反例见下面三个图.②错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.⑤错误,平行于轴的连线才是母线.识别空间几何体的两种方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析,要说明一个结论是错误的,只要举出一个反例即可.(2019·青岛模拟)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1C.2 D.3答案 B解析由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③错误.题型 二 空间几何体的直观图(2019·桂林模拟)已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2 D.616a 2 答案 D解析 如图(1)所示的是△ABC 的实际图形,图(2)是△ABC 的直观图.由图(2)可知A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图(2)中作C ′D ′⊥A ′B ′于点D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. 条件探究 将本例中的条件变为“△ABC 的直观图△A 1B 1C 1是边长为a 的正三角形”,则△ABC 的面积为________.答案62a 2解析 如图(1)所示的是△ABC 的直观图,图(2)是△ABC 的实际图形.在图(1)中作C 1D 1∥y 1轴,交x 1轴于点D 1,在图(2)中作CD ⊥x 轴,交x 轴于点D ,设C 1D 1=x ,则CD =2x .在△A 1D 1C 1中,由正弦定理a sin45°=x sin120°,得x =62a ,∴S △ABC =12AB ·CD =12×a ×6a =62a 2.用斜二测画法画直观图的技巧(1)在原图形中与x 轴或y 轴平行的线段在直观图中仍然与x ′轴或y ′轴平行. (2)原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.(3)原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点,然后用平滑曲线连接.(2019·福州调研)已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.答案22解析 如图所示,图(1)是等腰梯形ABCD 的实际图形,O 为AB 的中点,图(2)是等腰梯形ABCD 的直观图.在图(2)中作E ′F ⊥x ′轴,交x ′轴于F , 因为OE =22-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.题型 三 空间几何体的三视图角度1 已知几何体识别三视图1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )答案 A解析观察图形易知卯眼处应以虚线画出,俯视图为,故选A.角度2 已知三视图还原几何体2.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.217 B.2 5C.3 D.2答案 B解析根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.角度3 已知三视图中的部分视图,判断其他视图3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为( )A.12B.22C.24D.14答案 D解析由三棱锥C-ABD的正视图、俯视图得三棱锥C-ABD的侧视图为直角边长是22的等腰直角三角形,其形状如图所示,所以三棱锥C -ABD 的侧视图的面积为14.三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,AB =BC =AA 1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )答案 C解析 由直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B ,D ,又正视图中点D 1的射影是B 1,侧棱BB 1是看不见的,在正视图中用虚线表示,所以正视图是C 中的图形.故选C.2.(2019·河北衡水中学调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点,用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )答案 C解析如图所示,过点A,E,C1的截面为AEC1F,则剩余几何体的侧视图为C中的图形.3.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3C.2 2 D.2答案 B解析在正方体中还原该四棱锥,如图所示,可知SD为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD=22+22+22=2 3.故选B.组基础关1.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④答案 A解析由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.2.如图,直观图所表示的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图可知,其表示的平面图形△ABC中AC⊥BC,所以△ABC是直角三角形.3.日晷是中国古代利用日影测得时刻的一种计时工具,又称“日规”.通常由铜制的指针和石制的圆盘组成,铜制的指针叫做“晷针”,垂直地穿过圆盘中心,石制的圆盘叫做“晷面”,它放在石台上,其原理就是利用太阳的投影方向来测定并划分时刻.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久.上图是一位游客在故宫中拍到的一个日晷照片,假设相机镜头正对的方向为正方向,则根据图片判断此日晷的侧视图可能为( )答案 D解析因为相机镜头正对的方向为正方向,所以侧视图中圆盘为椭圆,指针上半部分为实线,下半部分为虚线,故选D.4.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )答案 D解析由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.(2019·四川省南充高中模拟)在正方体中,M,N,P分别为棱DD1,A1D1,A1B1的中点(如图),用过点M,N,P的平面截去该正方体的顶点C1所在的部分,则剩余几何体的正视图为( )答案 B解析由已知可知过点M,N,P的截面是过正方体棱BB1,BC,CD的中点的正六边形,所以剩余几何体如图所示,其正视图应是选项B.7.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8 B.7C.6 D.5答案 C解析画出直观图可知,共需要6块.8.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是________(填出所有可能的序号).答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现的投影为④的情况.9.(2019·福州质检)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则此几何体各面中直角三角形的个数是________.答案 4解析由三视图可得该几何体是如图所示的四棱锥P-ABCD,由图易知四个侧面都是直角三角形,故此几何体各面中直角三角形有4个.10.如图,一立在水平地面上的圆锥形物体的母线长为 4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 2 m ,则圆锥底面圆的半径等于________ m.答案 1解析 把圆锥侧面沿过点P 的母线展开成如图所示的扇形, 由题意知OP =4 m ,PP ′=4 2 m ,则cos ∠POP ′=42+42-4222×4×4=0,且∠POP ′是三角形的内角,所以∠POP ′=π2.设底面圆的半径为r cm ,则2πr =π2×4,所以r =1.组 能力关1.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,cC .c ,bD .b ,d答案 A解析 当正视图和侧视图均为圆时,有两种情况,一种正视图为a ,此时俯视图为b ;另一种情况的正视图和俯视图如下图所示.故选A.2.一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A .8B .4C .4 3D .4 2答案 D解析 由三视图可知该几何体的直观图如图所示,由三视图特征可知,PA ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,PA =AB =AC =4,DB =2,则易得S △PAC =S △ABC =8,S △CPD =12,S梯形ABDP=12,S △BCD =12×42×2=42,故选D.3.(2020·江西赣州摸底)某几何体的正视图和侧视图如图1,它的俯视图的直观图是矩形O1A1B1C1,如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为( )A.48 B.64C.96 D.128答案 C解析由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y 轴的交点为D,则易知CD=2,OD=2×22=42,∴CO=CD2+OD2=6=OA,∴俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.故选C.4.(2019·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )答案 D解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.所以该三棱锥的侧视图可能为D项.5.(2018·河南郑州质检)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为________.答案64解析由三视图知三棱锥如图所示,底面ABC是直角三角形,AB⊥BC,PA⊥平面ABC,BC=27,PA2+y2=102,(27)2+PA2=x2,因此xy=x102-[x2-272]=x128-x2≤x2+128-x22=64,当且仅当x2=128-x2,即x=8时取等号,因此xy的最大值是64.6.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26 2-1解析先求面数,有如下两种方法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.解法二:一般地,对于凸多面体,顶点数(V)+面数(F)-棱数(E)=2(欧拉公式).由图形知,棱数为48的半正多面体的顶点数为24,故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为半正多面体的棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM=MH=NG=NF=22x.又AM+MN+NF=1,即22x+x+22x=1.解得x=2-1,即半正多面体的棱长为2-1.。
2020高考总复习创新设计数学理科北师大版教师文档第八章 第7节 第1课时
△PBC 均为等边三角形,且二面角 P-BC-A 的大小为 120°,则异面直线 PB 和 AC
答案 C 3.(选修 2-1P46 练习 2 改编)已知向量 m,n 分别是直线 l 和平面 α 的方向向量和
1 法向量,若 cos 〈m,n〉=- ,则 l 与 α 所成的角为( )
2
A.30°
B.60°
C.120°
D.150°
1 解析 由于 cos 〈m,n〉=- ,所以〈m,n〉=120°,所以直线 l 与 α 所成的
答案 45°
考点一 用空间向量求异面直线所成的角 【例 1】 (1)(一题多解)(2017·全国Ⅱ卷)已知直三棱柱 ABC-A1B1C1 中,∠ABC=
120°,AB=2,BC=CC1=1,则异面直线 AB1 与 BC1 所成角的余弦值为( )
3 A.
2
15 B.
5
10 C.
5
3 D.
3
(2)(一题多解)(2019·河北、山西、河南三省联考)在三棱锥 P-ABC 中,△ABC 和
=.
3×1 3
答案 B
5.(2019·延安联考)在长方体 ABCD-A1B1C1D1 中,AB=3,BC=2,AA1=1,则异
面直线 AB1 与 BC1 所成角的余弦值为________. 解析 建立如图所示的坐标系.
易得 A(2,0,0),B(2,3,0),B1(2,3,1),C1(0,3,1),
2
角为 30°.
答案 A
4.(2018·郑州调研)在正方体 ABCD-A1B1C1D1 中,BB1 与平面 ACD1 所成角的正弦
值为( )
3
3
3
2
A.
B.
创新设计2021届高考数学人教版(理)一轮复习【配套版文档】:第八篇第1讲空间几何体的
第八篇立体几何第1讲空间几何体的结构、三视图和直观图A级||根底演练(时间:30分钟总分值:55分)一、选择题(每题5分,共20分)1.给出以下四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③棱锥的侧棱长与底面多边形的边长相等,那么该棱锥可能是正六棱锥;④长方体一定是正四棱柱.其中正确的命题个数是().A.0 B.1 C.2 D.3解析反例:①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③假设以正六边形为底面,侧棱长必然要大于底面边长,故③中不能组成正六棱锥;④显然错误,应选A.答案 A2.以下关于几何体的三视图的论述中,正确的选项是().A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.答案 A3.(2021·陕西)将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,那么该几何体的侧视图为().解析复原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B ,且为实线,B1C被遮挡应为虚线.答案 B4.(2021·浙江)假设某几何体的三视图如下列图,那么这个几何体的直观图可以是().解析 A ,B的正视图不符合要求,C的俯视图显然不符合要求,答案选D.答案 D二、填空题(每题5分,共10分)5.如下列图,E、F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中|心,那么四边形BFD1E在该正方体的面DCC1D1上的投影是________(填序号).解析B在面DCC1D1上的投影为C,F、E在面DCC1D1上的投影应分别在边CC1和DD1上,而不在四边形的内部,故①③④错误.答案②6.一个几何体的正视图为一个三角形,那么这个几何体可能是以下几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析显然,三棱锥、圆锥的正视图可以是三角形;三棱柱的正视图也可以是三角形(把三棱柱放倒,使一侧面贴在地面上,并让其底面面对我们,如下列图);只要形状适宜、摆放适当(如一个侧面正对着观察者的正四棱锥) ,四棱锥的正视图也可以是三角形(当然,不是任意摆放的四棱锥的正视图都是三角形) ,即正视图为三角形的几何体完全有可能是四棱锥;不管四棱柱、圆柱如何摆放,正视图都不可能是三角形(可以验证,随意摆放的任意四棱柱的正视图都是四边形,圆柱的正视图可以是圆或四边形).综上所述,应填①②③⑤.答案①②③⑤三、解答题(共25分)7.(12分):图a是截去一个角的长方体,试按图示的方向画出其三视图;图b是某几何体的三视图,试说明该几何体的构成.解图a几何体的三视图为:图b所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.8.(13分)圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.解如下列图,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x,那么在轴截面中,正方体的对角面A1ACC1的一组邻边的长分别为x和2x.∵△VA1C1∽△VMN ,∴2x2r=h-xh,∴x=2rh2r+2h.即圆锥内接正方体的棱长为2rh2r+2h.B级||能力突破(时间:30分钟总分值:45分)一、选择题(每题5分,共10分)1.(2021·温州质检)以下列图是一个正方体的展开图,将其折叠起来,变成正方体后的图形是().解析∵在这个正方体的展开图中,与有圆的面相邻的三个面中都有一条直线,当变成正方体后,这三条直线互相平行,∴选B.答案 B2.一个锥体的正视图和侧视图如下列图,下面选项中,不可能是该锥体的俯视图的是().解析选项C不符合三视图中 "宽相等〞的要求.答案 C二、填空题(每题5分,共10分)3.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上正确结论的序号是________.解析由斜二测画法的规那么可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案①4.图(a)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(b)中的三视图表示的实物为________.图(a)图(b)解析(1)由三视图可知从正面看到三块,从侧面看到三块,结合俯视图可判断几何体共由4块长方体组成.(2)由三视图可知几何体为圆锥.答案4圆锥三、解答题(共25分)5.(12分)正四棱锥的高为 3 ,侧棱长为7 ,求侧面上斜高(棱锥侧面三角形的高)为多少?解如下列图,在正四棱锥S-ABCD中,高OS= 3 ,侧棱SA=SB=SC=SD=7 ,在Rt△SOA中,OA=SA2-OS2=2 ,∴AC=4.∴AB=BC=CD=DA=2 2.作OE⊥AB于E ,那么E为AB中点.连接SE ,那么SE即为斜高,在Rt△SOE中,∵OE=12BC= 2 ,SO= 3 ,∴SE= 5 ,即侧面上的斜高为 5.6.(13分)(1)如图1所示的三棱锥的三条侧棱OA、OB、OC两两垂直,那么该三棱锥的侧视图是图2还是图3?(2)某几何体的三视图如图4 ,问该几何体的面中有几个直角三角形?(3)某几何体的三视图如图5 ,问该几何体的面中有几个直角三角形?解(1)该三棱锥在侧(右)投影面上的投影是一直角三角形,该三棱锥的侧视图应是图2.(2)该几何体是三棱锥,其直观图如下列图,其中OA、OB、OC两两垂直,∴△OAB、△OAC、△OBC都是直角三角形,但△ABC是锐角三角形.设AO=a ,OC=c ,OB=b ,那么AC=a2+c2,BC=c2+b2,AB=a2+b2,∴cos∠BAC=a2a2+b2·c2+a2>0 ,∴∠BAC为锐角.同理,∠ABC、∠ACB也是锐角.综上所述,该几何体的面中共有三个直角三角形.(3)该几何体是三棱锥,其直观图如下列图,其中,AB⊥BC ,AB⊥BD ,BD⊥CD ,∴DC⊥面ABD ,∴DC⊥AD , ∴△ACD也是直角三角形.∴该几何体的面中共有四个直角三角形.。
2021-2022年高考数学一轮复习 第一讲 空间几何体讲练 理 新人教A版
2021年高考数学一轮复习 第一讲 空间几何体讲练 理 新人教A 版一、多面体的结构特征1.棱柱的侧棱都互相平行,上下底面是全等的多边形.2.棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.3.棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形.侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥,特别地,各棱均相等的正三棱锥叫正四面体.反之,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.二、旋转体1、形成3 (1).V 柱体=Sh .(2).V 锥体=13Sh . (3).V 台体=13h (S +SS ′+S ′). (4).V 球=43πR 3(球半径是R ). 求几何体体积的两种重要方法1.割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.2.等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.三、空间几何体的三视图1.三视图的名称 几何体的三视图包括:正视图、侧视图、俯视图. 2.三视图的画法 ①在画三视图时,重叠的线只画一条,挡住的线要画成虚线. ②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图. 四、空间几何体的直观图 空间几何体的直观图常用斜二测画法来画,其规则是1.原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.2.原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中长度为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S 直观图=24S 原图形,S 原图形=22S 直观图. 基础自测1.(xx·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32 B .1 C.2+12D. 2 【解析】 由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.【答案】 D2.(xx·陕西高考)某几何体的三视图如图7-2-2所示,则其表面积为________.图7-2-2【解析】 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π. 【答案】 3π3.(xx·辽宁高考)某几何体的三视图如图7-2-3所示,则该几何体的体积是________.图7-2-3【解析】 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.考点一空间几何体的三视图例(xx·四川高考)一个几何体的三视图如图7-1-4所示,则该几何体的直观图可以是( )图7-1-4【解析】由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,可得选项D.【答案】 D空间几何体的三视图问题的求解关键(1)形状的确定:三视图与空间几何体的相互转化是解决这类问题的常用方法.(2)大小的确定:根据三视图的大小可确定几何体的大小,由几何体的大小也可确定出三视图的大小.考点二空间几何体的表面积与体积例 1、如图7-2-4是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )图7-2-4A.9πB.10πC.11πD.12π【尝试解答】从题中三视图可以看出该几何体是由一个球和一个圆柱体组合而成的,其表面积为S=4π×12+π×12×2+2π×1×3=12π.故选D.【答案】D方法与技巧 1.解答本题的关键是根据三视图得到几何体的直观图,弄清几何体的组成.2.在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.3.以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.2、[xx·辽宁卷] 某几何体三视图如图12所示,则该几何体的体积为( )图12A .8-π4B .8-π2C .8-πD .8-2π 答案:C [解析] 根据三视图可知,该几何体是正方体切去两个体积相等的圆柱的四分之一后余下的部分,故该几何体体积V =23-12×π×12×2=8-π. 跟踪练习 [xx·天津卷] 一个几何体的三视图如图12所示(单位:m),则该几何体的体积为________m 3.答案:20π3[解析] 由三视图可知,该几何体为圆柱与圆锥的组合体,其体积V =π×12×4+13π×22×2=20π3. 考点三 多面体与球例 [xx·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4 10.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R .又因为△AOE 为直角三角形,所以OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以该球的表面积S =4πR 2=4π⎝ ⎛⎭⎪⎫942=81π4.跟踪练习(xx 新课标全国,5a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 解析:三棱柱如图所示,由题意可知:球心在三棱柱上、下底面的中心O 1、O 2的连线的中点O 处,连接O 1B 、O 1O 、OB ,其中OB 即为球的半径R ,由题意知:O 1B =23×3a 2=3a 3, 所以半径R 2=(a 2)2+(3a 3)2=7a 212, 所以球的表面积是S =4πR 2=7πa 23. 答案:B。
人教版高中数学高考一轮复习--高考中的立体几何(课件 共47张PPT)
∴CA,CB,CC1两两垂直.
以点C为坐标原点, , , 1 分别为x轴、y轴、z轴正方向,建立空间直
角坐标系,如图所示,
则 C(0,0,0),C1(0,0,2),A1(2 3,0,4),E(0,2,4λ).
设平面 A1EC1 的法向量为 n1=(x1,y1,z1),
1 ·1 1 = 0,
3.用向量方法证明面面平行或垂直的方法:α∥β⇔e1∥e2⇔存在实数λ,使
2 ⊥ ,
e2=λe1(e1≠0);α⊥β⇔e1⊥e2⇔e1·e2=0;α∥β⇔
其中α,β为不重合的
2 ⊥ .
两个平面,e1,e2为α,β的法向量,A,B,C为α内不共线的三个点.
例2 如图,CC1⊥平面ABC,平面ABB1A1⊥平面ABC,四边形ABB1A1为正
2
2 2
2 2 2
设平面 PDC 的法向量为 n=(x,y,z),=(-1,0,1), =(-1,1,1),
- + = 0,
· = 0,
则
即
取 n=(1,0,1).
- + + = 0,
· = 0,
1 1
∵n· = 2 − 2=0,∴ ⊥n.
又 EF⊄平面 DCP,∴EF∥平面 DCP.
2 31 + 21 = 0,
则
即
21 + (4-2)1 = 0,
1 ·1 = 0,
3
令 z1=1,则 x1=- ,y1=1-2λ,
3
3
可取 n1= - 3 ,1-2,1 .
设平面 A1EC 的法向量为 n2=(x2,y2,z2),
2 ·1 = 0,
2 32 + 42 = 0,
【三维设计】高考数学一轮复习 第1节 简单几何体及三视图、直观图课件
3.已知图形中平行于x轴的线段,在直观图中保持
原长度不变;平行于y轴的线段,长度为 原来的12 .
四、三视图 1.三视图的特点:主、俯视图 长对正 ,主、左视图
高平齐 ;俯、左视图宽相等 ,前后对应.
2.若相邻两物体的表面相交,表面的交线是它们的 分界线 ,在三视图中, 分界线 和可见轮廓线都用
A.①②③
B.①③
C.①②③④
D.①③④
()
解析:对于命题①,由于BC固定,所以在倾斜的过程中, 始终有AD∥EH∥FG∥BC,且平面AEFB∥平面DHGC, 故水的部分始终呈棱柱状(四棱柱或三棱柱、五棱柱),且 BC为棱柱的一条侧棱,命题①正确.对于命题②,水面 面积可能变大,也可能变小,故②不正确.③是正确 的.④是正确的,由水的体积的不变性可证得.综上所 述,正确命题的序号是①③④.
第 七
第一 节
章
简单
几何
立
体及
体
三视
几 何
图、 直观 图
抓基础 明考向 提能力
教你一招 我来演练
[明考纲•知考情] 考什么
1.认识柱、锥、台、球及其简单组合体的结构特征,并能 运用这些特征描述现实生活中简单物体的结构.
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱 等简易组合)的三视图,能识别上述三视图所表示的立 体模型,会用斜二测画法画出它们的直观图.
答案:D
点击此图进入
答案:D
[冲关锦囊] 几种常见的多面体的结构特征 (1)直棱柱:侧棱垂直于底面的棱柱.特别地,当底面是 正多边形时,叫正棱柱(如正三棱柱,正四棱柱).
(2)正棱锥:底面是正多边形,且顶点在底面的射影是 底面中心的棱锥.特别地,各条棱均相等的正三棱 锥又叫正四面体.
2022届高考数学一轮复习第8章立体几何第1讲空间几何体的结构表面积和体积作业试题2含解析新人教版
第一讲空间几何体的结构、表面积和体积1.[2021合肥市调研检测]表面积为324π的球,其内接正四棱柱(底面是正方形的直棱柱)的高是14,则这个正四棱柱的表面积等于( )2.[2021安徽省四校联考]在三棱锥A-BCD中,△ABC和△BCD都是边长为2的正三角形,当三棱锥A-BCD的表面积最大时,其内切球的半径是( )√2-√6√3 C.√2 D.√663.[2020全国卷Ⅱ,5分]已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为( )A.√3B.32D.√324.[2021安徽省示范高中联考]蹴鞠(如图8-1-1所示),又名“蹋鞠”“蹴球”“蹴圆”“筑球”“踢圆”等,“蹴”有用脚蹴、蹋、踢的含义,“鞠”最早系外包皮革、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家级非物质文化遗产名录.已知某“鞠”表面上的四个点A,B,C,D满足AB=CD=14 cm,BD=AC=8 cm,AD=BC=12 cm,则该“鞠”的表面积为( )图8-1-1A.202πcm2B.101√202π3cm2√202πcm2 D.202π3cm25.[2021湖南六校联考] 如图8-1-2,以棱长为1的正方体的顶点A为球心,以√2为半径作一个球面,则该正方体的表面被球面所截得的所有弧的长之和为( )图8-1-2A.3π4B.√2π C.3π2D.9π46.[2020成都市高三模拟]若矩形ABCD的对角线交点为O',周长为4√10,四个顶点都在球O 的表面上,且OO'=√3,则球O的表面积的最小值为( )A.32√2π3B.64√2π37.[2020济南市5月模拟][多选题]已知圆锥的顶点为P,母线长为2,底面半径为√3,A,B为底面圆周上的两个不同的动点,则下列说法正确的是( )√3π68.[2021南昌市模拟]已知一个圆锥的轴截面是斜边长为2的等腰直角三角形,则该圆锥的侧面面积为.9.[2021南昌市高三测试]如图8-1-3所示,圆台内接于球,已知圆台上、下底面圆的半径分别为3和4,圆台的高为7,则该球的表面积为.图8-1-310.[2021河南省名校第一次联考]已知P,A,B,C是半径为3的球面上的四点,其中PA过球心,AB=BC=2,AC=2√3,则三棱锥P-ABC的体积是.11.[2021合肥市调研检测]如图8-1-4,在△ABC中,CA=CB=√3,AB=3,D为AB的中点,点F是BC边上异于点B,C的一个动点,EF⊥AB,垂足为E.现沿EF将△BEF折起到△PEF的位置,使PE ⊥AC,则四棱锥P-ACFE的体积的最大值为.图8-1-412.[2021河北六校第一次联考]唐朝的狩猎景象浮雕银杯如图8-1-5(1)所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图8-1-5(2)所示.已知球的半径为R,酒杯内壁表面积为143πR 2,设酒杯上部分(圆柱)的体积为V 1,下部分(半球)的体积为V 2,则V1V 2=图8-1-5A.2B.32 D.3413.[2020陕西省百校联考]四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥底面ABCD,异面直线AC 与PD 所成的角的余弦值为√105,则四棱锥的外接球的表面积为( )14.[2020洛阳市联考]已知三棱锥P-ABC 的四个顶点均在同一个球面上,底面△ABC 满足BA=BC=√6,∠ABC=π2,若该三棱锥体积的最大值为3,则其外接球的体积为( )C.163πD.323π15.[2020合肥市模拟]若圆锥SO 1,SO 2的顶点和底面圆周都在半径为4的同一个球的球面上,两个圆锥的母线长分别为4,4√2,则这两个圆锥重合部分的体积为( )A.83π C.563π D.56+16√33π 16.[2020青岛市质检][多选题]如图8-1-6,已知四棱台ABCD-A 1B 1C 1D 1的上、下底面均为正方形,其中AB=2√2,A 1B 1=√2,AA 1=BB 1=CC 1=DD 1=2,则下列说法正确的是( )图8-1-6 √31⊥CC 117.[多选题]在三棱锥P-ABC 中,AB ⊥BC,P 在底面ABC 上的投影为AC 的中点D,DP=DC=1.则下列结论正确的是( )B.∠PAB 的取值范围是(π4,π2)C.若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π3 D.若AB=BC,E 是线段PC 上一动点,则DE+BE 的最小值为√6+√2218.[2021湖南四校联考]已知三棱锥P-ABC 的顶点P 在底面的射影O 为△ABC 的垂心,若S △ABC ·S △OBC =S△PBC2,且三棱锥P-ABC 的外接球半径为3,则S △PAB +S △PBC +S △PAC 的最大值为 .19.[2021黑龙江省六校阶段联考]正四棱柱ABCD-A 1B 1C 1D 1的外接球O 的半径为2,当该正四棱柱的侧面积最大时,一个质点从A 出发移动到C 1,则沿正四棱柱表面移动的最短距离与直接穿过球O 内部移动的最短距离的比值是 .20.[2020惠州市二调][双空题]已知底面边长为a 的正三棱柱ABC-A 1B 1C 1的六个顶点均在球O 1上,又知球O 2与此正三棱柱的5个面都相切,则球O 1与球O 2的半径之比为 ,表面积之比为 .21.[条件创新]将一个半圆沿它的一条半径剪成一个小扇形和一个大扇形,其中小扇形的圆心角为π3,则小扇形围成的圆锥的高与大扇形围成的圆锥的高之比为( )A.2∶1 B .√70∶8 C.4∶1 D.32∶√7022.[条件创新]已知在三棱锥P-ABC 中,△ABC 的内切圆圆O 的半径为2,PO ⊥平面ABC,且三棱锥P-ABC 的三个侧面与底面所成角都为60°,则该三棱锥的内切球的体积为( )A.32√327πB.8√327π C.16π3D.4π323. [多选题]《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图8-1-7,在鳖臑P-ABC中,PA⊥平面ABC,AB⊥BC,且AB=2.若鳖臑P-ABC外接球的体积为36π,则当该鳖臑的体积最大时,下列说法正确的是( )图8-1-7A.PA=4B.BC=483D.该鳖臑的表面积为8+8√524.[2021云南省部分学校统一检测][探索创新]已知一圆锥底面圆的直径为3,圆锥的高为3√32,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在圆锥内可以任意转动,则a的最大值为.25.[生活实践] 在日常生活中,石子是我们经常见到的材料,比如在各种建筑工地或者建材市场上常常能看到堆积如山的石子.某雕刻师计划在底面边长为2 m,高为4 m的正四棱柱形的石料ABCD-A1B1C1D1中雕出一个四棱锥O-ABCD和球M的组合体(如图8-1-8所示),其中O为正四棱柱的中心,当球的半径r取最大值时,该雕刻师需去除的石料约重kg.(其中π≈3.14,石料的密度ρ=2.4 g/cm3,质量m=ρV,V为体积)图8-1-8答案第一讲空间几何体的结构、表面积和体积1.B 设球的半径为R,由题意知4πR2=324π,解得R=9.如图D 8-1-11为过球心O和底面对角线的正四棱柱的截面,OO'⊥AC,可知OO'=7,OC=9,则O'C=√92-72=4√2,于是正四棱柱的底面对角线长为8√2,则底面边长为8,所以正四棱柱的表面积S=8×8×2+4×8×14=576,故选B.图D 8-1-112.A 三棱锥A-BCD 的表面积S=2√3+S △ABD +S △ACD =2√3+4sin ∠ABD,故当AB ⊥BD 时,S max =4+2√3,如图D 8-1-12,过A 作BC 的垂线,垂足为E,连接ED,易知BC ⊥平面AED,则S△AED =√2,V A-BCD =V B-AED +V C-AED =13×√2×2=2√23,设内切球半径为r,则V A-BCD =13Sr,可得r=2√2-√6.图D 8-1-123.C 由等边三角形ABC 的面积为9√34,得√34AB 2=9√34,得AB=3,则△ABC 的外接圆半径r=23×√32AB=√33AB=√3.设球的半径为R,则由球的表面积为16π,得4πR 2=16π,得R=2,则球心O 到平面ABC 的距离d=√R 2-r 2=1,故选C.4.A 因为AB=CD,BD=AC,AD=BC,所以可以把A,B,C,D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径.设该长方体的长、宽、高分别为x,y,z,“鞠”的半径为R,则(2R)2=x 2+y 2+z 2.由题意可取x 2+y 2=196,x 2+z 2=144,y 2+z 2=64,所以R 2=1012,所以“鞠”的表面积S=4πR 2=202π (cm 2).故选A.5.C 正方体的表面被该球面所截得的弧是相等的三部分,如图D 8-1-13所示,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆的周长的14,所以所求弧的长之和为3×2π4=3π2.故选C.图D 8-1-13√10,所以BC+CD=2√10.设BC=x,则CD=2√10-x,所以BD 2=BC 2+CD 2=x 2+(2√10-x)2,即BD 2=2(x-√10)2+20.设球O 的半径为R,则R 2=(BD2)2+O'O 2=12(x-√10)2+8,所以当x=√10时,R 2取得最小值8,又球O 的表面积S=4πR 2,则S min =32π,故选C.7.ABD 设圆锥底面圆的圆心为O,连接AO,则圆锥的高h=√PA 2-OA 2=√22-(√3)2=1,故选项A 正确;因为圆锥的母线长都相等,所以△PAB 为等腰三角形,故选项B 正确;设弦AB 的长度为2x(0<x ≤√3),弦AB 的中点为D,连接OD,PD,PO,则OD 2=3-x 2,PD 2=PO 2+OD 2=3-x 2+1=4-x 2,于是△PAB 的面积S=12PD ·AB=12√4−x 2·2x=√x 2(4-x 2)≤x 2+4−x 22=2,当且仅当x=√2时取等号,所以△PAB 面积的最大值为2,故选项C 错误;易知∠PAO 就是直线PA 与圆锥底面所成的角,且sin ∠PAO=POPA =12,因此∠PAO=π6,故选项D 正确.8.√2π 因为圆锥的轴截面是斜边长为2的等腰直角三角形,所以圆锥的底面半径r=1,母线长l=√2,所以圆锥的侧面面积S=πrl=√2π.9.100π 过球心O 和圆台上、下底面圆的圆心作截面,设球的半径为R,当圆台的上、下底面圆的圆心在球心的两侧时,则有√R 2-32+√R 2-42=7,解得R=5,故球的表面积S=4πR 2=100π;当圆台的上、下底面圆的圆心在球心的同侧时,则有√R 2-32-√R 2-42=7,此方程无解,故舍去.10.2√153因为AB=BC=2,AC=2√3,所以cos B=AB 2+BC 2-AC 22AB ·BC=-12<0,所以△ABC 为钝角三角形,外心G 位于△ABC 的外部,sin B=√32. 如图D 8-1-14,记三棱锥P-ABC 外接球的球心为O,连接OG,GA,GC,因为PA 过球心,所以O 为PA 的中点.图D 8-1-14根据球的性质,球心与截面圆圆心的连线与截面垂直,所以OG ⊥平面ABC.设△ABC 的外接圆半径为r,由正弦定理可得AC sinB=2r,因此2r=√3√32=4,所以r=2,又OG=√OA 2-GA 2=√32-r 2=√9−4=√5,O 为PA 的中点,所以点P 到平面ABC 的距离为2OG=2√5,因此三棱锥P-ABC 的体积V P-ABC =13S △ABC ·2√5=13×12×2×2×sin B ×2√5=2√153. 11.√24 因为CA=CB,D 为AB 的中点,所以CD ⊥AB,又EF ⊥AB,所以CD ∥EF,由翻折的特征可知EF ⊥PE,所以CD ⊥PE,又PE ⊥AC,AC ∩CD=C,所以PE ⊥平面ACD,则PE 为四棱锥P-ACFE 的高.在Rt △CBD 中,BC=√3,BD=32,则CD=√32,∠B=30°,设EF=x,则BE=PE=√3x,V P-ACFE =13×(12×3×√32-√32x 2)×√3x=-x 32+34x,则V'=-3x 22+34,令V'=0,得x=√22或x=-√22(舍去),当x ∈(0,√22)时,V=-x 32+34x 单调递增,当x ∈(√22,+∞)时,V=-x 32+34x 单调递减,则当x=√22时,V max =√24,故答案为√24.12.A 由球的半径为R,知酒杯下部分(半球)的表面积为2πR 2,由酒杯内壁表面积为143πR 2,得圆柱侧面积为143πR 2-2πR 2=83πR 2,设酒杯上部分(圆柱)的高为h,则2πR ×h=83πR 2,解得h=43R,酒杯下部分(半球)的体积V 2=12×43π×R 3=23πR 3,酒杯上部分(圆柱)的体积V 1=πR 2×43R=43πR 3,所以V 1V 2=43πR 323πR 3=2.故选A.13.D 四棱锥P-ABCD 可补形成如图D 8-1-15所示的长方体,则四棱锥P-ABCD 的外接球即该长方体的外接球.设PA=x,连接B 1C,B 1A,则有PD ∥B 1C,所以∠ACB 1即异面直线AC 与PD 所成的角,所以cos ∠ACB 1=√105.在△AB 1C 中,由余弦定理得B 1A 2=B 1C 2+AC 2-2B 1C ·AC ·cos ∠ACB 1,即x 2+4=x 2+4+8-2√x 2+4×2√2×√105,解得x=1,因此该长方体的体对角线的长为√12+22+22=3,则长方体的外接球的半径为32,所以该四棱锥的外接球的表面积为4π×(32)2=9π,故选D.图D 8-1-1514.D 如图D 8-1-16,∵△ABC 是等腰直角三角形,∴AC 为截面圆的直径,外接球的球心O 在截面ABC 上的射影为AC 的中点D,∴当P,O,D 共线且P,O 位于截面ABC 同一侧时三棱锥的体积最大,高最大,此时三棱锥的高为PD,∴13×12×√6×√6×PD=3,解得PD=3.连接OC,设外接球的半径为R,则OD=3-R,OC=R,在△ODC 中,CD=12AC=√3,由勾股定理得(3-R)2+(√3)2=R 2,解得R=2.∴三棱锥P-ABC 的外接球的体积V=43π×23=323π,故选D.图D 8-1-1615.A 如图D 8-1-17,因为球的半径R=4,圆锥SO 1的母线长SC=4,圆锥SO 2的母线长SB=4√2,易知∠BSO 1=45°,∠CSO 1=60°,SO 11的底面交于A 点,则C,A,O 1三点共线,且AO 1=SO 1=2,则两圆锥重合部分的体积V=13×22×π×2=83π.故选A.图D 8-1-1716.AD 如图D 8-1-18,将该四棱台补形为四棱锥S-ABCD,连接AC,BD 相交于点O,连接A 1C 1,B 1D 1相交于点O 1,连接SO,则SO 过点O 1,且SO ⊥平面ABCD,∴OO 1为该四棱台的高.∵A 1B 1∥AB,∴A 1B 1AB=SA 1SA =√22√2=12,∴SA=4,SA 1=2,由四边形ABCD 为正方形且AB=2√2可得AO=2,则A 1O 1=1,∴SO=2√3,SO 1=√3,OO 1=√3,故选项A 正确;∵SA=SC=4,AC=4,∴∠ASC=60°,故选项B 不正确;梯形A 1B 1BA 的高为2√2-√22=√142,故该四棱台的表面积为√2×√2+2√2×2√2+4×2√2+√22×√142=10+6√7,故选项C 不正确;∵该四棱台的上、下底面都是正方形,因此该四棱台外接球的球心在直线OO 1上,连接OB 1,在△OO 1B 1中,由OO 1=√3,O 1B 1=1可得OB 1=2,又OB=2,∴OB 1=OB,∴该四棱台外接球的球心为O,球的半径r=2,∴外接球的表面积为4πr 2=16π,故选项D 正确.故选AD.图D 8-1-1817.ABD 如图D 8-1-19,在三棱锥中,根据DP=DC=1,知DB=DA=1,根据勾股定理得PC=PA=PB=√2,所以A 正确;取AB 的中点F,连接PF,DF,则AB ⊥PF,设DF=x,则cos ∠PAB=AFAP =√1−x 2√2,结合三角形的边长关系可得x ∈(0,1),则cos ∠PAB=√1−x 2√2∈(0,√22),结合余弦函数的单调性可知∠PAB 的取值范围是(π4,π2),所以B 正确;根据A 可知D 到A,B,C,P 的距离均为1,所以三棱锥的外接球是以D 为球心,1为半径的球,其体积V=43π,所以C 不正确;图D 8-1-19当AB=BC 时,△ABC 是等腰直角三角形,AC=2,所以BC=√2,所以三角形BPC 为等边三角形,将三角形BPC 与三角形PDC 以PC 边展开可以得到图D 8-1-20,连接BD,所以DE+BE 的最小值为图D 8-1-20中BD 的长度,BD=√22×√3+√22=√6+√22,所以D 正确.所以结论正确的是ABD.图D 8-1-20△ABC ·S△OBC=S△PBC2,得12AE·BC·(12OE·BC)=(12PE·BC)2,所以PE2=AE·OE,即PEAE=OEPE,结合∠PEA=∠PEO知△POE∽△APE,所以∠APE=∠POE=90°,所以PA⊥PE,又BC⊥PA,PE∩BC=E,所以PA⊥平面PBC,所以PA⊥PB,PA⊥PC,又AC⊥PB,PA∩AC=A,所以PB⊥平面PAC,所以PB⊥PC,所以PA,PB,PC两两垂直,将三棱锥P-ABC补成一个长方体,则该长方体的体对角线为三棱锥P-ABC外接球的直径,所以PA2+PB2+PC2=(3+3)2=36,所以S△PAB+S△PBC+S△PAC =12(PA·PB+PB·PC+PC·PA)≤12(PA2+PB22+PB2+PC22+PC2+PA22)=12(PA2+PB2+PC2)=18,当且仅当PA=PB=PC=2√3时等号成立,所以S△PAB+S△PBC+S△PAC的最大值为18.图D 8-1-2119.√62如图D 8-1-22(1),设正四棱柱的底面边长为a,高为h,因为其外接球的半径为2,所以2a2+h2=16,则正四棱柱的侧面积S=4ah=2√2(√2a)h≤√2[(√2a)2+h2]=√2(2a2+h2)=16√2,当且仅当√2a=h,即a=2,h=2√2时等号成立.(1)当质点沿着两个侧面移动时,例如沿着侧面ABB1A1和侧面BCC1B1移动时,将这两个侧面展开成一个平面图形,如图D 8-1-22(2)所示,连接AC1,则最短距离即AC1的长,且AC1=√(2√2)2+(2+2)2=2√6;(2)当质点沿着一个底面和一个侧面移动时,例如沿着底面ABCD和侧面DCC1D1移动时,把这两个面展开成一个平面图形,如图D 8-1-22(3)所示,连接AC1,则最短距离即AC1的长,且AC 1=√22+(2+2√2)2=√16+8√2.因为√16+8√2>2√6,所以质点沿着正四棱柱的表面移动的最短距离为2√6.2√64=√62.图D 8-1-2220.√5∶1 5∶1 设球O 1、球O 2的半径分别为R,r,由于正三棱柱的六个顶点均在同一个球面上,所以球心O 1在上、下底面中心连成的线段的中点处,又球O 2与正三棱柱的5个面都相切,易知点O 2与O 1重合.如图D 8-1-23,取上、下底面的中心分别为F,E,连接EF,设BC 的中点为D,EF 的中点为O 1,连接AD,O 1A,则E 在AD 上,O 1A =R,O 1E=r,在△O 1EA 中,AE=23×√32a=√33a,O 1E=r=13×√32a=√36a,由于O 1A 2=O 1E 2+AE 2,所以R 2=512a 2,r 2=112a 2,则球O 1与球O 2的半径之比为√5∶1,所以球O 1与球O 2的表面积之比为4πR 24πr 2=R 2r 2=512a 2112a 2=5∶1.图D 8-1-2321.B 不妨设半圆的半径为1,用圆心角为π3的小扇形围成的圆锥的底面圆周长为π3×1=π3,设其底面圆的半径为r 1,则2πr 1=π3,所以r 1=16,该圆锥的高h 1=√1−(16)2=√356.用圆心角为2π3的大扇形围成的圆锥的底面圆周长为2π3×1=2π3,设其底面圆的半径为r 2,则2πr 2=2π3,所以r 2=13,该圆锥的高h 2=√1−(13)2=2√23.所以h 1∶h 2=√70∶8.22.A 设三棱锥P-ABC 的内切球的半径为R,过O 作OD ⊥AC 于点D,OE ⊥BC 于点E,OF ⊥AB 于点F,则OD=OE=OF=2.连接PD,易证PD ⊥AC,因为三棱锥P-ABC 的三个侧面与底面所成角都为60°,所以∠PDO=60°,则PO=2tan 60°=2√3,PD=2cos60°=4.由题意可知三棱锥P-ABC 的内切球的球心O'在线段PO 上,在Rt △POD 中,sin ∠DPO=OD PD=RPO -R,即24=2√3-R,解得R=2√33.所以该三棱锥的内切球的体积为43πR 3=43π(2√33)3=32√327π,故选A.23.ABD 在鳖臑P-ABC 中,四个面都为直角三角形,可知PC 的中点O 到四个顶点的距离都相等,所以点O 是鳖臑外接球的球心,由外接球的体积为36π,得外接球半径R=3,所以PC=6.设PA=a,BC=b,则PA 2+AB 2+BC 2=PC 2,得a 2+b 2=32,所以V P-ABC =13×12×2b ×a=13ab ≤13×a 2+b 22=163,当且仅当a=b=4时,V P-ABC 取得最大值163.此时PB=AC=√42+22=2√5,所以鳖臑的表面积S=2×12×2×4+2×12×4×2√5=8+8√5.故选ABD.24.√2 解法一 由题意知,正四面体可以在圆锥内任意转动,则a 最大时,该正四面体外接于圆锥的内切球.设球心为P,球的半径为r,圆锥的顶点为S,圆锥底面圆的圆心为O,A,B 为底面圆直径的两端点,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图D 8-1-24所示,连接SO,图D 8-1-24易知P 在SO 上,SO ⊥AB,则OA=OB=32,因为SO=3√32,所以SA=SB=√SO 2+OB 2=3,所以△SAB为等边三角形,所以点P 是△SAB 的中心.连接BP,PQ,则BP 平分∠SBA,所以∠PBO=30°,所以tan 30°=r 32=√33,即r=√33×32=√32,所以正四面体外接球的半径r=√32.正四面体的外接球就是截得它的正方体的外接球,当正四面体的棱长为a 时,截得它的正方体的棱长为√22a,所以2r=√3×√22a=√62a=√3,得a=√2,所以a 的最大值为√2.解法二 由题意知,正四面体可以在圆锥内任意转动,则a 最大时,该正四面体外接于圆锥的内切球.设圆锥的顶点为S,底面圆的圆心为O,A,B 为底面圆直径的两端点,圆锥的轴截面如图D 8-1-25所示,图D 8-1-25则OA=OB=32,连接SO,则SO ⊥AB,SO=3√32,所以SA=SB=√SO 2+OB 2=3,△SAB 的面积S △SAB =9√34,由三角形内切圆半径公式r=2Sa+b+c(其中S 是三角形的面积,a,b,c 是三角形的三边长)知,△SAB 内切圆的半径r=√32.正四面体的外接球就是截得它的正方体的外接球,当正四面体的棱长为a 时,截得它的正方体的棱长为√22a,所以2r=√3×√22a=√62a=√3,得a=√2,所以a 的最大值为√2.25.21 952 由题意得正四棱柱ABCD-A 1B 1C 1D 1的体积V 1=22×4=16(m 3),正四棱锥O-ABCD 的体积V 2=13×22×2=83(m 3),分析知球M 的半径r 的最大值为1,此时球M 的体积V 3=43πr 3=43π×13=4π3(m 3),故去除石料的体积V=V 1-V 2-V 3=16-83-4π3≈27.443(m 3).又ρ=2.4 g/cm 3=2400 kg/m 3,故需去除的石料的质量m=ρV ≈2 400×27.443=21 952(kg).。
2023新高考数学一轮复习创新课件 第8章 第1讲 基本立体图形及其直观图
答案
解析 由题图可知,“致”的对面是“美”,“敬”的对面是 “逆”,“最”的对面是“行”.若图中“致”在正方体的后面,则 “美”在前面.故选B.
解析
角度 空间几何体的截面问题
例 4 (1)某同学在参加《通用技术》实践课时,制作了
一个工艺品,如图所示,该工艺品可以看成是一个球被一个
A.四棱柱
B.四棱台
C.三棱柱
D.三棱锥
解析 根据题图,因为有水的部分始终有两个平面平行,而其余各面
都易证是平行四边形,因此形成的几何体是四棱柱或三棱柱.故选AC.
解析 答案
考向二 平面图形与其直观图的关系
例 2 (1)如图,矩形 O′A′B′C′是水平放置的一个平面图形的直观 图,其中 O′A′=6,O′C′=2,则原图形 OABC 的面积为( )
解析
(2)某同学为表达对“新冠疫情”抗疫一线医护人员的感激之情,亲手 为他们制作了一份礼物,用正方体纸盒包装,并在正方体六个面上分别写 了“致敬最美逆行”六个字.该正方体纸盒水平放置的六个面分别用“前 面、后面、上面、下面、左面、右面”表示.如图是该正方体的展开图, 若图中“致”在正方体的后面,那么在正方体前面的字是( )
解析 答案
4.以下利用斜二测画法得到的结论中,正确的是( ) A.相等的角在直观图中仍相等 B.相等的线段在直观图中仍相等 C.平行四边形的直观图是平行四边形 D.菱形的直观图是菱形 解析 根据斜二测画法的规则可知,平行于坐标轴的直线平行性不 变,平行于x轴的线段长度不变,平行于y轴的线段长度减半,故A,B,D 错误;对于C,根据平行性不变原则,平行四边形的直观图仍然是平行四 边形,C正确.故选C.
A.24 2 C.48 2
2020版高考新创新一轮复习数学理科通用版讲义:第八章第一节第1课时系统知识空间几何体含答案
第八章⎪⎪⎪立体几何第一节 空间几何体[考纲要求]1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. 4.了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.第1课时 系统知识——空间几何体1.简单旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到; (2)圆锥可以由直角三角形绕其直角边旋转得到;(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;(4)球可以由半圆或圆绕直径旋转得到.[提醒] (1)球是以半圆面为旋转对象的,而不是半圆.(2)要注意球面上两点的直线距离、球面距离以及在相应的小圆上的弧长三者之间的区别与联系. 2.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等的多边形; (2)棱锥的底面是任意多边形,侧面是有一个公共点的三角形;(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形.[提醒] (1)棱柱的所有侧面都是平行四边形,但侧面都是平行四边形的几何体却不一定是棱柱. (2)棱台的所有侧面都是梯形,但侧面都是梯形的几何体却不一定是棱台. (3)注意棱台的所有侧棱相交于一点.[小题练通]1.[教材改编题]在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤2.[教材改编题]下列命题中正确的是________.①由五个平面围成的多面体只能是四棱锥;②棱锥的高线可能在几何体之外;③仅有一组相对的面平行的六面体一定是棱台;④有一个面是多边形,其余各面是三角形的几何体是棱锥.答案:②3.[教材改编题]一个棱柱至少有________个面;面数最少的一个棱锥有________个顶点;顶点最少的一个棱台有________条侧棱.答案:54 34.[易错题]从长方体的一个顶点出发的三条棱上各取一点E,F,G(不与顶点重合),过此三点作长方体的截面,那么这个截面的形状是()A.锐角三角形B.矩形C.平行四边形D.正方形答案:A5.下面图形都是由六个全等的小正方形组成,其中可以折成正方体的是()答案:C6.已知正方体ABCD-A1B1C1D1的棱长为1,点E,F分别是棱D1C1,B1C1的中点,过E,F作一平面α,使得平面α∥平面AB1D1,则平面α截正方体的表面所得平面图形为()A.三角形B.四边形C.五边形D.六边形解析:选D如图所示,平面α是平面EFGHJK,截面是六边形,故选D.1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.[谨记常用结论]直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.2.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[小题练通]1.[教材改编题]下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行答案:D2.[教材改编题]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.3.[教材改编题]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为() A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.4.[易错题]沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 给几何体的各顶点标上字母,如图①,A ,E 在侧投影面上的投影重合,C ,G 在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图②所示,故正确选项为B.5.某几何体的正视图与侧视图均为边长为1的正方形,则下面四个图形中,可能是该几何体俯视图的个数为( )A .1B .2C .3D .4解析:选C 俯视图从左到右依次记为:如果几何体为棱长为1的正方体,则俯视图如图①;如果几何体为圆柱,它的底面直径为1,高为1,则俯视图如图④;如果几何体为从棱长为1的正方体中挖去直径为2,高为1的圆柱的14,则俯视图如图②;以图③为俯视图的几何体的正视图不是正方形.故选C.6.一个几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由几何体的直观图知,该几何体最上面的棱横放且在中间的位置上,因此俯视图应排除A 、C 、D ,经验证B 符合题意,故选B.1.空间几何体的表面积与体积公式[提醒]解决与几何体的面积有关问题时,务必要注意是求全面积还是求侧面积.2.求表面积与体积的常用方法(1)割补法割补法是割法与补法的总称.补法是把不规则(不熟悉的或复杂的)几何体延伸或补成规则的(熟悉的或简单的)几何体,把不完整的图形补成完整的图形.割法是把复杂的(不规则的)几何体切割成简单的(规则的)几何体.割与补是对立统一的,是一个问题的两个相反方面.割补法无论是求解体积问题还是求解空间角(或空间距离)以及证明垂直或平行关系都有简化解题过程、开阔思维的优点.(2)等积法等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[小题练通]1.[教材改编题]如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶472.[教材改编题]已知某几何体的三视图(单位:cm),如图所示,则该几何体的体积是________.答案:1003.[教材改编题]已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于________.答案:20 34.[易错题]若某几何体的三视图如图所示,则此几何体的表面积是________.答案:72+16 25.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为________.答案:436.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2.故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π[课时跟踪检测]1.下列说法中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线解析:选D 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,故B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C错误.选D.2.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B D选项为正视图或侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.3.某三棱锥的三视图如图所示,则该三棱锥最长的棱长为()A. 5B.2 2C.3D.3 2解析:选C依题意,可知该几何体为如图所示三棱锥D-ABC,最长的棱AD=1+(22)2=3,故选C.4.(2019·长沙模拟)如图是某几何体的三视图,其正视图、侧视图均是直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为()A.3πB.4πC.5πD.12π解析:选A由三视图可知,该几何体是半径为1的半球,其表面积为2π+π=3π.选A.5.(2019·南阳联考)已知一个三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C 由已知条件得直观图如图所示,PC ⊥底面ABC ,正视图是直角三角形,中间的线是看不见的线PA 形成的投影,应为虚线,故选C.6.将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为( )解析:选D 根据条件知侧视图为D 选项.7.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体. 8.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8解析:选C 由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的两底边长分别为1,2,高为2,∴该几何体的体积为V =12×(2+1)×2×2=6.9.(2019·承德期末)某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A .8+42+2 5B .6+42+4 5C .6+22+2 5D .8+22+2 5解析:选C 由三视图可知,几何体为如图所示的四棱锥P -ABCD .其中的底面ABCD 是边长为2的正方形,侧面PAB 垂直于底面ABCD ,且点P 到底面ABCD 的距离为2,故其表面积为2×2+12×2×2+12×2×22+2×12×2×5=6+22+2 5.故选C. 10.(2019·天津红桥区一模)某几何体的三视图如图所示,则该几何体的体积是( )A .223π B .π2C .23π D .π解析:选C 由三视图知,几何体是半径为1,母线长为3的半圆锥,几何体的体积V =13×12×π×12×32-12=23π.故选C. 11.(2018·洛阳二模)某几何体的三视图如图所示,则其表面积为( )A.17π2 B .9π C.19π2D .10π解析:选B 由三视图可知,几何体为下部分是圆柱与上部分是14球的组合体.圆柱的底面半径为1,高为3,球的半径为1.所以几何体的表面积为π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π.故选B.12.已知正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .81π4B .16πC .9πD .27π4(4-r )2+(2)2=r 2,解得解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,r =94,所以该球的表面积为4πr 2=4π×⎝⎛⎭⎫942=81π4. 13.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V 1,直径为4的球的体积为V 2,则V 1∶V 2=( )A .1∶2B .2∶1C .1∶1D .1∶4解析:选A 由三视图知,该几何体为圆柱内挖去一个底面相同的圆锥,因此V 1=8π-8π3=16π3,V 2=4π3×23=32π3,V 1∶V 2=1∶2. 14.下列几何体是棱台的是________(填序号).解析:①③都不是由棱锥截成的,不符合棱台的定义,故①③不满足题意.②中的截面不平行于底面,不符合棱台的定义,故②不满足题意.④符合棱台的定义,故填④.答案:④15.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直高,故V =13×2×2×1=43.角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的答案:4316.中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 的值为________.解析:由三视图可知,该几何体是一个组合体,左侧是一个底面直径为2r =1、高为x 的圆柱,右侧是一个长、宽、高分别为5.4-x,3,1的长方体,则该几何体的体积V =(5.4-x )×3×1+π×14×x =12.6,解得x =1.6.答案:1.617.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由题意知所给的几何体是棱长均为2的八面体,它是由两个有公共底面的正四棱锥组合而成的,正四棱锥的高为1,所以这个八面体的体积为2V 正四棱锥=2×13×(2)2×1=43.答案:4318.(2019·贵阳适应性考试)已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为________.解析:因为六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,由对称性和底面正六边形的面积为定值知,当六棱锥P -ABCDEF 为正六棱锥时,体积最大.设正六棱锥的高为h ,则13×⎝⎛⎭⎫6×12×1×1×sin 60°h =3,解得h =2.记球O 的半径为R ,根据平面截球面的性质,得(2-R )2+12=R 2,解得R =54,所以球O 的表面积为4πR 2=4π⎝⎛⎭⎫542=25π4. 答案:25π4。
2021届山东高考数学一轮创新教学案:第7章第1讲空间几何体的结构及其三视图和直观图
第七章立体几何第1讲空间几何体的结构及其三视图和直观图[考纲解读] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间几何体的三视图,并能根据三视图识别几何体,会用斜二测画法画出它们的直观图.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的重点内容之一.预测2021年会一如既往地进行考查,以三视图和直观图的联系与转化为主要命题方向,考查题型有:①根据三视图还原几何体;②根据几何体求体积.试题以客观题形式呈现,难度一般不大,属中档题.1.多面体的结构特征名称棱柱棱锥棱台图形底面互相□01平行且□02相等多边形互相□03平行侧棱□04平行且相等相交于□05一点,但不一定相等延长线交于□06一点侧面形状□07平行四边形□08三角形□09梯形名称圆柱圆锥圆台球图形母线互相平行且相相交于□02一点延长线交于□03—等,□01垂直于底面一点轴截面全等的□04矩形全等的□05等腰三角形全等的□06等腰梯形□07圆(1)画法:常用□01斜二测画法.(2)规则①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴与y′轴的夹角为45°(或135°),z′轴与x′轴(或y′轴)□02垂直.②原图形中平行于坐标轴的线段,直观图中仍□03平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度□04不变,平行于y轴的线段的长度在直观图中变为原来的□05一半.4.三视图(1)几何体的三视图包括□01正视图、□02侧视图、□03俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:□04正侧一样高,□05正俯一样长,□06侧俯一样宽;看不到的线画虚线.1.概念辨析(1)棱柱的侧棱都相等,侧面都是全等的平行四边形.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)棱台各侧棱的延长线交于一点.()(4)夹在圆柱的两个平行截面间的几何体还是旋转体.()答案(1)×(2)×(3)√(4)×2.小题热身(1)如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,则剩余的部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体答案 B解析剩余的部分是四棱锥A′-B′C′CB.(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()答案 A解析由斜二测画法的原理可知.(3)若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为()A.2,2 3 B.22,2C.4,2 D.2,4答案 D解析由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.(4)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案五棱柱三棱柱题型一空间几何体的结构特征下列结论正确的个数是________.①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱;②棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;③有两个平面互相平行,其余各面都是梯形的多面体是棱台;④直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;⑤若在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线.答案0解析①③④错误,反例见下面三个图.②错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.⑤错误,平行于轴的连线才是母线.识别空间几何体的两种方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析,要说明一个结论是错误的,只要举出一个反例即可.(2019·青岛模拟)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1C.2 D.3答案 B解析由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③错误.题型二空间几何体的直观图(2019·桂林模拟)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2 B.38a2C.68a2 D.616a2答案 D解析如图(1)所示的是△ABC的实际图形,图(2)是△ABC的直观图.由图(2)可知A′B′=AB=a,O′C′=12OC=34a,在图(2)中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.故选D.条件探究将本例中的条件变为“△ABC的直观图△A1B1C1是边长为a的正三角形”,则△ABC的面积是________.答案6 2a2解析如图(1)所示的是△ABC的直观图,图(2)是△ABC的实际图形.在图(1)中作C1D1∥y1轴,交x1轴于点D1,在图(2)中作CD⊥x轴,交x轴于点D,设C1D1=x,则CD=2x.在△A1D1C1中,由正弦定理asin45°=xsin120°,得x=62a,∴S△ABC=12AB·CD=12×a×6a=62a2.用斜二测画法画直观图的技巧(1)在原图形中与x轴或y轴平行的线段在直观图中仍然与x′轴或y′轴平行.(2)原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.(3)原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点,然后用平滑曲线连接.(2019·福州调研)已知等腰梯形ABCD,上底CD=1,腰AD=CB=2,下底AB =3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.答案2 2解析如图所示,图(1)是等腰梯形ABCD的实际图形,O为AB的中点,图(2)是等腰梯形ABCD的直观图.在图(2)中作E′F⊥x′轴,交x′轴于F,因为OE=(2)2-1=1,所以O′E′=12,E′F=24,则直观图A′B′C′D′的面积S′=1+32×24=22.题型三空间几何体的三视图角度1已知几何体识别三视图1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A解析观察图形易知卯眼处应以虚线画出,俯视图为,故选A.角度2已知三视图还原几何体2.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B .2 5 C .3 D .2答案 B解析 根据圆柱的三视图以及其本身的特征,可以确定点M 和点N 分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.角度3 已知三视图中的部分视图,判断其他视图3.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成的三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为( )A.12B.22C.24D.14答案 D解析 由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,其形状如图所示,所以三棱锥C -ABD 的侧视图的面积为14.三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()答案 C解析由直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B,D,又正视图中点D1的射影是B1,侧棱BB1是看不见的,在正视图中用虚线表示,所以正视图是C中的图形.故选C.2.(2019·河北衡水中学调研)如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()答案 C解析如图所示,过点A,E,C1的截面为AEC1F,则剩余几何体的侧视图为C中的图形.3.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 2 B.2 3C.2 2 D.2答案 B解析在正方体中还原该四棱锥,如图所示,可知SD为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD=22+22+22=2 3.故选B.组基础关1.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A.①③B.①④C.②④D.①②③④答案 A解析由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.2.如图,直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图可知,其表示的平面图形△ABC中AC⊥BC,所以△ABC是直角三角形.3.日晷是中国古代利用日影测得时刻的一种计时工具,又称“日规”.通常由铜制的指针和石制的圆盘组成,铜制的指针叫做“晷针”,垂直地穿过圆盘中心,石制的圆盘叫做“晷面”,它放在石台上,其原理就是利用太阳的投影方向来测定并划分时刻.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久.上图是一位游客在故宫中拍到的一个日晷照片,假设相机镜头正对的方向为正方向,则根据图片判断此日晷的侧视图可能为()答案 D解析因为相机镜头正对的方向为正方向,所以侧视图中圆盘为椭圆,指针上半部分为实线,下半部分为虚线,故选D.4.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()答案 D解析由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.(2019·四川省南充高中模拟)在正方体中,M,N,P分别为棱DD1,A1D1,A1B1的中点(如图),用过点M,N,P的平面截去该正方体的顶点C1所在的部分,则剩余几何体的正视图为()答案 B解析由已知可知过点M,N,P的截面是过正方体棱BB1,BC,CD的中点的正六边形,所以剩余几何体如图所示,其正视图应是选项B.7. 用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8B.7C.6D.5答案 C解析画出直观图可知,共需要6块.8.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是________(填出所有可能的序号).答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现的投影为④的情况.9.(2019·福州质检)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则此几何体各面中直角三角形的个数是________.答案 4解析由三视图可得该几何体是如图所示的四棱锥P-ABCD,由图易知四个侧面都是直角三角形,故此几何体各面中直角三角形有4个.10.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 2 m,则圆锥底面圆的半径等于________ m.答案 1解析把圆锥侧面沿过点P的母线展开成如图所示的扇形,由题意知OP=4 m,PP′=4 2 m,则cos∠POP′=42+42-(42)22×4×4=0,且∠POP′是三角形的内角,所以∠POP′=π2.设底面圆的半径为r cm,则2πr=π2×4,所以r=1.组能力关1.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,cC.c,b D.b,d答案 A解析当正视图和侧视图均为圆时,有两种情况,一种正视图为a,此时俯视图为b;另一种情况的正视图和俯视图如右图所示.故选A.2.一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4C.4 3 D.4 2答案 D解析由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,P A =AB =AC =4,DB =2,则易得S △P AC =S △ABC =8,S △CPD =12,S 梯形ABDP =12,S △BCD =12×42×2=42,故选D.3.(2020·江西赣州摸底)某几何体的正视图和侧视图如图1,它的俯视图的直观图是矩形O 1A 1B 1C 1,如图2,其中O 1A 1=6,O 1C 1=2,则该几何体的侧面积为( )A .48B .64C .96D .128答案 C解析 由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC ,设CB 与y 轴的交点为D ,则易知CD =2,OD =2×22=42,∴CO =CD 2+OD 2=6=OA ,∴俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.故选C.4.(2019·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )答案 D解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.所以该三棱锥的侧视图可能为D项.5.(2018·河南郑州质检)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为________.答案64解析由三视图知三棱锥如图所示,底面ABC是直角三角形,AB⊥BC,P A ⊥平面ABC,BC=27,P A2+y2=102,(27)2+P A2=x2,因此xy=x102-[x2-(27)2]=x128-x2≤x2+(128-x2)2=64,当且仅当x2=128-x2,即x=8时取等号,因此xy的最大值是64.6.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案262-1解析先求面数,有如下两种方法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.解法二:一般地,对于凸多面体,顶点数(V)+面数(F)-棱数(E)=2(欧拉公式).由图形知,棱数为48的半正多面体的顶点数为24,故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为半正多面体的棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM=MH=NG=NF=22x.又AM+MN+NF=1,即22x+x+22x=1.解得x=2-1,即半正多面体的棱长为2-1.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件
高考一轮总复习•数学
第27页
即 12=A0O.61, 解得 AO1=0.6 2, 根据对称性可知圆柱的高为 3-2×0.6 2≈1.732-1.2×1.414=0.035 2>0.01, 所以能够被整体放入正方体内,故 D 符合题意. 故选 ABD.
高考一轮总复习•数学
第26页
设 OE∩AC=E,可知 AC= 2,CC1=1,AC1= 3,OA= 23,
那么
tan∠CAC1=CACC1=OAOE,即
1 =OE, 23
2
解得 OE= 46,且 462=38=294>295=0.62,
即 46>0.6,
所以以 AC1 为轴可能对称放置底面直径为 1.2 m 圆柱,若底面直径为 1.2 m 的圆柱与正 方体的上下底面均相切,设圆柱的底面圆心为 O1,与正方体的下底面的切点为 M,
圆台
体积 V= Sh =πr2h
V=
1 3Sh
=13πr2h=13πr2
l2-r2
V=13(S 上+S 下+ S上S下)h
=13π(r21+r22+r1r2)h
第11页
高考一轮总复习•数学
名称 棱柱 棱锥 棱台 球
体积 V= Sh
1 V= 3Sh V=13(S 上+S 下+ S上S下)h V=43πR3
= 直观图
2 4S
原图形.
高考一轮总复习•数学
以三角形为例说明原因:
第36页
S
直观图=12B′C′·O′A′·sin
高考一轮总复习•数学
第24页
解析:(1)由圆台定义知,以直角梯形垂直于底边的腰为旋转轴,其余三边旋转一周形 成的面围成的旋转体是圆台,故 A 错误;
2018版高考一轮总复习数学文课件 第7章 立体几何 7-1
2.三视图的画法 (1)在画三视图时,重叠的线只画一条,挡住的线要画
虚线. 成_____
(2)三视图的正视图、侧视图、俯视图分别是从几何体
正前 方、_____ 正左 方、_____ 的_____ 正上 方观察几何体画出的轮廓线.
考点 3 是:
空间几何体的直观图
斜二测画法来画,基本步骤 空间几何体的直观图常用 ______
原图形
=2 2S
直观图
).
[ 双基夯实] 一、疑难辨析 判断 下列 结论 的正 误. ( 正确 的打 “√” ,错 误的打 “×”) 1.球的任何截面都是圆.( × ) 2.有一个面是多边形,其余各面都是三角形的几何体 是棱锥. ( × ) 3.棱台是由平行于底面的平面截棱锥所得的平面与底 面之间的部分. ( √ )
解析
2
由题意可得旋转体为一个圆柱挖掉一个圆锥. V
1 π 2 圆柱=π ×1 ×2 = 2π , V 圆锥= ×π ×1 ×1 = . 3 3 π 5π ∴V 几何体= V 圆柱- V 圆锥= 2π- = . 3 3
3 棱柱的体积为________ . 2
5.[2016· 北京高考] 某四棱柱的三视图如图所示,则该四
4 .夹在圆柱的两个平行截面间的几何体还是圆 柱.( × ) 5. 上下底面是两个平行的圆面的旋转体是圆台. ( × ) 6.在用斜二测画法画水平放置的∠ A 时,若∠ A 的两 边分别平行于 x 轴和 y 轴,且∠ A = 90° ,则在直观图中 ∠ A=45° .( × )
二、小题快练 1 . [2017· 广州七校联考 ] 如图为几 何体的三视图, 根据三视图可以判断这 个几何体为( A.圆锥 C.三棱柱
[ 解析 ]
A 错, 如图 1; B 正确, 如图 2, 其中底面 ABCD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.棱锥 D.都不对
从俯视图来看,上、下底面都是正方形,但大小不一
样,可以判断是棱台. 答案 A
抓住3个考点
突破3个考向
揭秘3年高考
3.用任意一个平面截一个几何体,各个截面都是圆面,则 这个几何体一定是 ( ).
A.圆柱
C.球体 解析
B.圆锥
D.圆柱、圆锥、球体的组合体
当用过高线的平面截圆柱和圆锥时,截面分别为矩
正前 方、 正左 方、 正上方观察几何体得到的正投影图. ③观察简单组合体是由哪几个简单几何体组成的,并注意它 们的组成方式,特别是它们的交线位置.
抓住3个考点
突破3个考向
揭秘3年高考
3.直观图 空间几何体的直观图常用 斜二测 画法来画,其规则是:
(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′
体是直四棱柱.
答案 是
抓住3个考点
突破3个考向
揭秘3年高考
考向一 空间几何体的结构特征 【例1】►给出下列四个命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连 线是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱 是正棱柱; ③直角三角形绕其任一边所在直线旋转一周所形成的几何 体都是圆锥;
(2)通过反例对结构特征进行辨析,即要说明一个命题是错误 的,只要举出一个反例即可.
抓住3个考点
突破3个考向
揭秘3年高考
【训练1】 给出下列四个命题: ①有两个侧面是矩形的棱柱是直棱柱;
②侧面都是等腰三角形的棱锥是正棱锥;
③侧面都是矩形的直四棱柱是长方体; ④若有两个侧面垂直于底面,则该四棱柱为直四棱柱. 其中不正确的命题的个数是________个.
形和三角形,只有球满足任意截面都是圆面. 答案 C
抓住3个考点
突破3个考向
揭秘3年高考
4.(2012·福建卷)一个几何体的三视图形状都相同、大小均 相等,那么这个几何体不可以是 ( ).
A.球
C.正方体
B.三棱锥
D.圆柱
抓住3个考点
突破3个考向
揭秘3年高考
解析
球、正方体的三视图形状都相同,
大小均相等,首先排除选项A和C.对于如 图所示三棱锥OABC,当OA、OB、OC两
积是________.
抓住3个考点
突破3个考向
揭秘3年高考
解析
把直观图还原为平面图形得:在直角梯形ABCD中,
1 AB=2,BC= 2+1,AD=1,∴面积为 ×(2+ 2)×2=2 2 + 2.
答案 2+ 2
抓住3个考点
突破3个考向
揭秘3年高考
热点突破14 快速突破空间几何体三视图的判断 【命题研究】 通过近三年的高考试题分析,对空间几何体的 三视图的判断主要考查三个方面:(1)已知几何体,判断三
两垂直且OA=OB=OC时,其三视图的形
状都相同,大小均相等,故排除选项B.不 论圆柱如何放置,其三视图的形状都不会 完全相同,故答案选D. 答案 D
抓住3个考点
突破3个考向
揭秘3年高考
5.如图,过BC的平面截去长方体的一部分,所得的几何体 ________棱柱(填“是”或“不是”).
解析
以四边形A′ABB′和四边形D′DCC′为底即知所得几何
这个几何体的直观图可以是
(
).
抓住3个考点
突破3个考向
揭秘3年高考
解析
A中正视图,俯视图不对,故A错.B中正视图,侧视
图不对,故B错.C中侧视图,俯视图不对,故C错,故选D.
答案 D
抓住3个考点
突破3个考向
揭秘3年高考
【试一试2】 将正三棱柱截去三个角(如图1所示),A,B,C 分别是△GHI三边的中点得到几何体如图2,则该几何体
抓住3个考点
突破3个考向
揭秘3年高考
解析
认识棱柱一般要从侧棱与底面的垂直与否和底面多边
形的形状两方面去分析,故①③都不准确,②中对等腰三角 形的腰是否为侧棱未作说明,故也不正确,④平行六面体的
两个相对侧面也可能与底面垂直且互相平行,故④也不正
确个考向
揭秘3年高考
考向二 空间几何体的三视图
轴的夹角为 别 平行于坐标轴 原长度 45° ,z′轴与x′轴和y′轴所在平面 . 垂直 (2) 原 图 形 中 平 行 于 坐 标 轴 的 线 段 , 直 观 图 中 仍 分 .平行于x轴和z轴的线段在直观图中保持 ,平行于y轴的线段长度在直观图中变 不变
为
.
原来的一半
抓住3个考点
突破3个考向
揭秘3年高考
【助学·微博】 两个重要概念 (1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正
多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多
边形,侧棱垂直于底面,侧面是矩形. (2)正棱锥:底面是正多边形,顶点在底面的射影是底面正 多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的 正三棱锥叫正四面体.反过来,正棱锥的底面是正多边
图和侧视图都是等腰三角形,俯视图是圆,符合题意;三棱
台的正视图和侧视图、俯视图各不相同,不合题意;正四棱 锥的正视图和侧视图都是三角形,而俯视图是正方形,符合 题意,所以②④正确. 答案 D
抓住3个考点
突破3个考向
揭秘3年高考
考向三 空间几何体的直观图
【例3】►已知正三角形ABC的边长为a,那么△ABC的平面 直观图△A′B′C′的面积为 3 2 A. 4 a 6 2 C. 8 a 3 2 B. 8 a 6 2 D. 16 a ( ).
答案 D
抓住3个考点 突破3个考向 揭秘3年高考
[方法锦囊]
对于直观图,除了了解斜二测画法的规则外,
还要了解原图形面积S与其直观图面积S′之间的关系S′= 2 S,能进行相关问题的计算. 4
抓住3个考点
突破3个考向
揭秘3年高考
【训练3】 如图所示,直观图四边形A′B′C′D′是一个底角为 45°,腰和上底均为1的等腰梯形,那么原平面图形的面
视图;(2)已知几何体三视图中的两个视图,判断第三个视
图;(3)由三视图判断或画出几何体.题型均以选择题的形 式出现,难度不大.
抓住3个考点
突破3个考向
揭秘3年高考
【真题探究】►
(2011·山东)如图所示,长和宽分别相等的
两个矩形.给定下列三个命题: ①存在三棱柱,其正视图、俯视图如右图 所示;②存在四棱柱,其正视图、俯视图 如右图;③存在圆柱,其正视图,俯视图
直于底面的三棱锥的组合体,故其侧视图应为D. 答案 D
抓住3个考点
突破3个考向
揭秘3年高考
[方法锦囊] (1)由实物图画三视图或判断选择三视图,此时需 要注意“长对正、高平齐、宽相等”的原则; (2)由三视图还原实物图,这一题型综合性较强,解题时首先
对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由
[审题视点] 画出正三角形△ABC的平面直观图△A′B′C′,求 △A′B′C′的高即可.
抓住3个考点
突破3个考向
揭秘3年高考
解析
如图①②所示的实际图形和直观图.
1 3 由斜二测画法可知,A′B′=AB=a,O′C′= 2 OC= 4 a, 在图②中作C′D′⊥A′B′于D′, 2 6 则C′D′= O′C′= a. 2 8 1 1 6 6 2 ∴S△A′B′C′= A′B′· C′D′= ×a× a= a . 2 2 8 16
相似且对应边平行的多边形,各侧棱延长线交于一点,但是
侧棱长不一定相等.
答案 B
抓住3个考点 突破3个考向 揭秘3年高考
[方法锦囊] (1)紧扣结构特征是判断的关键,熟悉空间几何体 的结构特征,依据条件构建几何模型,在条件不变的情况 下,变换模型中的线面关系或增加线、面等基本元素,然后
再依据题意判定.
三角形,则该三棱锥的正视图可能为 ( ).
抓住3个考点
突破3个考向
揭秘3年高考
解析
空间几何体的正视图和侧视图的“高平齐”,故正视
图的高一定是2,正视图和俯视图“长对正”,故正视图的 底面边长为2,根据侧视图中的直角说明这个空间几何体最 前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合 以上可知,这个空间几何体的正视图可能是C.
【例2】►(2011·新课标全国)在一个几何体的三视图中,正视 图和俯视图如图所示,则相应的侧视图可以为 ( ).
抓住3个考点
突破3个考向
揭秘3年高考
[审题视点] 由正视图和俯视图想到三棱锥和圆锥. 解析 由几何体的正视图和俯视图可知,该几何体应为一个
半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂
答案 A
抓住3个考点
突破3个考向
揭秘3年高考
[反思] (1)空间几何体的三视图是该几何体在三个两两垂直的 平面上的正投影,并不是从三个方向看到的该几何体的侧面
表示的图形.
(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱 用实线表示,挡住的线要画成虚线.
抓住3个考点
突破3个考向
揭秘3年高考
经典考题训练 【试一试1】 (2011·浙江)若某几何体的三视图如图所示,则
这些简单的几何体组合而成的;其次,要遵循以下三步:① 看视图,明关系;②分部分,想整体;③综合起来,定整 体.
抓住3个考点
突破3个考向
揭秘3年高考
【训练2】 下列几何体各自的三视图中,有且仅有两个视图 相同的是 ( ).
A.①②
B.①③
C.①④
D.②④
抓住3个考点
突破3个考向
揭秘3年高考
解析
正方体的三视图都是正方形,不合题意;圆锥的正视
平行 的多边形. ②棱锥:棱锥的底面是任意多边形,侧面是有一个 公共顶点 的三角形.
③棱台:棱台可由平行于底面的平面截棱锥得到,其上下 底面是相似多边形.