初三数学-反比例函数与方程、不等式
(完整版)初中数学反比例函数知识点及经典例

04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
九年级数学-反比例函数

第19讲 反比例函数知识导航1.反比例函数的定义和解析式;2.反比例函数的图象和性质;3.反比例面数与方程及不等式;4.反比例函教与神奇的几何性质;5.反比例函数与直线y =a 或x =a ;6.反比例函数与全等相似;7.反比例函数与图形变换;8.反比例函数与定值及最值。
【板块一】反比例函数的定义和解析式 方法技巧 根据定义解题1.定义:一般地,形如ky x=(k 为常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数.2.解析式:ky x=(k ≠0)或xy =k (k ≠0)或1y kx -= (k ≠0). 题型一根据定义判断反比例函数【例1】下列函数:①2x y =;@2y x =;③y =12y x =;⑤12y x =+;⑥12y x =- ;⑦2xy =; ⑧12y x -=;⑨22y x = .其中y 是x 的反比例函数的有 (填序号).【解析】②③④⑦⑧.题型二根据定义确定k 值或解析式 【例2】(1)反比例函数32y x =- ,化为ky x=的形式,相应的k = ; (2)函数ky x =中,当x =2时,y =3,则函数的解析式为 【解析】(1)32- ;(2)6y x=.题型三根据定义确定待定系数的值【例3】(1)如果函数2+1m y x = 是关于x 的反比例函数,则m 的值为 (2)若函数()252m y m x -=+ (m 为常数)是关于x 的反比例函数,求m 的值及函数的解析式。
【解析】(1)-1;(2)m =2,y =4x .针对练习11.下列函数中,为反比例函数的是(B )A . 3x y =B . 13y x =C . 13y x =-D .21y x=答案:B2.反比例函数y =一化为ky x=的形式后,相应的k =答案: 3.若关于x 的函数()2274mm y m x --=- 是反比例函数,求m 的值答案:3.【板块二】反比例函数的图象和性质 式抓住反比例函数的性质并结合图象解题 一般地,对于反比例函数()0ky k x=≠,由函数图象,并结合解析式,我们可以发现: 1.图象分布当k >0时,x ,y (同号或异号),函数图象为第 象限的两支曲线;当k <0时,x ,y (同号或异号),函数图象为第 象限的两支曲线。
3反比例函数与方程、不等式、一次函数综合.教师版

板块一 反比例函数与方程、不等式1. 此类问题重点会考察通过数形结合的思想去解方程和不等式的解2. 反比例函数与方程(组):如图,一次函数2y x =+与反比例函数3y x=相交于(1,3)A 、(3,1)B --,点(3,1)C 是反比例函数my x =上的点,直线AB 交x 轴于点(2,0)D -,因此我们得到13x y =⎧⎨=⎩、31x y =-⎧⎨=-⎩、31x y =⎧⎨=⎩都是方程30y x -=的解,13x y =⎧⎨=⎩、31x y =-⎧⎨=-⎩、20x y =-⎧⎨=⎩都是方程20xy -+=的解,但是因为方程30y x-=,方程20x y -+=都是不定方程,所以他们的解有无数组,分别对应的是函数图象上点的横、纵坐标。
方程组320y x x y ⎧-=⎪⎨⎪-+=⎩的解为13x y =⎧⎨=⎩、31x y =-⎧⎨=-⎩,分别对应了一次函数2y x =+与反比例函数3y x=交点A 、B 的横、纵坐标3. 反比例函数与不等式:如图,反比例函数3y x=图象上两点(1,3)A 、(3,1)B --,分别过A 、B 两点作y 轴的垂线1l 、2l ,直线1l 、2l 以及x 轴将反比例函数图象分成四部分:3y >、03y <<、10y -<<、1y <- ⑴当3y >时,对应的x 的取值范围是01x << ⑵当03y <<时,对应的x 的取值范围是1x > ⑶当10y -<<时,对应x 的取值范围是3x <- ⑷当1y <-时,对应x 的取值范围是30x -<<反比例函数与一次函数综合如图,一次函数2y x =+与反比例函数3y x=相交于(1,3)A 、(3,1)B --,分别过A 、B 两点作x 轴的垂线2l ,1l ,则1l 、2l 、y 轴将直线和双曲线分成四段:3x <-,30x -<<,01x <<、1x >⑴当3x <-时,双曲线在直线上方,则32x x >+⑵当30x -<<时,双曲线在直线下方,则32x x <+⑶当01x <<时,双曲线在直线上方,则32x x >+⑷当1x >时,双曲线在直线下方,则32x x<+反之,若32x x >+,则3x <-或01x <<;若32x x <+,则30x -<<或1x >【例1】 已知函数11y x =-和26y x=⑴在如图所示坐标系中画出这两个函数的图象; ⑵求这两个函数图象的交点坐标;⑶观察图象,当x 在什么范围时,12y y >【解析】本题是反比例函数与方程组和不等式的综合,直线与双曲线交点的坐标即是两个函数解析式所组成的方程组的解;判定两函数值的大小可利用图象,根据点的坐标的意义来判定【答案】⑴略;⑵联立方程组得16y x y x =-⎧⎪⎨=⎪⎩,解得1123x y =-⎧⎨=-⎩;2233x y =⎧⎨=-⎩ ∴两函数图象的交点坐标为(2,3)--、(3,2) ⑶根据图象得,当3x >或20x -<<时,12y y >【巩固】如图,反比例函数ky x=的图像与一次函数y mx b =+的图像交于(13)A ,,(1)B n -,两点. (1)求反比例函数与一次函数的解析式;(2)根据图像回答:当x 取何值时,反比例函数的值大于一次函数的值.【解析】略【答案】(1)∵(13)A ,在ky x=的图像上, ∴3k =,3y x=又∵(1)B n -,在3y x=的图像上, ∴3n =-,即(31)B --, 313m bm b =+⎧⎨-=-+⎩,解得:1m =,2b =, 反比例函数的解析式为3y x=,一次函数的解析式为2y x =+.(2)从图像上可知,当3x <-或01x <<时,反比例函数的值大于一次函数的值.【巩固】如图,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点()13A ,. (1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.【解析】略 【答案】(1)由题意,得31m =+,解得2m =,所以一次函数的解析式为12y x =+.由题意,得31k=, 解得3k =,所以反比例函数的解析式为23y x=. 由题意,得32x x+=,解得1213x x ==-,. 当23x =-时,121y y ==-,所以交点(31)B --,. (2)由图象可知,当30x -≤<或1x ≥时, 函数值12y y ≥.【例2】 如图,已知()()424A n B --,,,是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及AOB ∆的面积;(3)求方程0mkx b x +-=的解(请直接写出答案);(4)求不等式0mkx b x+-=的解集(请直接写出答案).【解析】(1)∵()24B -,在函数my x=的图象上 ∴8m =-.∴反比例函数的解析式为:8y x=-. ∵点()4A n -,在函数8y x=-的图象上∴2n =∴()42A -,∵y kx b =+经过()42A -,,()24B -,, ∴4224k b k b -+=⎧⎨+=-⎩解之得12k b =-⎧⎨=-⎩∴一次函数的解析式为:2y x =-- (2)∵C 是直线AB 与x 轴的交点 ∴当0y =时,2x =-∴点()20C -,∴2OC =∴112224622AOB ACO BCO S S S ∆∆∆=+=⨯⨯+⨯⨯=(3)1242x x =-=, (4)40x -<<或2x >【答案】见解析【巩固】利用图象解一元二次方程230x x +-=时,我们采用的一种方法是:在平面直角坐标系中画出抛物线2y x =和直线3y x =-+,两图象交点的横坐标就是该方程的解.(1)填空:利用图象解一元二次方程230x x +-=,也可以这样求解:在平面直角坐标系中画出抛物线y = 和直线y x =-,其交点的横坐标就是该方程的解.(2)已知函数6y x =-的图象(如图所示),利用图象求方程630x x-+=的近似解(结果保留两个有效数字).xx【解析】(1)32-x(2)由图象得出方程的近似解为:121.4 4.4x x ≈-≈, 【答案】见解析板块二 反比例函数与一次函数的综合☞反比例函数与一次函数图象分布【例3】 函数1y kx =+与函数ky x=在同一坐标系中的大致图象是( )A B C D【解析】假设法与排除法 【答案】D【巩固】函数y ax a =-与ay x=(0a ≠)在同一直角坐标系中的图象可能是( )A B C D【解析】假设法与排除法 【答案】D☞反比例函数与一次函数图象有关交点问题【例4】 在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为()2A a ,,则k 的值等于 . 【解析】本题主要考察一次函数和反比例函数的表达式。
中考数学专题复习7反比例函数及其运用(解析版)

反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。
(中考考点梳理)反比例函数-中考数学一遍过

考点10 反比例函数一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况. 六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一 反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为1.典例1 下列函数中,y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】Ak x 21x1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.学科=网双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一坐标系中,函数y=和y =–kx +3的大致图象可能是 A . B .C .D .kx【答案】D【解析】A 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k >0,根据一次函数图象可得–k >0,则k <0,则选项错误; B 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k >0, 根据一次函数图象可得–k >0,则k <0,则选项错误; C 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k <0, 根据一次函数图象可得–k <0,则k >0,则选项错误; D 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k >0, 根据一次函数图象可得–k <0,则k >0,故选项正确. 故选D .典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)ky k x=<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 kxkxkxkxA .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =D .y=–4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x=B .6y x=-3x 1xC .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A .y =2xB .y =-2xC .y =12xD .y =-12x【答案】B【解析】设反比例函数表达式为y =k x ,把M (2-,1)代入y =k x 得,k =(-2)×1=-2,∴2y x=-,故选B .典例7 如图,C 1是反比例函数y=在第一象限内的图象,且过点A(2,1),C 2与C 1关于x 轴对称,那么图象C 2对应的函数的表达式为__________(x >0).【答案】y =–【解析】∵C 2与C 1关于x 轴对称, ∴点A 关于x 轴的对称点A ′在C 2上, ∵点A (2,1), ∴A ′坐标(2,–1),kx2x∴C 2对应的函数的表达式为y =–, 故答案为y =–.5.已知反比例函数y =-6x,下列各点中,在其图象上的有 A .(-2,-3) B .(2,3) C .(2,-3)D .(1,6)6.点A 为反比例函数图象上一点,它到原点的距离为5,则x 轴的距离为3,若点A 在第二象限内,则这个函数的解析式为A .y =12xB .y =-12xC .y =112xD .y =-112x7.在平面直角坐标系中,点P (2,a )在反比例函数y =的图象上,把点P 向上平移2个单位,再向右平移3个单位得到点Q ,则经过点Q 的反比例函数的表达式为__________.考向四 反比例函数中k 的几何意义三角形的面积与k 的关系 (1)因为反比例函数ky x=中的k 有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k |,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,点A 为函数ky x=(x >0)图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果△AOB 的面积为2,那么k 的值为2x2x2xA .1B .2C .3D .4【答案】D【解析】设点A 坐标为(m ,n ),则有AB =m ,OB =n ,由题意可得:12mn =2,所以mn =4,又点A 在双曲线ky x=上,所以k =mn =4,故选D . 典例9 如图,已知双曲线经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若△OBC 的面积为9,则k =__________.【答案】6ky x=【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k |,结合函数图象所在的象限可以确定k 的值,反过来,根据k 的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k 的几何意义,以简化运算.8.如图,A 、B 两点在双曲线4y x=的图象上,分别经过A 、B 两点向轴作垂线段,已知1S =阴影,则12S S +=A .8B .6C .5D .49.如图,点A ,B 是反比例函数yx >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA 、BC ,已知点C (2,0),BD =3,S △BCD =3,则S △AOC 为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y =x 的图象是过原点经过一、三象限,1y x=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A . 典例11 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知,一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1,3),(3,-1),∴当y 1<y 2时,-1<x <0或x >3,故选B .【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用. 典例12 如图,已知直线y =–xy x>0)交于A 、B 两点,连接OA ,若OA ⊥AB ,则k 的值为A .B .C D 【答案】B【解析】如图,过A 作AE ⊥OD 于E ,139102710∵直线解析式为y =–xC (0D (0), ∴OC ODRt △COD 中,CD =10,∵OA ⊥AB ,∴CO ×DO =CD ×AO , ∴AO =3,∴AD =9, ∵OD ×AE=AO ×AD ,∴AE∴Rt △AOE 中,OE,∴A), ∴代入双曲线yk=,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.13121212122710mx考向六 反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系; (2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示; (3)列:由题目中的已知条件列出方程,求出待定系数; (4)写:写出函数解析式,并注意解析式中变量的取值范围; (5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min ,之后将对泄漏有害气体进行清理,线段DE 表示气体泄漏时车间内危险检测表显示数据y 与时间x (min )之间的函数关系(0≤x ≤40),反比例函数y=对应曲线EF 表示气体泄漏控制之后车间危险检测表显示数据y 与时间x (min )之间的函数关系(40≤x ≤?).根据图象解答下列问题: (1)危险检测表在气体泄漏之初显示的数据是__________;kx(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y=的图象上, ∴80=,得k =3200, 即反比例函数y=,当y =20时,20=,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?kx40k3200x 3200x1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x =.21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.已知反比例函数y =kx的图象过点A (–3,2),则k 的值为 A .3 B .6C .–6D .–34.已知点A (2,y 1)、B (4,y 2)都在反比例函数ky x=(k <0)的图象上,则y 1、y 2的大小关系为 A .y 1>y 2 B .y 1<y 2C .y 1=y 2D .无法确定5.如图,在平面直角坐标系xOy 中,函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --,则不等式mkx b x+>的解集为A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<6.如图,点A 、点B 是函数y =kx的图象上关于坐标原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积是4,则k 的值是A .–2B .±4C .2D .±27.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD ⊥y 轴于点D ,交y =2x 的图象于点B .当点M 在y =ax的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是A .0个B .1个C .2个D .3个8.如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数y =6x的图象与AB 边交于点D ,与BC 边交于点E ,连接DE ,将△BDE 沿DE 翻折至△B 'DE 处,点B '恰好落在正比例函数y =kx 图象上,则k 的值是A .-25B .-121C.-15D.-1249.如图,直线y=x A,且OA=2,则k的值为__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=kx的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=__________.13.如图,已知反比例函数ky x与一次函数y =x +b 的图象在第一象限相交于点A (1,-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.14.如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=(n 为常数,且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.nxnx15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.(2018·辽宁省阜新市)反比例函数y=kx的图象经过点(3,–2),下列各点在图象上的是A.(–3,–2)B.(3,2)C.(–2,–3)D.(–2,3)2.(2018·甘肃省天水市)函数y1=x和y2=1x的图象如图所示,则y1>y2的x取值范围是A.x<–1或x>1 B.x<–1或0<x<1 C.–1<x<0或x>1 D.–1<x<0或0<x<13.(2018·黑龙江省大庆市)在同一直角坐标系中,函数y=kx和y=kx–3的图象大致是A.B.C.D.4.(2018·广西玉林市)如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于A B.C.4 D.5.(2018·吉林省长春市)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为A.4 B.C.2 D6.(2018·广西贺州市)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(–3,–2),B(2,3)两点,则不等式y1>y2的解集是A.–3<x<2 B.x<–3或x>2 C.–3<x<0或x>2 D.0<x<27.(2018·山东省日照市)已知反比例函数y=–8x,下列结论:①图象必经过(–2,4);②图象在第二,四象限内;③y随x的增大而增大;④当x>–1时,则y>8.其中错误的结论有A.3个B.2个C.1个D.0个8.(2018·四川省攀枝花市)如图,已知点A在反比例函数y=kx(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连接DB并延长交y轴于点E,若△BCE的面积为4,则k=__________.9.(2018·四川省泸州市)一次函数y=kx+b(k≠0)的图象经过点A(2,–6),且与反比例函数y=–12 x的图象交于点B(a,4).(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2=6x的图象相交,求使y1<y2成立的x的取值范围.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C.2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意; D 、为反比例函数,k 的值小于0,x <0时,y 随x 的增大而增大,不符合题意; 故选C . 4.【答案】B 【解析】由图知,yyyk 1<0,k 2>0,k 3>0,又当x =1时,有k 2<k 3,∴k 3>k 2>k 1,故选B . 5.【答案】C【解析】∵反比例函数y =-中,k =-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C 选项符合,故选C .7.【答案】y =【解析】∵点P (2,a )在反比例函数y =的图象上, ∴代入得:a ==1, 即P 点的坐标为(2,1),∵把点P 向上平移2个单位,再向右平移3个单位得到点Q , ∴Q 的坐标是(5,3),设经过点Q 的反比例函数的解析式是y =, 把Q 点的坐标代入得:c =15, 即y =, 故答案为:y =. 8.【答案】B6x15x2x22c x15x15x【解析】∵点A 、B 是双曲线y =上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4,∴S 1+S 2=4+4-1×2=6,故选B .10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×=k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =图象上, ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4,n )在y =–图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴,解得.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,4x2k2kky x=mx8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x =0时,y =–2, ∴点C (0,–2). ∴OC =2,∴S △AOB =S △ACO +S △BCO=×2×4+×2×2=6. 13.【解析】(1)当0≤x <5时,为一次函数,设一次函数表达式为y =kx +b ,由于一次函数图象过点(0,15),(5,60),所以,解得:,所以y =9x +15,当x ≥15时,为反比例函数,设函数关系式为:y =, 由于图象过点(5,60),所以m =300. 则y =;学-科网 (2)当0≤x <5时,y =9x +15=30,得x =, 因为y 随x 的增大而增大,所以x >, 当x ≥5时,y ==30, 得x =10,因为y 随x 的增大而减小, 所以x <10,10–=. 答:可加工min . 1.【答案】C121215560b k b =+=⎧⎨⎩159b k ==⎧⎨⎩mx300x5353300x 53253253【解析】由反比例函数的定义知,是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C 【解析】∵函数的图象过点A (–3,2),∴,解得.故选C .6.【答案】C【解析】∵反比例函数的图象在第一、三象限,∴k >0, ∵BC ∥x 轴,AC ∥y 轴,且点A 、点B 关于坐标原点对称, ∴S △AOD =S △BOE =k ,∴S 矩形OECD =2△AOD =k , ∴S △ABC =S △AOD +S △BOE +S 矩形OECD =2k =4,解得k =2. 故选C .8.【答案】【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =的图象上,∴D (6,1),E (,4),∴BE =6-=,BD =4-1=3,∴ED =BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关13y x=8k x-k y x=23k =-6k =-126x 32329232于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即BF=3×,∴BF,∴BB,设EG =x ,则BG =-x,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴()2-(-x )2=()2-x 2,∴x =,∴EG =,∴CG =,∴B ′G =,∴B ′(,-),∴k=-,故选B .9.【答案】2【解析】∵点A在直线y =x 上,且OA =2,∴点A 得,,∴k=2,故答案为:2. 10.【答案】5【解析】过点作轴,垂足于点;过点作轴,垂足为点.∵点是中点,∴.易得△APF ≌△BPE ,∴,∴,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (,2),∵E 是CD 边中点,∴E (-2,1),∴-2=k ,解得k =-4,故答案为:-4. 329292929245264526421354134213213121ky x==A AF y ⊥FB BE y ⊥E P AB PA PB =APF BPE S S = ABCD ACOF EODB S S S =+ 23=-+5=2k 2k2k12.【答案】6【解析】∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数y =得,点A 的纵坐标为,点B 的横坐标为,即AM =,NB =,∵S 四边形OAPB =12,即S矩形OMPN -S △OAM -S △NBO =12,6×3-×6×-×3×=12,解得k =6,故答案为:6. 13.【解析】(1)∵已知反比例函数经过点A (1,-k +4), ∴,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2),∴2=1+b ,∴b =1,∴反比例函数的表达式为, 一次函数的表达式为y =x +1. (2)由,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0,∴x =-2或x =1.∴y =-1或y =2.∴或. ∵点B 在第三象限,∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)由已知,OA =6,OB =12,OD =4,∵CD ⊥x 轴,∴OB ∥CD ,∴△ABO ∽△ACD ,k x6k 3k 6k 3k 126k 123k k y x =41k k -+=2y x=12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩∴=,∴=,∴CD =20, ∴点C 坐标为(–4,20),∴n =xy =–80,∴反比例函数解析式为:y =–, 把点A (6,0),B (0,12)代入y =kx +b 得:,解得, ∴一次函数解析式为:y =–2x +12;(2)当–=–2x +12时,解得x 1=10,x 2=–4; 当x =10时,y =–8,∴点E 坐标为(10,–8),∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; (3)不等式kx +b ≤,从函数图象上看,表示一次函数图象不高于反比例函数图象; ∴由图象得,x ≥10,或–4≤x <0.(2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y =40代入y 2=得:x =55. 55-5=50.所以完成一份数学家庭作业的高效时间是50分钟. 1.【答案】D【解析】∵反比例函数y =的图象经过点(3,–2),∴xy =k =–6, A 、(–3,–2),此时xy =–3×(–2)=6,不合题意;B 、(3,2),此时xy =3×2=6,不合题意;C 、(–2,–3),此时xy =–3×(–2)=6,不合题意;OA AD OB CD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212n x2200xk xD 、(–2,3),此时xy =–2×3=–6,符合题意;故选D .【名师点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出k 的值是解题关键. 2.【答案】C【解析】观察图象可知当–1<x <0或x >1时,直线在双曲线的上方,所以y 1>y 2的x 取值范围是–1<x <0或x >1,故选C .【名师点睛】本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.3.【答案】B【解析】分两种情况讨论:①当k >0时,y =kx –3与y 轴的交点在负半轴,过第一、三、四象限,反比例函数的图象在第一、三象限;②当k <0时,y =kx –3与y 轴的交点在负半轴,过第二、三、四象限,反比例函数的图象在第二、四象限,观察只有B 选项符合,故选B .【名师点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.4.【答案】B【解析】点C 在双曲线y =上,AC ∥y 轴,BC ∥x 轴, 设C (a ,),则B (3a ,),A (a ,),∵AC =BC ,∴=3a –a ,解得a=1(负值已舍去), ∴C(1,1),B(3,1),A(1,3),∴AC =BC =2,∴Rt △ABC 中,AB,故选B .【名师点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y )的横纵坐标的积是定值k ,即xy =k .5.【答案】A【解析】作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形,∴AC AB ,∴BD =AD =CD ,∵AC ⊥x 轴,∴C (,),把C (,)代入y =得k =4,故选A . 1x1a 1a 3a31–a a k x【名师点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k 是解题的关键.6.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=(c 是常数,且c ≠0)的图象相交于A (–3,–2),B (2,3)两点,∴不等式y 1>y 2的解集是–3<x <0或x >2,故选C .【名师点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.【名师点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.8.【答案】8【解析】∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∴∠DBC =∠ACB ,又∠DBC =∠EBO ,∴∠EBO =∠ACB ,又∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,∴,即BC ×OE =BO ×AB . 又∵S △BEC =4, ∴BC •EO =4, 即BC ×OE =8=BO ×AB =|k |.∵反比例函数图象在第一象限,k >0.∴k =8.故答案是:8.【名师点睛】本题考查反比例函数系数k 的几何意义.反比例函数y =中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思k xc xBO OE BC AB=12k x想,做此类题一定要正确理解k 的几何意义.9.【解析】(1)∵反比例函数y =–的图象过点B (a ,4), ∴4=–,解得:a =–3, ∴点B 的坐标为(–3,4).学=科网将A (2,–6)、B (–3,4)代入y =kx +b 中,,解得:, ∴一次函数的解析式为y =–2x –2.(2)直线AB 向上平移10个单位后得到直线l 的解析式为:y 1=–2x +8.联立直线l 和反比例函数解析式成方程组,,解得,, ∴直线l 与反比例函数图象的交点坐标为(1,6)和(3,2).画出函数图象,如图所示.观察函数图象可知:当0<x <1或x >3时,反比例函数图象在直线l 的上方,∴使y 1<y 2成立的x 的取值范围为0<x <1或x >3.【名师点睛】反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式以及解方程组,解题的关键是:(1)根据点A 、B 的坐标利用待定系数法求出直线AB 的解析式;(2)联立两函数解析式成方程组,通过解方程组求出两函数图象的交点坐标.12x 12a2634k b k b +-⎧⎨-+⎩==22k b -⎩-⎧⎨==286y x y x =-+=⎧⎪⎨⎪⎩1116x y ⎧⎨⎩==2232x y ⎧⎨⎩==。
反比例函数与不等式 ppt课件

专题二 反比例函数与不等式
《财主和帽子》的故事: 有一个贪婪的财主,拿了一匹上好的布料准备做一顶帽子,到了裁缝 店,觉得这样好的布料做一顶帽子似乎浪费了,于是问裁缝:“这匹 布可以做两顶帽子吗?” 裁缝看了看财主一眼,说:“可以。” 财主见他回答得那么爽快,心想,这裁缝肯定是从中占了些什么便宜, 于是又问,“那做3顶帽子行吗?” 裁缝依然很爽快地说:“行!” 这时,财主更加疑惑了,嘀咕着:“多好的一匹布啊,那我做4顶可以 吗” “行!”裁缝仍然很快地回答。 经过一翻的较量后,财主最后问:“那我想做10顶帽子可以吗?” 裁缝迟疑了一会,然后打量着财主,慢慢的说:“可以的。”这时财 主才放下心来,心想:这匹布料如果只做一顶帽子,那就便宜裁缝了。 瞧!这不让我说到10顶了吧。 我还真聪明!嘿嘿…… 过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的 帽子小得只能戴在手指头上了!
y2=
y1=kx+b
解:(1)∵反比例函数 y2=mx 的图象过点 A(2,5),∴5=m2 ,m=10 即反比例函数的解析 式为 y=1x0.∵一次函数 y1=kx+b 的图象过 A(2,5)和 C(0,7),∴5=2k+7,k=-1,即 一次函数解析式为 y=-x+7
(2)解方程组yy= =- 1x0x+7得xy11= =25或xy22= =52,∴另一交点 B 的坐标为(5,2).根据图象可
A.x<-1 或 x>1B.x<-1 或 0<x<1
C.-1<x<0 或 x>1D.-1<x<0 或 0<x<1
y1=k1x+b
y2=
变式 1.(2014·聊城)如图,一次函数 y1=k1x+b 的图象和反比例函数 y2=kx2 的图象交于 A(1,2),B(-2,-1)两点,若 y1<y2,则 x 的取值范围是( D )
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。
北师大版数学九年级上册6.1反比例函数(教案)

1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x (k≠0)的函数,其中x为自变量,y为函数,k为常数。它在生活中有广泛的应用,如速度与时间、压力与面积等关系。
2.案例分析:接下来,我们来看一个具体的案例。以物体在反比例力作用下移动的距离与速度的关系为例,分析反比例函数在实际中的应用,以及如何帮助我们解决问题。
-反比例函数图像的绘制,理解不同k值对图像的影Байду номын сангаас。
-反比例函数在实际问题中的应用,如何建立模型并求解。
举例:讲解反比例函数定义时,通过具体例子(如物体在反比例力作用下移动的距离与速度的关系)来说明函数表达式的含义。
2.教学难点
-反比例函数性质的深入理解,特别是k值的正负对图像和函数值的影响。
-图像的绘制,如何准确把握双曲线的形状及其在坐标平面上的位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.提高学生数学建模能力:使学生能够从实际问题中抽象出反比例函数关系,建立数学模型,并利用模型分析和解决问题。
3.强化学生空间想象能力:通过观察和分析反比例函数图像,培养学生对双曲线及其在坐标平面上的位置关系的想象能力。
4.增强学生数学运算能力:让学生掌握反比例函数运算方法,能够熟练求解涉及反比例函数的方程和不等式,提高运算准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学
反比例函数与方程、不等式、教学目标:
1、使学生体会到函数、方程、不等式的统一关系
2、进一步体现出新教材中数形结合的思想
二.教学重点:形结合的思想
教学难点:函数、方程、不等式的统三.教学过程: (一)、复习导入
1、如右图,是反比例函数y -的图象,点A 1,2是
x
图像上在第一象限的点,贝U k=_________ ,
长方形OABC勺面积为______ ,
思考k与面积的关系:_________________ (相等或不等)
2、如右图,是反比例函数y -的图象,点A x, y是图
x
像上在第一象限的点,则长方形OABC勺面积为 _________ ,k
由y —变形得k= _______________
x
••• k与面积的关系: ______________ (相等或不等)
(二八讲授新课例1:,如右图是反比例函数y - k 0的
图象,
x
点A是图象上的任意一点,AB丄x轴于B, 若阴影部
分的面积为6,则k= _____________________
•反比例函数表达式为 _____________
变式训练题组一
k
1、如右是反比例函数y k k 0的部分图象,阴影部分的
x
面积为4,则k= ________ 反比例函数表达式为___________
2、如右是反比例函数y k k 0的部分图象,阴影部分的
x
面积为3,则k= ________ 反比例函数表达式为___________
k
3、如右是反比例函数y k k 0的部分图象,阴影部分的面
x
积为2,则k= ______ 反比例函数表达式为 __________________
外
A
H X
0 I
y
U 0K
x
变式训练题组三
1、 已知一次函数y=mx 与反比例函数y=-的图象相交于点(1,3),?求该直线与双曲线的另
x
一个交点坐标 _______________ ;
2
2、 函数y=-和y=-x+4的图象的交点在第 ___________ 象限.
x
3、 如右图所示是,一次函数函数 y 1 x 1和反比例函数 y 6的图象,
例
2、如右图是y kx b 与y m 在同一坐标系中的图象
x 请判断:k 0 ,b 0 ,m 0 变式训练题组二 1、请在下边的坐标系中同时画出 2x 1 与 y 3
-的大致图象。
x
2、请在右边的坐标系中同时画出 kx b 与 y
m
的大致图象。
其中k 0, b 0, m 0 x
例3、如图所示,一次函数
kx m
b 的图象与反比例函数丫2
—的图象
x
相交于A 、B 两点, 禾U 用图中条件,求该反比例函数和一次函数的解析式; y kx b 看图,指出方程组 m 的解 y — x
观察图象,当x 在什么范围时, (1) (2) (3) 解:(1)v 反比例函数图象经过A(-2,1),
把(-2,1)代入y 2 m
得
x
则反比例函数的表达式为 把(1, n)代入上式得得
y i v ,解之得
y 2 ? B(1,n)点
,解之得n=
y x 1
(1)求方程组 6 的解;
y -
x
(2)观察图象,当x在什么范围时,y i v y ?
解:(1)
(2)
(三)课堂练习
1 .面积为4的矩形一边为x ,另一边为y,则y与x的变化规律用图象大致表示为 ()
D.
y
2、下列各点中, 在函数y
A、(2, 1)
2
2的图像上的是(
x
、(-2 , 1) C
3、一次函数y2x 1与反比例函数y
C.2
、(2, -2) D 、(1, 2)
4
4的图象交点的个数为(
x
个
D. 无数个
A. 0个个
B.
1
在同一平面直角坐标系的图象大致是(
t
, k ,
5、如图,关于x的函数y=k(x-1)和y=- - (k工0),它们在同一坐标系内的图象大致是()
x
7、已知一次函数y
坐标是-2,点B的纵坐标是-2,求这个一次函数的解析式
解:
y
(四)课堂小结
这节课我们学习了什么内容?有什么收获?你还有什么疑问吗?
(五)作业
(六)反思。