八年级数学平方差公式
八年级数学《平方差公式》课件图文详解
知2-导
利用这个公式, 可以直接计算 两数和乘以这 两数的差.
这两个特殊的多项式相乘,得到的结果特别简洁:
(a + b) (a-b)=a2 -b2.
这就是说,两数和与这两数差的积,等于这两数的平方差. 这个公式叫做两数和与这两数差的乘法公式,有时也简称 为平方差公式.
知2-讲
平方差公式: 两数和与这两数差的积,等于这两数的平方差. 用式子表示为:(a+b)(a-b)=a2-b2.
-2 0192 =2 0192-1-2 0192=-1.
总结
知3-讲
本题运用转化思想求解.运用平方差公式计算两数乘 积问题,关键是找到这两个数的平均数,再将原两个 数与这个平均数进行比较,变形成两数的和与这两数 的差的积的形式,利用平方差公式可求解.
知3-练
1 计算2 0162-2 015×2 017的结果是( )
项的平方 减去相反项的平方 . 3. 理解字母a,b的意义,平 方差公式中的a,b既
可代 表一个单项式,也可代表 一个多项式 .
知1-讲
知1-练
1 下列计算能运用平方差公式的是( )
A.(m+n)(-m-n)
B.(2x+3)(3x-2)
C.(5a2-b2c)(bc2+5a2)
D.
2 3
m2
3 4
解: (1) (a+3)(a-3)=a2-32=a2-9. (2)(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b2. (3) (1+2c)(1-2c)=12-(2c)2=1-4c2. (4)(-2x-y)(2x-y)=(-y-2x)(-y+2x)=(-y)2-(2x)2=y2-4x2.
n3
八年级数学平方差公式
几何图形面积计算
计算矩形面积
在几何图形中,矩形的面积可以表示 为长乘以宽,即 $S = ab$。当长和 宽相差不大时,可以利用平方差公式 近似计算面积。
计算平行四边形面积
平行四边形的面积可以表示为底乘以 高,即 $S = ah$。当底和高相差不大 时,同样可以利用平方差公式进行近 似计算。
实际问题解决策略
公式形式及推导过程
公式形式: (a+b)(ab)=a²-b²
推导过程
=a²ab+ab-b²
=a²-b²
左边 =(a+b)(ab)
=右边
适用范围及注意事项
适用范围:平方差公式适用于所有实数 范围内的运算,包括正数、负数以及0。
在进行复杂运算时,可以结合其他公式 或定理进行推导和计算。
在进行因式分解时,需要注意符号问题 ,确保分解后的因式与原式相等。
完全平方公式定义
阐述完全平方公式的概念, 即形如$(a+b)^2$或$(ab)^2$的代数式展开后得 到的公式。
完全平方公式推导
通过代数运算,展示如何 从$(a+b)^2$和$(ab)^2$推导出完全平方公 式。
完全平方公式应用
举例说明完全平方公式在 因式分解、化简求值等问 题中的应用。
立方差、立方和公式推导
THANKS
感谢观看
06
总结回顾与展望未来
关键知识点总结回顾
平方差公式的基本形式
$a^2 - b^2 = (a + b)(a - b)$,其中$a$和$b$是任意实数。
平方差公式的推导过程
利用分配律和整式的乘法法则,可以将$(a + b)(a - b)$展开为 $a^2 - ab + ab - b^2$,化简后得到$a^2 - b^2$。
八年级数学平方差公式和完全平方公示记忆
一、导言在数学学科中,平方差公式和完全平方公式是中学阶段必须掌握的重要知识点。
从初中开始,学生就需要掌握这两个公式的具体内容和运用方法。
八年级是数学学科内容较多的阶段,学习者需要在日常学习中加强对平方差公式和完全平方公式的记忆和理解。
本文章旨在帮助八年级学生加深对这两个数学概念的印象,提高数学学习成绩。
二、平方差公式的记忆1.平方差公式是指两个数的平方差可以用来表示两个数的乘积。
具体公式为(a+b)(a-b)=a²-b²。
2.学生在记忆平方差公式时,可以通过以下方法加深理解和记忆:a.通过实例理解。
将(a+b)(a-b)展开可以得到a²-ab+ab-b²,简化后得到a²-b²,这样可以直观地理解平方差公式的含义。
b.多练习算式转换。
让学生多做一些相关的抽象计算练习,锻炼学生对平方差公式的运用能力。
充分练习可以加深记忆,也有助于提高数学计算能力。
三、完全平方公式的记忆1.完全平方公式是指一个二次多项式能够被写成一个完全平方的形式,即二次多项式的平方等于一个平方数。
具体公式为a²+2ab+b²=(a+b)²。
2.学生在记忆完全平方公式时,可以通过以下方法进行记忆和理解:a.设定变量。
让学生通过给定一些具体的实际数学问题,然后使用完全平方公式进行推导和解决问题,可以在实际操作中加深对完全平方公式的理解和记忆。
b.应用到实际问题。
同样可以利用具体实例,让学生仿照实际问题中的公式应用,从而加深对公式的记忆和理解。
四、平方差公式和完全平方公式的联系1.平方差公式和完全平方公式之间有一定联系。
在实际问题中,可以通过平方差公式和完全平方公式进行变形和转换,以解决特定问题。
2.学生在学习中需要注意理解和掌握这两个公式的联系和差异,举一反三,灵活运用。
五、结语在数学学科中,平方差公式和完全平方公式是非常基础但又非常重要的知识点。
八年级数学平方差公式1
复习:运用平方差公式计算:
1) .(a+2)(a-2);
2) . (x+2y) (x-2y)
3). (t+4s)(-4s+t)
看谁做得最快最 正确!
4). (m² +2n² )(2n² - m² )
(1)观察多项式x2 –25,9 x2- y2 , 它们有什么共同特征?
(2)尝试将它们分别写成两个因式的 乘积,并与同伴交流。
3.当要分解的多项式是两个多项式的平方时,分解成的两个因式要 进行去括号化简,若有同类项,要进行合并,直至分解到不能再分 解为止。
4.运用平方差分解因式,还给某些运算带来方便,故应善于运用此 法,进行简便计算。 5.在因式分解时,若多项式中有公因式,应先提取公因式,再
考虑运用平方差公式分解因式。
随堂练习:
P49
1
2
巩固练习:
1.选择题:
1)下列各式能用平方差公式分解因式的是( D A. 4X² +y² B. 4 x- (-y)² C. -4 X² -y³ ( D )
D. - X² + y² )
2) -4a² +1分解因式的结果应是 A. -(4a+1)(4a-1) B.
-( 2a –1)(2a –1)
C. -(2a +1)(2a+1)
2. 把下列各式分解因式: 1)18-2b² 2) x4 –1
D.
-(2a+1) (2a-1)
1)原式=2(3+b)(3-b)
2)原式=(x² +1)(x+1)(x-1)
做一做
2、如图,在一块边长 为 acm 的正方形的四 角,各剪去一个边长为 bcm的正方形,求剩余 部分的面积。如果 a=3.6,b=0.8呢?
初二数学平方差公式
初二数学平方差公式
在初中数学中,平方差公式是一个非常重要的公式,它可以帮助我们快速地求出两个数的平方差。
平方差公式的表达式为:$a^2-b^2=(a+b)(a-b)$。
平方差公式的应用非常广泛,它可以用于解决各种数学问题。
下面我们来看一些具体的例子。
例1:求两个数的平方差
假设有两个数,分别为3和5,求它们的平方差。
根据平方差公式,我们可以得到:
$3^2-5^2=(3+5)(3-5)=-16$
因此,3和5的平方差为-16。
例2:求一个数的平方与另一个数的平方差
假设有两个数,分别为4和6,求它们的平方差。
根据平方差公式,我们可以得到:
$4^2-6^2=(4+6)(4-6)=-20$
因此,4的平方与6的平方差为-20。
例3:求一个数的平方与另一个数的平方和
假设有两个数,分别为2和7,求它们的平方和。
根据平方差公式,我们可以得到:
$2^2+7^2=(2+7)(2-7)=-45$
因此,2的平方与7的平方和为45。
通过以上三个例子,我们可以看到平方差公式的应用非常广泛,它可以用于解决各种数学问题。
在学习数学的过程中,我们需要掌握平方差公式的使用方法,这样才能更好地解决数学问题。
平方差公式是初中数学中非常重要的一个公式,它可以帮助我们快速地求出两个数的平方差。
在学习数学的过程中,我们需要多加练习,掌握平方差公式的使用方法,这样才能更好地解决数学问题。
八年级数学上册教学课件《平方差公式》
探究新知
知识点 平方差公式
14.2 乘法公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5)
=x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积变了吗?
a米
a米 5米
相等吗?
14.2 乘法公式
数学 八年级 上册
14.2 乘法公式
14.2 乘法公式
14.2.1 平方差公式
导入新知
观察与思考
14.2 乘法公式
某同学在计算97×103时将其变成(100–3)(100+3) 并很快得出结果,你知道他运用了什么知识吗?这 节课,我们就来一起探讨上述计算的规律.
素养目标
14.2 乘法公式
2. 了解平方差公式的几何意义,体会数 形结合的思想方法.
14.2 乘法公式
(2)(3x+4)(3x–4)–(2x+3)(3x–2) . (2) 原式=(3x)2–42–(6x2+5x–6)
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
14.2 乘法公式
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
14.2 乘法公式
探究新知
素养考点 1 利用平方差公式计算
14.2 乘法公式
例1 计算:(1) (3x+2 )( 3x–2 ) ;
(2)(–x+2y)(–x–2y). 解: (1)原式=(3x)2–22
人教版八年级数学上册14.2.2 第1课时 完全平方公式
例题1:下面各式的计算是否正确?如果不正确, 应当怎样改正?
(1)(x+y)2=x2 +y2
×
(x +y)2 =x2+2xy +y2
(2)(x -y)2 =x2 -y2
×
(x -y)2 =x2 -2xy +y2
(3) (-x +y)2 =x2+2xy +y2 × (4) (2x+y)2 =4x2 +2xy +y2 ×
第三天的多,多2ab 块
课堂小结
知识点 完全平方公式 公式:(1)(a+b)2=___a2_+__2a_b_+__b2__; (2)(a-b)2=___a2_-__2a_b_+__b_2 _. 文字表述:两个数的和(或差)的平方,等于它们的平方和,加上 (或减去)它们的积的____2____倍.
观察下列计算过程,判断其是否正确,若不正确,请改正. (1)(2a-3b)2=4a2-9b2; (2)(-2m-3n)2=4m2-12mn+9n2.
(2)(4x + 5y)2 = (4x)2 2 4x 5y (5y)2 = 16x2 40xy 25y2;
(3)(mn - a)2
= (mn)2 - 2 mn a a2
= m2n2 - 2amn a2 .
随堂练习
计算:
(1)
1 2
x
-
2y
2
;(2)
பைடு நூலகம்
2xy
探究
设置情境,探究新知
一块边长为a m的正方形实验田,如图所示,因
需要将其边长增加b m,构成四块田地,种植不同的
新品种.用不同的形式表示实验田的总面积,并进行
平方差公式(课件)八年级数学上册(人教版)
(1)
=
(x+1)
(x -1) x -1 ;
(2)
= m2 - 4 ;
(m+ 2)
(m- 2)
2
(3)
=
4
x
-1.
(2 x+1)
(2 x -1)
相乘的两个多项式的各项与它们的积中的各项有什么关系?
(a+b)
(a-b)=a 2 -b 2
你能证明(a+b)(a-b)=a 2 -b 2 吗?
1、利用多项式的乘法法则验证:
(1)上述操作能验证的等式是________.
B
A. 2 − 2 + 2 = ( − )2
B. 2 − 2 = ( + )( − )
C. 2 − = ( − )
(2)应用你从(1)中选出的等式,完成下列各题:
①已知x 2 − 4y 2 = 18, − 2 = 3,求 + 2.
2
3
4
1
20212
× 1−
1
20222
.
(2)解:①∵x2-4y2=18,x-2y=3,
∴x+2y=(x2-4y2)÷(x-2y)=18÷3=6;
1
1
1
②原式=(1 − ) × (1 + ) × (1 − )
2
2
3
1
3
2
4
2021
2023
= × × × × ⋯×
×
2
2
3
3
2022
2022
1 2023
人教版
八年级上册数学
第十四章
14.2.1平方差公式
复习引入
人教版八年级数学上册14.平方差公式课件
最后结果
(2x+2)(2x-2) 2x 2 (2x)2-22 4x2-4 (m+3n)(3n-m) 3n m (3n)2-m2 9n2-m2 (-a+4b)(-a-4b) -a 4b (-a)2- (4b)2 a2-16b2
2、判断下列各式是否满足平方差公式的 特征. (1)(3x+2)(3x-2); (2)(b+2a)(2a-b); (3)(-x+2y)(-x-2y); (4)(x+2y)(-x-2y).
规律:两个数的和与这两个数的差的乘积 等于相同项的平方减去相反项的平方.
观察如果用字母a、b表示等式左边,能否 得出以上规律?
(a+b)(a-b)
(a+b)(a-b) = a2- ab+ab- b2 =a2- b2.
(a+b)(a-b)= a2- b2.
平方差公式
(a+b)(a-b)= a2- b2.
= 3x2-5x-10.
(3) 20042 - 2003×2005; 解:原式 = 20042 - (2004-1)(2004+1)
4、下列运算正确的是( C ) A.(a+b)(b-a)=a2-b2 B.(2m+n)(2m-n)=2m2-n2 C.(xm+3)(xm-3)=x2m-9 D.(x-1)(x+1)=(x-1)2
5、运用平方差公式计算:
1、(m+n)(-n+m) = 2、(-x-y) (x-y) = 3、(2a+b)(2a-b) = 4、(x2+y2)(x2-y2)= 5、 51 × 49 =
(a+b)(a-b)
= 9x2 -4;
a2 -b2
计算时注意:
一定要把要计算的式子 与公式对照,找出哪个 是a ,哪个是b.
八年级数学平方差公式
66影视 很多人都买不起各个影视的VIP下面我就给大家来介绍一个免费观看电影和电视的,再也不用大家花很多钱去买VIP了(一个月看不了多少,然而一个月的VIP就要好几十)。 66影视 浏览器、 66影视 1、打开浏览器,我在这里用的是360浏览器。2、找到上面的网站填写处,在里面输入免VIP的网站。网站如下图3、这就打开了免VIP网站的。4、你如果是想要找电影或电视剧的话(主页要是没看到就点击搜索框输入你想看的电影或电视剧的名字)。5、点击搜索键就可以搜到了(如果没 66影视 你是否经常因为网络不通畅,追剧时卡顿,今天我来分享一下如何下载电视剧到U盘里,希望可以帮助到大家。 66影视 电脑:Windows10腾讯:V10.31 66影视 1、需要自行在官网上下载腾讯客户端,在桌面上点击腾讯,在页面中点击下载按钮,在下方点击下载设置按钮。2、在弹出对话框中点击更改目录,在弹出页面中选择U盘,选择完成后点击确定按钮。3、完成后点击应用按钮即可,在页面中点击需要下载的电视剧,部分电视剧无法下载。 66影视 对我而言,一部好的电视剧,真正能够抓住人心的,还是触动到观众最感动的那部分情感。好的电视剧要求演员服饰好看,演员漂亮,有名的演员更能吸引人的眼球,不同的电视剧情,也有着不同的剧情内容。下面和小编一起来学习,好看的电视剧有哪些呢,希望大家喜欢。 66影视 好看的电视剧有哪些呢情感剧情 66影视 1、【三国演义】讲述三国时代的政治故事,塑造了不同形象的风云人物。作为一部真正的历史剧,魏蜀吴三国争霸故事。经过计谋,权术之间的互相较量,刘备识人的本事,诸葛亮足智多谋的智慧。青年朋友多看三国演义,会更加善于利用计策谋虑,与人和谐相处,为今后的职场生涯奠 66影视 最新最火的电视剧当然人人都想及时的看到,那么如何才能查找到这些最新的电视剧呢,我来说说。 66影视 1、有线电视一般情况下有线电视最
人教版八年级数学上册:平方差公式精品课件
人教版八年级数学上册:平方差公式 精品课 件
例3、提高与应用
(1)、4a 1 4a 1 16a2 1
(2)、运用平方差公式简便计算: 992 - 1
(3)、已知 x²-y²=8 , x+y=-4 ,求x-y的值。
人教版八年级数学上册:平方差公式 精品课 件
计算:
1002 992 982 972 ... 42 32 22 12 解:原式= (100 99)(100 99)
若a2 b2 1 , a b 1
4
2
求:a+b的值
先化简,再求值:
xy 2xy 2 2x2 y2 2 xy
其中:x 10, y 1 25
⑴ (2+a)(a-2) ⑶ (-4k+3)(-4k-3) ⑸ (-x-1)(x+1)
⑵ (3a+2b)(3a-2b) ⑷ (1-x)(-x-1) ⑹ (x+3)(x-2)
人教版八年级数学上册:平方差公式 精品课 件
人教版八年级数学上册:平方差公式 精品课 件
例2 计算: (1) 102×98; (2) (y+2) (y-2) – (y-1) (y+5) . (3) 51×49; (4) (3x+4)(3x-4) – (2x+3) (3x-2).
人教版八年级数学上册:平方差公式 精品课 件
14.2.1 平方差公式
人教版八年级数学上册:平方差公式 精品课 件
(1) (x+1)(x−1)==;xx22−−112 (2) (m+2)(m−2)=;m2−422;
(3) (2x+1)(2x−1)==;4(2xx2 )−2 −1 1; 2 (4) (x+5y)(x−5y)==;xx22−−2(5y2)2;
初二数学平方差公式1[人教版]
解:2) (a+2b-3)(a-2b+3) = [ a+(2b-3) ] [ a-(2b-3)] = a2- (2b-3)2 = a2- (2b-3) (2b-3) = a2- (4b2-12b+9) = a2- 4b2+12b-9
4.下列各式哪些能用平方差公式计算? 怎样用?
4.下列各式哪些能用平方差公式计算? 怎样用?
1) (a-b+c)(a-b-c)
解: 1) (a-b+c)(a-b-c) = [ (a-b)+c] [ (a-b)-c ] = (a-b)2 – c2 = (a2-2ab+b2) –c2 = a2-2ab+b2 –c2
4.下列各式哪些能用平方差公式计算? 怎样用?
乘法公式:
(x+a)(x+b)= x2+(a+b)x+ab 1.当a=-b时
(a+b)(a-b) =a2+[b+(-b)]-b2 =a2 -b2
——平方差公式
平方差公式:
(a+b)(a-b)=a2-b2
语言描述: 两个数的和与这两个数的差的积 等于这两个数的平方差
例
1.下列多项式相乘,哪些可用平方差 公式?怎样用公式计算? 1) (a+b)(-b+a) 2) (ab+1)(-ab+1) =(a+b)(a-b) =(1+ab)(1-ab)
[(-5b)+(3a-2c)] [(-5b)-(3a-2c)] 6) (x+y+m+n)(x+y-m-n)
[(x+y)+(m+n)][(x+y)-(m+n)]
八年级数学平方差公式1(教学课件201911)
(1) 25- 16x² 解:1) 25- 16x²= 5 ²- (4x)²
1
( 2 ) 9a²- 4 b ²
=(5+ 4x)(5-4x)
( 3 ) —9 x²- —1 y²
25
16
( 4 ) –9x²+ 4
解:2)
9a²-
1 4
b²
=(3a)²- ( 1 b)²
=(3a+
1
2
b)(3a-
1
b)
2
2
注意点:
1.运用平方差公式分解因式的关键是要把分解的多项式看成两个数
的平方差,尤其当系数是分数或小数时,要正确化为两数的平方差。
2.公式 a²- b²= (a+b)(a-b)中的字母 a , b可以是数,也可以是
单项式或多项式,要注意“整体”“换元”思想的运用。
3.当要分解的多项式是两个多项式的平方时,分解成的两个因式要 进行去括号化简,若有同类项,要进行合并,直至分解到不能再分 解为止。
引例: 对照平方差公式怎样将下面的多项式分解因式
1) m²- 16
2) 4x²- 9y²
m²- 16= m²- 4²=( m + 4)( m - 4) a² - b²= (a + b)( a - b )
4x²- 9y²=(2x)²-( 3y)²=(2x+ 3y)(2x- 3y)
例1.把下列各式分解因式
做一做
2、如图,在一块边长
为 acm 的正方形的四
a
角,各剪去一个边长为
bcm的正方形,求剩余
部分的面积。如果 a=3.6,b=0.8呢?
b
小结:1.具有的两式(或)两数平方差形式的多项式 可运用平方差公式分解因式。
必备的八年级上册数学期中考试知识点总结:平方差公式
必备的八年级上册数学期中考试知识点总
结:平方差公式
一、平方差公式
1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成(a+b)#8226;(a-b)的形式,然后看a2与b2是否容易计算。
以上就是为大家整理的必备的八年级上册数学期中
考试知识点总结:平方差公式,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!
相关标签搜索:八年级期中复习。
八年级下册数学人教版公式
八年级下册数学人教版公式
1.平方差公式:(a+b)(a-b)=a²-b²。
2.完全平方公式:(a+b)²=a²+2ab+b²或(a-b)²=a²-2ab+b²。
3.添括号法则:添括号时,如果括号前面是正号,括到括号里的
各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。
4.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不
变,指数相减。
5.单项式相除,把系数与同底数幂分别相除作为商的因式,对于
只在被除式里含有的字母,则连同它的指数作为商的一个因式。
6.多项式除以单项式,先把这个多项式的每一项除以这个单项式,
再把所得的商相加。
7.把一个多项式化成几个整式的积的形式,这种变形叫做把这个
多项式因式分解,也叫把这个多项式分解因式。
请注意,这些公式仅适用于人教版八年级下册的数学教材。
具体应用方法请参考教材或咨询数学教师。
1.3.1平方差公式课件 (五四制)数学八年级上册
感悟新知
1. 判断正误:
(1) x2+y2=(x+y)(x+y);
()
(2) x2-y2=(x+y)(x-y);
()
(3) -x2+y2=(-x+y)(-x-y); ( )
(4) -x2-y2=-(x+y)(x-y); ( )
2. 把下列各式因式分解: (1) a2b2-m2; (2) (m-a)2-(n+b)2; (3) x2-(a+b-c)2; (4) -16x4+81y4.
B. ( a -2)( a +2) D. (4 a -1)( a +1)
演练提升
随堂检测
2. 下列多项式中,分解因式的结果为-( x +2 y )·( x -2 y )的
是( B )
A. x2-4 y2 C. x2+4 y2
B. - x2+4 y2 D. - x2-4 y2
演练提升
随堂检测
练点2 先提取公因式再用平方差公式分解因式 3. [2024·青岛城阳区期末]把多项式3 x2-12分解因式,结果
第1章 因式分解 1.3 公式法
第1课时 平方差公式
学习目标
用平方差公式分解因式 平方差公式在分解因式中的应用
回顾与思考
课时导入
1、什么叫把多项式分解因式
把一个多项式化成几个整式的积的形式, 叫做多项式的分解因式.
2、已学过哪一种分解因式的方法 提公因式法
知识点 1 用平方差公式分解因式
感悟新知
A.a(a-1)
B.a(a-2)
C.(a-2)(a-1)
D.(a-2)(a+1)
感悟新知
9 . 已知a,b,c为△ABC的三边长,且满足a2c2-b2c2 =a4-b4,则△ABC的形状为( D ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形
八年级上数学人教版《 平方差公式、完全平方公式》笔记
《平方差公式、完全平方公式》笔记
一、平方差公式
1.公式描述:两数和乘两数差,等于两数平方差。
2.公式结构:(a+b)(a−b)=a2−b2
3.公式说明:此公式是整式乘法中的重要公式之一,它适用于任何具有此结
构的式子,可以简化计算。
4.公式应用:在解决数学问题时,此公式可以用于计算两数之和与两数之差
的积,也可以用于分解因式和求值。
二、完全平方公式
1.公式描述:首平方又末平方,二倍首末在中央;和的平方加再加,先减后
加差平方。
2.公式结构:(a+b)2=a2+2ab+b2,(a−b)2=a2−2ab+b2
3.公式说明:此公式是整式乘法中的另一个重要公式,它适用于任何具有此
结构的式子,可以简化计算。
4.公式应用:在解决数学问题时,此公式可以用于计算一个数的平方加上或
减去两倍的此数与另一数的积再加上或减去两倍的此数的平方,也可以用于分解因式和求值。
三、注意事项
1.在使用公式时要注意公式的结构以及字母的含义,避免出现错误。
2.在进行计算时要注意运算顺序和符号,确保计算结果的准确性。
3.在解决实际问题时要注意公式的应用范围和限制条件,避免出现错误的应
用。
人教版八年级上册数学14.2:平方差公式与完全平方公式教案
一、教学内容
人教版八年级上册数学14.2:平方差公式与完全平方公式
1.平方差公式:
- (a+b)(a-b)=a²-b²
- (a+b)²=(a-b)²+4ab
- (a-b)²=(a+b)²-4ab
2.完全平方公式:
- (a+b)²=a²+2ab+b²
- (a-b)²=a²-2ab+b²
- (a±b)²=a²±2ab+b²
3.应用平方差公式与完全平方公式进行因式分解:
- a²-b²=(a+b)(a-b)
- a⁴-b⁴=(a²+b²)(a²-b²)
பைடு நூலகம்- a⁶-b⁶=(a³+b³)(a³-b³)
4.典型例题:
-利用平方差公式与完全平方公式解决实际问题
-利用平方差公式与完全平方公式进行因式分解
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方差公式与完全平方公式的基本概念。平方差公式是指(a+b)(a-b)=a²-b²这一规律,它在简化计算和因式分解中起着重要作用。完全平方公式则是指(a±b)²=a²±2ab+b²,它帮助我们快速计算某些特定形式的乘方。
2.案例分析:接下来,我们来看一个具体的案例。计算(3x+4)²,通过完全平方公式的应用,我们可以得到3x²+2*3x*4+4²,从而简化计算过程。
今天的学习,我们了解了平方差公式与完全平方公式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这两个公式的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
八年级数学平方差公式
八年级数学平方差公式和完全平方公示记忆
八年级数学平方差公式和完全平方公示记忆平方差公式:
平方差公式是一个用于求两个数的平方之差的公式。
对于任意实数a和b,平方差公式可以表示为:(a + b)(a - b) = a^2 - b^2。
完全平方公式:
完全平方公式是一个用于将一个二次多项式进行因式分解的公式。
对于任意实数a和b,完全平方公式可以表示为:a^2 + 2ab +
b^2 = (a + b)^2。
拓展:
除了这两个公式,数学中还有其他常见的公式和定理,比如勾股
定理、二次根式公式、等幂法则等等。
记住这些公式和定理可以帮助
我们更快地解决数学问题和证明。
此外,了解这些公式的推导过程和
应用场景也是很有意义的,可以深入理解数学的本质和逻辑。
所以在
学习数学的过程中,要注重记忆公式,同时也要注重理解公式的推导和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同学们,这节课你学 到了什么?
思考题:这么长的式子很有挑战 性吧,不服输的就动起来吧。
① (2 1)(22 1)(24 1)(28 1)(216 1)(232 1)
② 1002 992 982 972 22 12
本节所学知识你掌握了吗,练一练 就知道。
①(2x2 3y2)(2x2 3y2 )
②( 3x2 1)(3x2 1)
3
3
下面的题你一定会做的。(在括号里 正确填入两数的和与两数的差)
①( a+3 )( a-3 ) a2 9
②( 2
3
b
1 2
a)( 2 b 3
1 a )
2
1 4
a2
4 9
b2
导入
1、如图,边长为a的正方形。 在下边切去一个宽为b的长方形
再在右边加去一个宽为b的长方形 这时,红色和黄色区域的面
积和是___(a_+_b_)_(_a-_b_)___.
a
2、如果在蓝色区域的右边切去
一个边长为b的正方形
b
则蓝色区域和黄色区域面积相等
吗?_相__等____ 这时红色和蓝色区
a
b
b 域面积和是__a__2 __b__2__________.
1、(x+3)(x-3)
(3+x)(-3+x)
2、(2a+3b)(2a-3b)
(2a+3b)(-2a+3b)
3、(1+2c)(1-2c)
(-1-2c)(1-2c)
巴急速从里面伸出……接着,一颗墨蓝色车灯模样的邪恶巨大兔头快速探了出来……一簇簇水蓝色蜜桃模样的时尚巨大翅膀飘然向外伸展……突然!两只浅绿色橱窗模样的 阴冷巨爪威武地伸了出来……随着淡蓝色长绳模样的震撼银光的狂速飞舞,无数深黑色贝壳模样的疯狂羽毛和绿宝石色鳞甲飞一样射出……突然,无数灰蓝色汤勺模样的绝 妙鳞片从奇蛋中窜出,飞一样射向个个巨果!只见每只巨大鳞片上都站着一个梦唇怪模样的武士……与此同时壮扭公主朝梦唇怪变成的巨大植物根基飞去,而月光妹妹则朝 那伙校精的真身冲飞去……梦唇怪的所有果实和替身都被撞得粉碎!而巨大的植物已经被壮妞公主一顿肥拳猛腿弄得稀烂,再看梦唇怪的真身也被月光妹妹一顿飞拳云腿, 直玩得满脸桃花开,浑身别样肿……“算你们狠,俺们还是走吧!”佛玻爱信徒见无法取胜,急忙变成长着离奇眼睛的橙白色古怪水牛朝西北方向飞去……月光妹妹笑道: “嘻嘻!除非你们往回走!想过去是不可以的!”月光妹 优游 www.youyoupi 优游 妹 一边说着一边变成长着怪异手掌的纯蓝色超级纸条追了上去……佛玻爱信徒 “见月光妹妹快要追上,又急忙变成长着离奇脚趾的亮蓝色古怪将军朝东北方向飞去……月光妹妹笑道:“嘻嘻!又换一套马甲,我的存货能让你们欣赏到万年以后……” 月光妹妹一边说着一边变成长着怪异牙齿的深黑色超级蛋黄追了上去……只见女强盗N.娆丝米女士和另外二个校精怪突然齐声怪叫着组成了一个巨大的布帘枪尾怪!这个 巨大的布帘枪尾怪,身长四百多米,体重一百多万吨。最奇的是这个怪物长着十分发疯般的枪尾!这巨怪有着紫宝石色熊猫形态的身躯和紫葡萄色细小门柱一般的皮毛,头 上是亮白色篦子般的鬃毛,长着鲜红色蛤蟆形态的玉葱粗布额头,前半身是紫红色冰块形态的怪鳞,后半身是虔诚的羽毛。这巨怪长着浅灰色蛤蟆样的脑袋和亮黑色洋葱形 态的脖子,有着钢灰色篦子一样的脸和中灰色匕首样的眉毛,配着碳黑色丝瓜般的鼻子。有着白象牙色领章一样的眼睛,和深红色果盘形态的耳朵,一张白象牙色小鬼形态 的嘴唇,怪叫时露出浅黑色冰雕样的牙齿,变态的紫红色狮子一般的舌头很是恐怖,紫葡萄色鼓锤造型的下巴非常离奇。这巨怪有着仿佛圆规样的肩胛和特像路灯般的翅膀 ,这巨怪紧缩的紫玫瑰色牛肝一般的胸脯闪着冷光,如同螺母般的屁股更让人猜想。这巨怪有着极似软管形态的腿和浓黑色蒲扇样的爪子……跳动的亮白色玉兔一般的六条 尾巴极为怪异,暗红色面具样的标枪天石肚子有种野蛮的霸气。紫玫瑰色鱼杆般的脚趾甲更为绝奇。这个巨怪喘息时有种碳黑色酱缸一般的气味,乱叫时会发出墨
因为黄色区域和蓝色区域面积 _相__等__,所以__红__+_黄__=_红__+_蓝______.
即_(_a_+_b_)_(a_-_b_)_=_a_2___b__2 ___
ቤተ መጻሕፍቲ ባይዱ
课题:两数的和乘以它们的差
两数的和与它们差的积,等于这 两数的平方差。
字母表示: (a b)(a b) a2 b2
动手做一做,看谁算得快。
③( 5b+2a )( 5b-2a ) 25b2 4a2
考考你的基本功
(x y)(x y)(x2 y2() x4 y4) 解原式 (x2 y2 )(x2 y2() x4 y4)
( x4 y()4 x4 y4) x8 y8
你能否利用所学知识,用简便方 法迅速做出来呢。
① 1994 2006 ② 50 2 49 1
33
探索后你会有意想不到的收获
工人师傅设计篮球场,设计成边长为a米的正方形, 体育老师看见了,要求修改成标准的篮球场,把东
西缩短了6.5米,南北增加了6.5米.
(1) 测得修改后的面积是多少? (2) 修改后面积比原来增加了还是减少了? (3) 工人师傅设计的正方形篮球场边长为21.5米,你 知道标准篮球场的长和宽分别是多少吗?