余弦定理教案设计-文档
余弦定理教案设计
余弦定理教案设计教学内容:余弦定理一、教学目标1.了解余弦定理的概念和公式。
2.能够应用余弦定理解决三角形的边与角之间的关系问题。
3.提高学生的数学推理和解决问题的能力。
二、教学重点与难点:1.重点:理解余弦定理的概念和公式,应用余弦定理解决问题。
2.难点:灵活运用余弦定理解决各种实际问题。
三、教学准备:1.教材《数学》课本、教具:黑板、彩色粉笔、三角尺、直尺和练习题。
2.多媒体设备。
四、教学过程:1.导入引入:教师引导学生回顾正弦定理的概念和公式,并举例说明其应用。
然后介绍余弦定理的概念,并与正弦定理进行对比,引出余弦定理的公式。
2.理论讲解:教师通过多媒体展示余弦定理的公式:a² = b² + c² - 2bc cosA,其中a为三角形的一边,b、c为另外两边,A为夹角。
讲解余弦定理的推导过程,并注意解释其中的符号含义。
3.实例演示:教师通过具体的实例演示如何应用余弦定理解决问题,包括计算未知边长、未知角度等。
并让学生在黑板上模仿演示。
4.小组讨论:教师组织学生分成小组,每组完成几道余弦定理的练习题,要求学生相互讨论并解答问题。
教师巡视指导,及时纠正错误。
5.教师指导:教师在小组讨论的过程中,根据学生的理解情况和解答过程,及时给予指导和解释。
鼓励学生思考、提问和探讨。
6.全课总结:教师对余弦定理的应用进行总结,并强调余弦定理在解决实际问题中的重要性。
鼓励学生在学习中多加思考,灵活运用所学知识。
7.作业布置:布置相关的习题作业,并要求学生认真完成,巩固所学内容。
要求学生在实际生活中多加观察,发现并解决问题。
五、教学反思:本次教学中,我注意引导学生主动参与学习,提高他们的解决问题和表达能力。
在教学中,要注意理论与实践相结合,引导学生将所学知识应用到实际问题中去解决。
同时,要及时纠正错误,鼓励学生勇于提问和探索。
通过这样的教学方式,可以更好地帮助学生理解和掌握余弦定理的概念和运用。
余弦定理的教案(通用3篇)
余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。
三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
《余弦定理》教学案
课程分析:(本课的作用和学习本课的意义)
1、背景说明:
三角形是最基本的几何图形。三角形中数量关系在天文、地理、航海等领域中有着极其广泛的应用,我们将在以前的学习的三角形、三角函数和解直角三角形等知识的基础上,通过对任意三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系,运用他们解决一些与测量和几何计算有关的实际问题。
教学目标:
1.知识与技能:
(1)掌握余弦定理,并能解决一些简单的三角形度量问题;
(2)能够运用余弦定理解决一些与测量和几何计算有关的实际问题。
2.过程与方法:
(1)经历实验观察、实例探究讨论交流的过程,体验三角形的边角关系。
(2)利用向量关系证明余弦定理。
3.情感、态度与价值观:
(1)注重数学知识的应用性,体现学以致用的原则;
(2)体验自主学习过程,养成乐于观察、勤于思考和合作交流的能力和学习习惯。
(3)注重数学内部不同分支之间的联系、数学与日常生活的联系、数学与其他学科的联系,从而提高学生对数学的整体认识,体现数学的文化价值。
教学重点:
掌握余弦定理证明
教学难点:
探究余弦定理证明过程
教学方法:
实验探究法
活动教学法
合作学习法
2、课题的意义:
课题是在学习了三角函数与平面向量的基础上,对任意三角形的边长和角度关系所作的探索和研究,是知识的迁移和应用部分,因此本节是本章的一个比较重要的、典型的应用型知识点。表现其一:教材先引导学生回顾用向量的数量积证明正弦定理的方法,然后提出,还有其他方法将向量等式数量化吗?从而,得出余弦定理,体现了向量方法在解三角形中作用,让学生进一步感受数学的和谐美,也有助于培养学生的探究能力.其二,这是一个与日常生活密切的问题,能激发学生的学习兴趣和体会数学的生活化。
余弦定理学习教案.docx
余弦定理( 2 课时)第一课时一、教学内容:余弦定理。
二、教学目标:1、知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
培养数学语言的表达能力以及转化能力。
2、过程与方法:通过设疑、探究、讨论的过程中,在老师的引导下,解决利用余弦定理求解三角形的过程与方法。
培养利用知识解决生活问题的能力、总结归纳能力。
3、情感与态度:在学习过程中,体现“方程的思想”以及“数形结合”的思想,感受余弦定理在生活的应用的意义。
同时,培养学生合作交流、团结的精神,激发学习兴趣。
三、教学重难点:1.教学重点:余弦定理的推导过程及其基本应用;2.教学难点:理解余弦定理的基本应用。
四、教学方法:引导法、演示法。
五、教学过程:余弦定理的推导如图,设 CB a,CA b, AB c ,那么c a b ,则2c c c A= a b a b= a a b b2a b C B222a b=a b从而c2a2b22ab cosC同理可证a2b2c22bc cos A b2a2c22ac cos B余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即: a2b2c22bc cos A ;b2a2c22ac cos B ;c2a2b22ab cosC 。
(注:让学生观察公式特点并总结求谁后面没谁,只有对边的余弦值,帮助学生记忆)余弦定理的变式(余弦定理推论)学生类比正弦定理判断余弦定理的基本应用:1)已知三角形的任意两边及其夹角可以求第三边2)已知三角形的三条边可以求出三角3.例题讲解0. 求a?例 1.在 ABC中,b2,c 4, A60解:∵ = 224222 4cos 60012∴ a 2 3练习:在 ABC中,b2, c4, A600. 解三角形。
解:∵= 224222 4 cos 60012∴ a2324222∵ 2 33∴ B 3002 2342∵A600, B300∴所以三角形 ABC为直角三角形,C 900巩固练习:在ABC中,已知 b3,c 3 3, B 300,解三角形。
(完整word)高中数学余弦定理教案
1、1、 2 余弦定理一、【学习目标】1.掌握余弦定理的两种表示形式及其推导过程;2.会用余弦定理解决详细问题;3.经过余弦定理的向量法证明领会向量工具性.【学习成效】:教课目的的给出有益于学生整体的掌握讲堂.二、【教课内容和要求及教课过程】阅读教材第 5—7 页内容,而后回答以下问题(余弦定理)<1>余弦定理及其推导过程?<2>余弦定理及余弦定理的应用?结论:<1>在中,AB、BC、CA的长分别为c、a、b.由向量加法得:<2>余弦定理:三角形任何一边的平方等于其余两边平方的和减去这两边与它们夹角的余弦的积的两倍.余弦定理还可作哪些变形呢?[ 理解定理 ](1)余弦定理的基本作用为:①已知三角形三边求角;②已知两边和它们的夹角,求第三边。
[ 例题剖析 ]例1评论:五个量中两边及夹角求其余两个量。
例 2 评论:已知三边求三角。
【学习成效】:学生简单理解和掌握。
三、【练习与稳固】依据今日所学习的内容,达成以下练习练习一:教材第 8 页练习第1、 2 题四、【作业】教材第 10 页练习第3---4题.五、【小结】(1)余弦定理合用任何三角形。
(2)余弦定理的作用:已知两边及两边夹角求第三边;已知三边求三角;判断三角形形状。
( 3)由余弦定理可知六、【教课反省】本节课要点理解余弦定理的运用.要求记着定理。
习题优选一、选择题1.在中,已知角则角 A 的值是()A.15°B.75°C.105°D.75°或 15°2.中,则此三角形有()A.一解 B .两解 C .无解 D .不确立3.若是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在中,已知则AD长为()A.B.C.D.5.在,面积,则BC长为()A.B.75 C .51D.496.钝角的三边长为连续自然数,则这三边长为()A. 1、2、3、B.2、3、4C. 3、 4、5D. 4、 5、67.在中,,则A等于()A.60°B.45° C .120°D.30°8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D .等边三角形9.在中,,则等于()A.B.C.D.10.在中,,则的值为()A.B.C.D.11.在中,三边与面积S的关系式为则角C为()A.30°B.45°C.60°D.90°12.在中,是的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件二、填空题13.在中,,则14.若的三个内角成等差数列,且最大边为最小边的 2 倍,则三内角之比为 ________。
余弦定理教案设计
余弦定理教案设计一、教学目标1. 知识与技能:(1)理解余弦定理的定义和表达式;(2)学会运用余弦定理解决三角形中的边角关系问题。
2. 过程与方法:(1)通过观察和分析,引导学生发现余弦定理的规律;(2)运用几何画板或实物模型,直观演示余弦定理的应用。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生合作交流、解决问题的能力。
二、教学重点与难点1. 教学重点:(1)余弦定理的定义和表达式;(2)运用余弦定理解决三角形中的边角关系问题。
2. 教学难点:(1)余弦定理在实际问题中的应用;(2)灵活运用余弦定理解决复杂问题。
三、教学准备1. 教师准备:(1)熟悉余弦定理的相关知识;(2)准备几何画板或实物模型。
2. 学生准备:(1)掌握三角形的性质;(2)了解勾股定理。
四、教学过程1. 导入新课(1)回顾三角形的性质和勾股定理;(2)提出问题:如何解决三角形中的边角关系问题?2. 探究新知(1)引导学生观察和分析三角形中的边角关系;(2)引导学生发现余弦定理的规律;(3)给出余弦定理的定义和表达式。
3. 动手实践(1)让学生利用几何画板或实物模型,验证余弦定理;(2)让学生尝试解决一些简单的三角形边角关系问题。
4. 拓展应用(1)让学生运用余弦定理解决复杂问题;(2)引导学生发现余弦定理在实际生活中的应用。
五、课堂小结1. 回顾本节课所学内容,总结余弦定理的定义和表达式;2. 强调余弦定理在解决三角形边角关系问题中的应用;3. 鼓励学生课后思考和探索余弦定理在其他领域的应用。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组合作交流的表现,评价学生的学习态度和合作能力。
2. 作业评价:通过学生提交的作业,评价学生对余弦定理的理解和运用情况,以及解题的准确性。
3. 课后反馈评价:通过与学生的交流或家长反馈,了解学生对余弦定理的掌握程度和在学习过程中遇到的问题。
余弦定理教案范文
余弦定理教案范文教案主题:余弦定理教学目标:1.理解余弦定理的概念和原理;2.掌握使用余弦定理解决三角形问题的方法;3.能够应用余弦定理解决实际问题。
教学重点:1.余弦定理的概念和原理;2.余弦定理在解决三角形问题中的应用。
教学难点:1.熟练运用余弦定理解决实际问题。
教学准备:1.教材:数学教材、实例题;2.工具:主持学习的电子设备。
教学过程:Step 1:引入(5分钟)1.教师介绍余弦定理是解决三角形问题的重要工具;2.提问学生是否了解三角形的定点、定边、定角等概念;3.引入余弦定理的概念和作用。
Step 2:理解余弦定理(10分钟)1.教师通过示意图解释余弦定理的概念,即在一个任意三角形中,一个角的余弦等于另外两边平方和减去两倍乘积的余弦;2.教师提供实例,让学生通过计算验证余弦定理的正确性;3.师生共同讨论应用余弦定理解决实际问题的优势。
Step 3:运用余弦定理解决问题(30分钟)1.教师提供多个实例,让学生运用余弦定理解决三角形问题;2.学生独立或小组合作完成实例题,教师逐一点评,解答学生的疑问;3.引导学生总结运用余弦定理解决问题的一般步骤。
Step 4:巩固练习(15分钟)1.学生独立或小组合作完成巩固练习题;2.教师进行讲解和点评,解答学生的疑问;3.鼓励学生进行思考和讨论,加深对余弦定理的理解和记忆。
Step 5:拓展应用(10分钟)1.教师提供一些相关的实际问题,要求学生运用余弦定理进行解决;2.学生独立或小组合作完成拓展应用题;3.学生展示解题思路和结果,鼓励他们提出不同的解题方法并分析比较。
Step 6:总结反思(5分钟)1.教师对本节课的内容进行总结归纳,强调余弦定理在解决三角形问题中的重要性;2.学生提出问题和疑虑,教师予以解答和指导;3.强调学生在课后继续进行练习,加深对余弦定理的理解和掌握。
教学延伸:1.学生可以通过在实际生活中的应用场景中运用余弦定理进行解决问题,加深对其应用的理解;2.学生可以进一步探究余弦定理的证明过程,加深对其原理的理解。
高中数学余弦定理教案范例
高中数学余弦定理教案范例
一、教学目标:
1. 了解余弦定理的概念和原理。
2. 掌握余弦定理的公式及应用。
3. 能够运用余弦定理解决相关问题。
二、教学重点:
1. 余弦定理的概念和公式。
2. 余弦定理在解决实际问题中的应用。
三、教学难点:
1. 如何灵活运用余弦定理解决实际问题。
四、教学内容:
1. 余弦定理的引入:介绍余弦定理的概念和原理。
2. 余弦定理的公式推导:通过几何推导,得出余弦定理的公式。
3. 余弦定理的应用:通过一些实际问题示例,让学生掌握余弦定理的应用技巧。
五、教学方法:
1. 讲解与演示相结合,提高学生的理解力。
2. 引导学生思考,激发学生学习的积极性。
3. 练习与实践相结合,巩固知识点。
六、教学步骤:
1. 引入:通过一个实际问题引入余弦定理的概念。
2. 理论讲解:介绍余弦定理的公式及推导过程。
3. 实例讲解:通过几个例题,演示如何运用余弦定理解决问题。
4. 练习与讨论:让学生进行练习,并讨论解题思路。
5. 总结与反思:总结本节课的重点内容,引导学生思考。
6. 作业布置:布置相关作业,巩固所学知识。
七、教学资源:
1. 课本、习题册等相关教材。
2. 多媒体设备。
八、教学反馈:
1. 学生课堂表现情况。
2. 学生作业完成情况。
九、教学评价:
1. 教学效果评价。
2. 学生学习情况评价。
以上是余弦定理的教案范例,希望对您有所帮助。
祝教学顺利!。
(完整版)《余弦定理》教案完美版
《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。
2. 培养学生运用余弦定理解决三角形问题的能力。
3. 培养学生的逻辑思维能力和数学素养。
二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。
2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。
三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。
2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。
3. 开展小组讨论,培养学生的合作能力和解决问题的能力。
四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。
2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。
3. 准备相关练习题,用于巩固所学知识。
五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。
2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。
3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。
4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。
5. 练习巩固:让学生解答相关练习题,巩固所学知识。
6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。
7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。
六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。
2. 强调余弦定理在解决三角形问题中的重要性。
八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。
九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。
余弦定理教案设计.doc
余弦定理教案设计.doc一、课题概述:此次课题为中学数学重要的定理之一——余弦定理。
通过本次课的学习,学生将了解余弦定理的具体定义及其公式的应用,掌握其基本求解方法,并在解题过程中体会到其重要性与灵活性。
二、教学目标本节课的教学目标如下:1、知道余弦定理的定义及公式表达。
2、能够掌握余弦定理的基本求解方法。
3. 能够运用余弦定理解决实际问题。
三、教学过程Ⅰ、引入1. 老师介绍一下什么是余弦定理?教师简单介绍了余弦定理的定义及其作用。
2. 教师出示两种不同类型的三角形图片,由学生讨论并解答其中一个三角形具体的证明方法。
3. 分享学生对示例的经验和应用。
Ⅱ、主题内容1. 老师出示一些具体问题,让学生运用余弦定理解决。
2. 阐明余弦定理所涉及三角形的类型以及如何分析题目。
3. 示例分析:(1) $\triangle ABC$,$\angle C$ 的余角是 $30^\circ$,中国东海的 $\angle A$ 的夹角是 $125^\circ$,如果 $\angle B=25^\circ$,BC=5,则$AB$的长度多少?4. 授课“方法概述”:(1) 解析法:左边画大三角,右边画小三角,利用余弦定理,在两个三角之间建立两个含有“对角”的三角式即可求解。
(2) 利用正弦定理转换为弧度角的正弦求解。
5. 练习:设计适合学生自主完成的练习环节,让学生应有所得。
Ⅲ、总结与反馈本课主要讲解了余弦定理的概念、表达式、求解方法,并针对不同类型题材进行了详细的案例分析。
旨在让学生掌握余弦定理的基本使用方法,灵活地运用于实际问题的解决。
在本章的最后,鼓励学生在理解学习结束后,各自独立设计有关余弦定理的问题,由答题者向其他同学解答问题,并接受其他同学提出的思考和问题的共同讨论和解答,达到教学目的。
四、教学手段黑板、白板、标志笔等五、教学资源数学题目参考书,网络学堂资料库供参考。
余弦定理教学教案
余弦定理教学教案第一章:余弦定理的定义与基本概念教学目标:1. 让学生理解余弦定理的定义和背景。
2. 让学生掌握余弦定理的基本概念。
教学内容:1. 余弦定理的定义:在三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边与夹角余弦值的乘积的两倍。
2. 余弦定理的符号表示:c²= a²+ b²2abcos(C)。
3. 余弦定理的应用场景:解决三角形边长和角度的问题。
教学活动:1. 引入余弦定理的概念,通过实际例子让学生感受余弦定理的应用。
2. 讲解余弦定理的定义和符号表示,让学生理解并记住余弦定理的表达式。
3. 进行一些简单的练习题,让学生巩固余弦定理的应用。
作业:a. 三角形ABC中,AB = 5cm,BC = 7cm,AC = 8cm,求角A的余弦值。
b. 三角形DEF中,DE = 8cm,DF = 10cm,EF = 12cm,求角D的余弦值。
第二章:余弦定理的应用教学目标:1. 让学生掌握余弦定理在解决三角形问题中的应用。
教学内容:1. 使用余弦定理解决三角形边长问题。
2. 使用余弦定理解决三角形角度问题。
教学活动:1. 通过实际例子讲解如何使用余弦定理解决三角形边长问题。
2. 通过实际例子讲解如何使用余弦定理解决三角形角度问题。
3. 进行一些练习题,让学生巩固余弦定理的应用。
作业:a. 三角形ABC中,AB = 5cm,BC = 7cm,角A = 30°,求AC的长度。
b. 三角形DEF中,DE = 8cm,DF = 10cm,角D = 45°,求EF的长度。
第三章:余弦定理的扩展与应用教学目标:1. 让学生了解余弦定理的扩展形式。
2. 让学生掌握余弦定理在解决实际问题中的应用。
教学内容:1. 余弦定理的扩展形式:在任意三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边与夹角余弦值的乘积的两倍。
2. 余弦定理在解决实际问题中的应用:例如在工程测量、建筑设计等领域。
余弦定理教案设计
余弦定理教案设计第一章:余弦定理的定义与基本概念1.1 余弦定理的定义1.2 角度和弧度的转换1.3 三角函数的基本概念1.4 特殊角的三角函数值第二章:余弦定理的图像与性质2.1 余弦函数的图像2.2 余弦函数的性质2.3 余弦定理的证明2.4 余弦定理的应用实例第三章:余弦定理在几何中的应用3.1 三角形中的余弦定理3.2 余弦定理在三角形边长计算中的应用3.3 余弦定理在三角形角度计算中的应用3.4 余弦定理在三角形面积计算中的应用第四章:余弦定理在三角函数中的应用4.1 利用余弦定理求解三角函数值4.2 利用余弦定理化简三角函数表达式4.3 利用余弦定理求解三角方程4.4 利用余弦定理解决实际问题第五章:余弦定理在三角恒等式中的应用5.1 三角恒等式的概念5.2 利用余弦定理证明三角恒等式5.3 利用余弦定理化简三角恒等式5.4 利用余弦定理解决三角恒等式问题第六章:余弦定理在三角形判定中的应用6.1 判定三角形的形状6.2 利用余弦定理判定三角形的类型6.3 利用余弦定理判定三角形的角度关系6.4 利用余弦定理解决三角形判定问题第七章:余弦定理在解三角形中的应用7.1 解三角形的概念7.2 利用余弦定理求解三角形的角度7.3 利用余弦定理求解三角形的边长7.4 利用余弦定理解决实际中的三角形问题第八章:余弦定理在坐标系中的应用8.1 坐标系中的余弦定理8.2 利用余弦定理求解坐标系的距离问题8.3 利用余弦定理求解坐标系的夹角问题8.4 利用余弦定理解决实际中的坐标系问题第九章:余弦定理在物理中的应用9.1 物理中的余弦定理9.2 利用余弦定理求解物理学中的速度问题9.3 利用余弦定理求解物理学中的位移问题9.4 利用余弦定理解决实际中的物理问题第十章:余弦定理在综合应用中的实例分析10.1 综合应用余弦定理解决实际问题10.2 利用余弦定理进行问题转化和化简10.3 分析余弦定理在不同领域中的应用重点和难点解析重点一:余弦定理的定义与基本概念余弦定理是描述三角形中边与角之间关系的重要定理。
2023年最新-余弦定理优秀教学设计【精选5篇】
余弦定理优秀教学设计【精选5篇】余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。
平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。
引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
《余弦定理》教案(含答案)
《余弦定理》教案(含答案)第一章:余弦定理的定义与基本概念教学目标:1. 了解余弦定理的定义及其在几何中的应用。
2. 掌握余弦定理的表达式。
3. 能够运用余弦定理解决简单的问题。
教学内容:1. 余弦定理的定义:在一个三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边长度与它们夹角的余弦值的乘积的两倍。
2. 余弦定理的表达式:c²= a²+ b²2ab cos(C),其中c为斜边,a和b为其他两边,C为斜边与a边的夹角。
教学活动:1. 引入三角形的基本概念,引导学生思考三角形中边与角之间的关系。
2. 给出余弦定理的定义,通过示例解释余弦定理的含义和应用。
3. 推导余弦定理的表达式,并解释各符号的含义。
4. 引导学生进行实际例题的计算,巩固余弦定理的应用。
作业:a. ∠A = 30°, a = 5, b = 12b. ∠B = 45°, b = 8, c = 10第二章:余弦定理在直角三角形中的应用教学目标:1. 掌握余弦定理在直角三角形中的应用。
2. 能够解决直角三角形中涉及边长和角度的问题。
教学内容:1. 直角三角形的特殊性质:在一个直角三角形中,余弦定理可以简化为c²= a ²+ b²(其中c为斜边,a和b为直角边)。
2. 利用余弦定理解决直角三角形中的问题:通过已知的边长和角度,求解其他边长和角度。
教学活动:1. 回顾直角三角形的基本概念,引导学生思考直角三角形中边与角之间的关系。
2. 给出余弦定理在直角三角形中的应用,通过示例解释余弦定理在直角三角形中的简化形式。
3. 引导学生进行实际例题的计算,巩固余弦定理在直角三角形中的应用。
作业:a. ∠A = 30°, a = 3, 求解b和c的值。
b. ∠B = 45°, b = 5, 求解a和c的值。
第三章:余弦定理在非直角三角形中的应用教学目标:1. 掌握余弦定理在非直角三角形中的应用。
余弦定理教学设计
《余弦定理》教学设计一、教学背景分析“余弦定理”是高中课程实验教科书人教A版(必修5)第一章“解三角形”的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。
本节课是“余弦定理”教学的第一节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。
二、学情分析有利因素:学生已经学习了三角函数、向量的基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。
不利因素:结合学生的认知水平和心理特征,总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度。
三、教学目标知识与技能:1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法2.会利用余弦定理解决两类基本的解三角形问题过程与方法:1.利用向量的数量积推出余弦定理2.经历余弦定理的证明过程,培养学生的自主探究能力情感态度与价值观:通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一,激发学生的学习兴趣。
四、教学重点、难点1. 重点:余弦定理的发现和证明过程及其基本应用2.难点:向量知识在证明余弦定理时的应用,与向量知识的联系过程余弦定理在解三角形和判断三角形形状时的应用思路五、教学策略、教学手段分析及课前准备1、教法:教师充分利用多媒体资源优化课堂教学,从已有知识出发,提出新的问题让学生去探索,去发现,亲身感触知识发生发展过程,激发学生学习的兴趣,并通过让学生实践、总结等活动来使学生掌握知识,培养能力。
2.学法:提出问题―-自主探究---教师指导一归纳总结。
以学生为主体展开课堂,学生亲身感受不懂到懂、不能到能、不会到会的过程。
3.教学手段:借助多媒体及板书展示,让学生理解并运用余弦定理4.课前准备教学用具:多媒体教室教学资源:多媒体课件六、教学过程七、教学反思1.通过提出问题,分析问题,解决问题这样的教学过程,培养学生思考问题,分析问题解决问题的能力,但是由于学生能力较差,所以难以达到预期的效果。
余弦定理教案(5篇)
余弦定理教案(5篇)余弦定理教案(5篇)余弦定理教案范文第1篇【关键词】学习方式;预习方式;科技手段;教学效率课堂教学效率是关于学习收益和教学时间的综合概念,是指在课堂单位时间内同学的学习收益与老师、同学的教学活动量在时间尺度上的量度。
同学的学习方式,会直接影响到学习收益,从而影响到教学效率。
传统的课堂教学过于强调同学的接受学习、机械训练和对结果学问的教学,表面上看似教学效率高,实质忽视了很重要的一个方面,即同学对过程学问与方法的理解与获得,长远来看不利于同学今后的学习与进展。
同学学问的猎取与力量的提高基本上是在课堂内完成的,所以课堂上应通过老师的设计与引导,使同学能够转变传统的学习方式,从而提高课堂教学效率。
通过实践,我们发觉是现阶段比较符合新课程改革课堂教学基本理念的一种模式,具有很大的研讨价值与空间,是一种理念的革新。
“学案导学”突出同学的自学行为,注意学法指导,培育同学学习力量、情感态度,做到把学习的主动权真正还给了同学,从而提高了课堂教学效率,也解决了课时紧急的冲突。
1 转变备课和预习方式“工欲善其事,必先利其器”,备课是上好课的先决条件,要想提高课堂教学效率,课前不仅老师要做好充分的预备,而且同学也要做相应的预备或预习。
1.1 师生共同备课。
在传统备课模式下,备课时老师对同学的设想,与其在课堂教学实施中的实际状况,有的时候出入较大。
师生共同备课转变了传统备课中,老师依据自己的理解和以往的主观阅历来“备同学”的状况。
老师在集体备课的基础上,实行每班选出三名具有不同数学学业水平的同学,事先让他们依据课本进行初步预习,然后以座谈的方式,了解他们在预习中的困惑,这样更简单在“导学案”编制过程中有的放矢,以提高它在实施过程中的效率,从而使“备同学”这一环节更加客观、精确。
1.2 同学依据“导学案”进行预习。
老师历来强调课前预习的重要性,但由于同学没有具体、周密的预习指导性材料,导致他们对预习缺乏乐观性与主动性,更是由于最重要的检查环节较弱,使同学的课前预备工作有很强的随便性,有的同学走过场。
《余弦定理》教学设计-优秀教案
余弦定理【学习目标】掌握并熟记余弦定理的有关公式;能运用余弦定理及其推论解有关的三角形问题.【学习重点】掌握并熟记余弦定理及其它的变形等有关公式.【学习难点】余弦定理,并能解决一些简单的度量问题.【学习过程】一、前置学习在中,. 能否利用平面向量求边?二、课堂学习1.余弦定理的证明及理解:上述等式表明,三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的...............................余弦..的积的两倍......这样,我们得到余弦定理. 2.余弦定理:3.余弦定理的推论:;;.例1.在中,(1),,,求B ;(2),,,求b .ABC ∆60,8,5===C BC AC AB 222____________________________________________________________________________________a b c ====A cos =B cos =C cos ABC ∆3=a 7=b 2=c 33=a 2=c 150=B【变式拓展】在△ABC 中,已知,求△ABC 的各角。
例2.用余弦定理证明:在中,当为锐角时,;当为钝角时,.【变式拓展】在中,若且,试判断的形状.例2.、两地之间隔着一个水塘,现选择一点,测得,,,求、两地之间的距离.例3.已知分别为三个内角的对边,且满足,.(1)求; (2)若是中点,,求面积.)(13:6:2::+=c b a ABC ∆C ∠222c b a >+C ∠222c b a <+ABC ∆)())((c b b c a c a -=-+C B A cos sin 2sin =ABC ∆A B C 100CA m =200CB m =60ACB ∠=A B ,,a b c ABC ∆,,A B C sin 3cos 0a B b A -=4a =A ∠D BC 3AD =ABC ∆【变式拓展】在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cos B=,且AB →BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C 的余弦值.三、课堂反馈1.已知,,= .2.在中,已知,,,求= .3.在不等边三角形ABC 中,a 是最大边,若,则A 的取值范是4.在中,已知,,试判断的形状.四、课后作业1.在中,,,,则 .2.在中,,,,则 .3.设是的三边,,则.4.在中,已知,,,则 .5.在中,边的长是方程的两个根,,则边= .6.在中,若,则= . 7.在中,,,且的外接圆半径,则 .8.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足且C=,则ab 的值为 9.已知,,且,若,,求.35⋅3a =4b =c =C ABC ∆︒=60A 4=b 7=c a 222b c a +<ABC ∆c b a +=2C B A sin sin sin 2=ABC ∆ABC ∆8=a 7=b 3=c =B ABC ∆4=a 6=b ︒=120C =c ,,a b c ABC ∆0120B ∠=222_________a c ac b ++-=ABC ∆4=b 8=c 030=B =a ABC ∆b a ,0252=+-x x 60=C c ABC ∆32,3,1π===C c b a ABC ∆a b 2=︒=45C ABC ∆2=R =a 4)(22=-+c b a 3π||4a =||3b =61)2()32(=+⋅-b a b a AB a =AC b =ABC S ∆10.为了在一条河流上建一座桥,施工前在河两岸打上两个桥位桩、,要测算出、两点间的距离,测量人员在岸边定出基线,测得,,,试计算的长.11.在△中,已知,.(1)求△面积的最大值;(2)求的最小值.12.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若是的角平分线,,求的长.A B A BBC45BC m=75B∠=45C∠=ABABC3π=C4sin2Ac=ABC a2cos2a Cb c-= AD BAC∠43,C=23AB A=BD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余弦定理
一、教材分析
本节主要研究xxxxxx,分两课时,这里是第一课时。
它是在学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解三角形的基础上进行学习的。
通过利用平面几何法、坐标法(两点的距离公式)、向量的模,正弦定理等方法推导余弦定理,学生会正确理解余弦定理的结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”问题,体会方程思想,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生探究数学,应用数学的潜能,培养学生思维的广阔性。
二、学情分析
本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。
在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。
总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。
本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。
余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了"边"和"角"的互化,从而使"三角"与"几何"有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。
教科书首先通过设问的方式,指出了"已知三角形的两边和夹角,无法用正弦定理去解三角形",进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完
成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。
在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。
在此基础上,教师可以创设一个"已知三角形两边及夹角"来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。
在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。
在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨
三、设计思想
新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。
本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。
四、教学目标
1.知识与技能目标:掌握余弦定理的两组表示形式及证明余弦定理的向量方法,深化与细化方程思想,理解余弦定理的本质,并会运用余弦定理解决两类基本的解三角形问题。
2.过程与方法目标:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理,解决两类基本的解三角形问题。
3.情感态度与价值观目标:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
五、教学重点与难点
教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。
六、教学过程:
七、教学反思
本课的教学应具有承上启下的目的。
因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较
完整的知识系统。
所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。
本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。
本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。
因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。
学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。
因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。
点评:
本课是在学生学习了三角函数、平面几何、平面向量、正
弦定理的基础上而设置的教学内容,因此本课的教学有较多的
处理办法。
李老师从解三角形的问题出发,提出解题需要,引
发认知冲突,激起学生的求知欲望,调动了学生的学习积极性;在定理证明的教学中,引导学生从平面几何、三角函数、向量
知识、坐标法等方面进行分析讨论,注意分析思路,揭示蕴含
在证明中的数学思想,最后引导学生用向量知识推导出公式
C ab b a c cos 2222-+=,在给出余弦定理的三个等式和三个推论之
后,又对知识进行了归纳比较,发现特征,便于学生识记,同
时也指出了勾股定理是余弦定理的特殊情形,提高了学生的思
维层次。
命题的应用是命题教学的一个重要环节,学习命题的重要目的是应用命题去解决问题。
所以,例题的精选、讲解是至关重要的。
设计中的例1、例2是常规题,让学生应用数学知识求解问题,巩固正弦定理、余弦定理知识。
例3是已知两边一对角,求解三角形问题,可用正弦定理求之,也可用余弦定理求解,通过比较分析,突出了正、余弦定理的联系,深化了对两个定理的理解,培养了解决问题的能力。
但李老师在对例3解法的总结时,指出
“能用正弦定理解决的问题均可以用余弦定理解决,更具有优越性。
”这结论有点片面。
本课在继承了传统数学教学模式优点,结合新课程的要求进行改进和发展,以发展学生的数学思维能力为主线,发挥教师的设计者,组织者作用,在使学生掌握知识的同时,帮助学生摸索自己的学习方法。
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!
整理为word格式。