余弦定理教案完美版
余弦定理教案设计
余弦定理教案设计教学内容:余弦定理一、教学目标1.了解余弦定理的概念和公式。
2.能够应用余弦定理解决三角形的边与角之间的关系问题。
3.提高学生的数学推理和解决问题的能力。
二、教学重点与难点:1.重点:理解余弦定理的概念和公式,应用余弦定理解决问题。
2.难点:灵活运用余弦定理解决各种实际问题。
三、教学准备:1.教材《数学》课本、教具:黑板、彩色粉笔、三角尺、直尺和练习题。
2.多媒体设备。
四、教学过程:1.导入引入:教师引导学生回顾正弦定理的概念和公式,并举例说明其应用。
然后介绍余弦定理的概念,并与正弦定理进行对比,引出余弦定理的公式。
2.理论讲解:教师通过多媒体展示余弦定理的公式:a² = b² + c² - 2bc cosA,其中a为三角形的一边,b、c为另外两边,A为夹角。
讲解余弦定理的推导过程,并注意解释其中的符号含义。
3.实例演示:教师通过具体的实例演示如何应用余弦定理解决问题,包括计算未知边长、未知角度等。
并让学生在黑板上模仿演示。
4.小组讨论:教师组织学生分成小组,每组完成几道余弦定理的练习题,要求学生相互讨论并解答问题。
教师巡视指导,及时纠正错误。
5.教师指导:教师在小组讨论的过程中,根据学生的理解情况和解答过程,及时给予指导和解释。
鼓励学生思考、提问和探讨。
6.全课总结:教师对余弦定理的应用进行总结,并强调余弦定理在解决实际问题中的重要性。
鼓励学生在学习中多加思考,灵活运用所学知识。
7.作业布置:布置相关的习题作业,并要求学生认真完成,巩固所学内容。
要求学生在实际生活中多加观察,发现并解决问题。
五、教学反思:本次教学中,我注意引导学生主动参与学习,提高他们的解决问题和表达能力。
在教学中,要注意理论与实践相结合,引导学生将所学知识应用到实际问题中去解决。
同时,要及时纠正错误,鼓励学生勇于提问和探索。
通过这样的教学方式,可以更好地帮助学生理解和掌握余弦定理的概念和运用。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 理解余弦定理的定义和表达式。
2. 学会运用余弦定理解决三角形中的边角问题。
3. 掌握余弦定理在实际问题中的应用。
二、教学内容1. 余弦定理的定义和表达式。
2. 余弦定理的应用举例。
三、教学重点与难点1. 重点:余弦定理的定义和表达式,余弦定理的应用。
2. 难点:余弦定理在实际问题中的应用。
四、教学方法1. 采用讲解法,引导学生理解余弦定理的定义和表达式。
2. 采用案例分析法,通过举例让学生学会运用余弦定理解决实际问题。
3. 采用练习法,巩固学生对余弦定理的理解和应用。
五、教学过程1. 导入:通过复习正弦定理和余弦函数的知识,引出余弦定理的概念。
2. 新课讲解:讲解余弦定理的定义和表达式,举例说明余弦定理的应用。
3. 案例分析:分析实际问题,让学生运用余弦定理解决问题。
4. 练习巩固:布置练习题,让学生巩固余弦定理的知识。
5. 总结:对本节课的内容进行总结,强调余弦定理的重要性和应用。
教案仅供参考,具体实施可根据实际情况进行调整。
六、教学评估1. 课堂问答:通过提问方式检查学生对余弦定理的理解和掌握程度。
2. 练习题:布置课堂练习题,评估学生运用余弦定理解决实际问题的能力。
3. 课后作业:布置课后作业,巩固学生对余弦定理的知识。
七、教学拓展1. 引导学生思考余弦定理在现实生活中的应用,如测量三角形的角度和边长。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
八、教学反思1. 反思本节课的教学效果,检查学生对余弦定理的掌握程度。
2. 分析学生的反馈意见,调整教学方法和策略。
九、教学资源1. 教案、PPT、教材等教学资料。
2. 练习题、测试题等教学资源。
3. 互联网资源,如相关学术文章、教学视频等。
十、教学计划1. 下一节课内容:介绍余弦定理在实际问题中的应用,如几何图形中的角度计算。
2. 教学目标:让学生学会运用余弦定理解决实际问题,提高解决问题的能力。
余弦定理的教案(通用3篇)
余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。
三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
(完整word)高中数学余弦定理教案
1、1、 2 余弦定理一、【学习目标】1.掌握余弦定理的两种表示形式及其推导过程;2.会用余弦定理解决详细问题;3.经过余弦定理的向量法证明领会向量工具性.【学习成效】:教课目的的给出有益于学生整体的掌握讲堂.二、【教课内容和要求及教课过程】阅读教材第 5—7 页内容,而后回答以下问题(余弦定理)<1>余弦定理及其推导过程?<2>余弦定理及余弦定理的应用?结论:<1>在中,AB、BC、CA的长分别为c、a、b.由向量加法得:<2>余弦定理:三角形任何一边的平方等于其余两边平方的和减去这两边与它们夹角的余弦的积的两倍.余弦定理还可作哪些变形呢?[ 理解定理 ](1)余弦定理的基本作用为:①已知三角形三边求角;②已知两边和它们的夹角,求第三边。
[ 例题剖析 ]例1评论:五个量中两边及夹角求其余两个量。
例 2 评论:已知三边求三角。
【学习成效】:学生简单理解和掌握。
三、【练习与稳固】依据今日所学习的内容,达成以下练习练习一:教材第 8 页练习第1、 2 题四、【作业】教材第 10 页练习第3---4题.五、【小结】(1)余弦定理合用任何三角形。
(2)余弦定理的作用:已知两边及两边夹角求第三边;已知三边求三角;判断三角形形状。
( 3)由余弦定理可知六、【教课反省】本节课要点理解余弦定理的运用.要求记着定理。
习题优选一、选择题1.在中,已知角则角 A 的值是()A.15°B.75°C.105°D.75°或 15°2.中,则此三角形有()A.一解 B .两解 C .无解 D .不确立3.若是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在中,已知则AD长为()A.B.C.D.5.在,面积,则BC长为()A.B.75 C .51D.496.钝角的三边长为连续自然数,则这三边长为()A. 1、2、3、B.2、3、4C. 3、 4、5D. 4、 5、67.在中,,则A等于()A.60°B.45° C .120°D.30°8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D .等边三角形9.在中,,则等于()A.B.C.D.10.在中,,则的值为()A.B.C.D.11.在中,三边与面积S的关系式为则角C为()A.30°B.45°C.60°D.90°12.在中,是的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件二、填空题13.在中,,则14.若的三个内角成等差数列,且最大边为最小边的 2 倍,则三内角之比为 ________。
余弦定理教案范文
余弦定理教案范文教案主题:余弦定理教学目标:1.理解余弦定理的概念和原理;2.掌握使用余弦定理解决三角形问题的方法;3.能够应用余弦定理解决实际问题。
教学重点:1.余弦定理的概念和原理;2.余弦定理在解决三角形问题中的应用。
教学难点:1.熟练运用余弦定理解决实际问题。
教学准备:1.教材:数学教材、实例题;2.工具:主持学习的电子设备。
教学过程:Step 1:引入(5分钟)1.教师介绍余弦定理是解决三角形问题的重要工具;2.提问学生是否了解三角形的定点、定边、定角等概念;3.引入余弦定理的概念和作用。
Step 2:理解余弦定理(10分钟)1.教师通过示意图解释余弦定理的概念,即在一个任意三角形中,一个角的余弦等于另外两边平方和减去两倍乘积的余弦;2.教师提供实例,让学生通过计算验证余弦定理的正确性;3.师生共同讨论应用余弦定理解决实际问题的优势。
Step 3:运用余弦定理解决问题(30分钟)1.教师提供多个实例,让学生运用余弦定理解决三角形问题;2.学生独立或小组合作完成实例题,教师逐一点评,解答学生的疑问;3.引导学生总结运用余弦定理解决问题的一般步骤。
Step 4:巩固练习(15分钟)1.学生独立或小组合作完成巩固练习题;2.教师进行讲解和点评,解答学生的疑问;3.鼓励学生进行思考和讨论,加深对余弦定理的理解和记忆。
Step 5:拓展应用(10分钟)1.教师提供一些相关的实际问题,要求学生运用余弦定理进行解决;2.学生独立或小组合作完成拓展应用题;3.学生展示解题思路和结果,鼓励他们提出不同的解题方法并分析比较。
Step 6:总结反思(5分钟)1.教师对本节课的内容进行总结归纳,强调余弦定理在解决三角形问题中的重要性;2.学生提出问题和疑虑,教师予以解答和指导;3.强调学生在课后继续进行练习,加深对余弦定理的理解和掌握。
教学延伸:1.学生可以通过在实际生活中的应用场景中运用余弦定理进行解决问题,加深对其应用的理解;2.学生可以进一步探究余弦定理的证明过程,加深对其原理的理解。
余弦定理教案完美版
《余弦定理》教案(一) 教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法, 并会运用余弦定理解决两类基本的解三角形问题。
2. 过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理 解决两类基本的解三角形问题,3•情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、 余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
(二) 教学重、难点重点:余弦定理的发现和证明过程及其基本应用; 难点:勾股定理在余弦定理的发现和证明过程中的作用。
(三) 学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已 知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易 地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角 教学用具:直尺、投影仪、计算器 (四)教学设想[创设情景]C如图 1. 1-4,在 ABC 中,设 BC=a,AC=b,AB=c, 已知a,b 和 C ,求边cb \ aA 'CB(图 1 . 1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题 用正弦定理试求,发现因A 、B 均未知,所以较难求边C o由于涉及边长问题,从而可以考虑用向量来研究这个问题。
A余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角如图1.uir r1-5,设 CB a ,rnr r uur r C Ab , A B c• 2 r r r r r r c : c c a b a br r r r r r a a b b 2a b2r 2 r ra a t2a b从而c 2 a 2 b 22ab cos C同理可证2a b 22 c 2bc cos Ab 2 a 2c22ac cos B于是得到以下定理(图 1 . 1-5)b 2 a 2c 2 2ac cos B2 2 2cab 2ab cos C思考:这个式子中有几个量从方程的角度看已知其中三个量,可以求出第四个量,能否由三 边求出一角(由学生推出)从余弦定理,又可得到以下推论:[理解定理]从而知余弦定理及其推论的基本作用为:① 已知三角形的任意两边及它们的夹角就可以求出第三边; ② 已知三角形的三条边就可以求出其它角。
(完整版)《余弦定理》教案完美版
《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。
2. 培养学生运用余弦定理解决三角形问题的能力。
3. 培养学生的逻辑思维能力和数学素养。
二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。
2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。
三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。
2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。
3. 开展小组讨论,培养学生的合作能力和解决问题的能力。
四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。
2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。
3. 准备相关练习题,用于巩固所学知识。
五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。
2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。
3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。
4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。
5. 练习巩固:让学生解答相关练习题,巩固所学知识。
6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。
7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。
六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。
2. 强调余弦定理在解决三角形问题中的重要性。
八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。
九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。
余弦定理优秀教学设计优秀5篇
余弦定理优秀教学设计优秀5篇作为一位杰出的教职工,时常会需要准备好教案,借助教案可以提高教学质量,收到预期的教学效果。
怎样写教案才更能起到其作用呢?下面是的我为您带来的余弦定理优秀教学设计优秀5篇,希望大家可以爱好并共享出去。
余弦定理教案篇一《余弦定理》教案一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。
本节课的紧要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,中学的勾股定理、必修一中的向量学问、上一课时的正弦定理都是本节课内容学习的学问基础,同时又对本节课的学习供应了确定的方法引导。
其次,余弦定理在高中解三角形问题中有侧紧要的地位,是解决各种解三角形问题的常用方法,余弦定理也常常运用于空间几何中,所以余弦定理是高中数学学习的一个特别紧要的内容。
二、教学目标学问与技能:1、理解并把握余弦定理和余弦定理的推论。
2、把握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
过程与方法:1、通过从实际问题中抽象出数学问题,培育同学学问的迁移本领。
2、通过直角三角形到一般三角形的过渡,培育同学归纳总结本领。
3、通过余弦定理推导证明的过程,培育同学运用所学学问解决实际问题的本领。
情感态度与价值观:1、在交流合作的过程中加强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培育数学学习的喜好。
三、教学重难点重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发觉和推导过程以及多解情况的判定。
四、教学用具一般教学工具、多媒体工具(以上均为命题教学的准备)余弦定理教案篇二一、教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等改换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。
余弦定理优秀教学设计【优秀7篇】
余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
四、教学过程的设计为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。
具体过程如下:1、创设情境,引入课题利用多媒体引出如下问题:A地和B地之间隔着一个水塘现选择一地点C,可以测得的大小及,求A、B两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
余弦定理教学教案
余弦定理教学教案第一章:余弦定理的定义与基本概念教学目标:1. 让学生理解余弦定理的定义和背景。
2. 让学生掌握余弦定理的基本概念。
教学内容:1. 余弦定理的定义:在三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边与夹角余弦值的乘积的两倍。
2. 余弦定理的符号表示:c²= a²+ b²2abcos(C)。
3. 余弦定理的应用场景:解决三角形边长和角度的问题。
教学活动:1. 引入余弦定理的概念,通过实际例子让学生感受余弦定理的应用。
2. 讲解余弦定理的定义和符号表示,让学生理解并记住余弦定理的表达式。
3. 进行一些简单的练习题,让学生巩固余弦定理的应用。
作业:a. 三角形ABC中,AB = 5cm,BC = 7cm,AC = 8cm,求角A的余弦值。
b. 三角形DEF中,DE = 8cm,DF = 10cm,EF = 12cm,求角D的余弦值。
第二章:余弦定理的应用教学目标:1. 让学生掌握余弦定理在解决三角形问题中的应用。
教学内容:1. 使用余弦定理解决三角形边长问题。
2. 使用余弦定理解决三角形角度问题。
教学活动:1. 通过实际例子讲解如何使用余弦定理解决三角形边长问题。
2. 通过实际例子讲解如何使用余弦定理解决三角形角度问题。
3. 进行一些练习题,让学生巩固余弦定理的应用。
作业:a. 三角形ABC中,AB = 5cm,BC = 7cm,角A = 30°,求AC的长度。
b. 三角形DEF中,DE = 8cm,DF = 10cm,角D = 45°,求EF的长度。
第三章:余弦定理的扩展与应用教学目标:1. 让学生了解余弦定理的扩展形式。
2. 让学生掌握余弦定理在解决实际问题中的应用。
教学内容:1. 余弦定理的扩展形式:在任意三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边与夹角余弦值的乘积的两倍。
2. 余弦定理在解决实际问题中的应用:例如在工程测量、建筑设计等领域。
关于高中数学余弦定理教案5篇
关于高中数学余弦定理教案5篇关于高中数学余弦定理教案5篇通过编写教案,教师可以清晰地规划教学内容、目标和步骤,确保教学的有序进行。
下面是小编为大家整理的高中数学余弦定理教案,如果大家喜欢可以分享给身边的朋友。
高中数学余弦定理教案(精选篇1)一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。
本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。
其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
二、教学目标知识与技能:1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
三、教学重难点重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具普通教学工具、多媒体工具(以上均为命题教学的准备)高中数学余弦定理教案(精选篇2)一、教材分析1.地位及作用余弦定理是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中勾股定理内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。
余弦定理教案陈康武
余弦定理教案-陈康武第一章:余弦定理的定义与基本概念教学目标:1. 了解余弦定理的定义及其在几何中的应用。
2. 掌握余弦定理的基本概念,如三角函数、角度等。
教学内容:1. 余弦定理的定义:在三角形ABC中,设a、b、c分别为边AB、BC、CA的长度,α、β、γ分别为对应的内角,则余弦定理可以表示为:cosα= (b²+ c²a²) / (2bc)cosβ= (a²+ c²b²) / (2ac)cosγ= (a²+ b²c²) / (2ab)2. 三角函数:介绍正弦、余弦、正切等三角函数的基本概念和性质。
3. 角度制与弧度制:解释角度制与弧度制之间的关系,以及如何在计算中进行转换。
教学活动:1. 教师通过PPT或黑板,向学生介绍余弦定理的定义和基本概念。
2. 学生跟随教师一起,通过例题来理解和掌握余弦定理的应用。
3. 学生进行小组讨论,分享自己对余弦定理的理解和应用。
作业与练习:1. 请学生完成课后练习题,巩固对余弦定理的理解。
2. 请学生自己找一个几何问题,尝试使用余弦定理进行解决,并在课堂上分享。
第二章:余弦定理的应用教学目标:1. 掌握余弦定理在解决几何问题中的应用。
2. 能够运用余弦定理解决实际问题。
教学内容:1. 应用余弦定理解决三角形的角度问题。
2. 应用余弦定理解决三角形的边长问题。
教学活动:1. 教师通过PPT或黑板,向学生介绍余弦定理在解决几何问题中的应用。
2. 学生跟随教师一起,通过例题来理解和掌握余弦定理在解决实际问题中的应用。
3. 学生进行小组讨论,分享自己对余弦定理应用的理解和经验。
作业与练习:1. 请学生完成课后练习题,巩固对余弦定理应用的理解。
2. 请学生自己找一个实际问题,尝试使用余弦定理进行解决,并在课堂上分享。
第三章:余弦定理的拓展教学目标:1. 了解余弦定理的拓展知识,如余弦定理的证明、余弦函数的性质等。
余弦定理教案
余弦定理教案关键信息项1、教学目标理解余弦定理的推导过程。
掌握余弦定理的公式及其应用。
能够运用余弦定理解决三角形中的相关问题。
2、教学重难点重点:余弦定理的公式及推导过程。
难点:灵活运用余弦定理解决实际问题。
3、教学方法讲授法练习法讨论法4、教学工具多媒体设备黑板、粉笔5、教学时间总时长:X分钟讲解:X分钟练习:X分钟讨论:X分钟1、教学导入11 回顾三角形中的正弦定理,引导学生思考在已知两边及其夹角的情况下,如何求解三角形的第三边。
111 通过实际问题引入,如已知三角形的两边长度和它们的夹角,求第三边的长度。
2、余弦定理的推导21 利用向量的方法推导余弦定理。
211 设三角形的三边分别为a、b、c,对应的夹角分别为A、B、C。
212 以向量的形式表示三角形的边和角的关系。
213 经过向量运算,得出余弦定理的表达式:$c^2 = a^2 + b^22ab\cos C$,同理可得$a^2 = b^2 + c^2 2bc\cos A$,$b^2 = a^2 +c^2 2ac\cos B$。
3、余弦定理的公式解读31 详细分析余弦定理公式中各项的含义。
311 强调边与角的对应关系。
312 解释余弦值与边的长度之间的关系。
4、余弦定理的应用41 已知两边及其夹角,求第三边。
411 通过例题进行讲解,让学生掌握计算方法。
412 让学生进行课堂练习,巩固所学知识。
42 已知三边,求三个角。
421 介绍利用余弦定理求角的方法。
422 给出相应的例题和练习。
5、课堂讨论51 组织学生讨论余弦定理与正弦定理的区别和联系。
511 引导学生思考在不同情况下如何选择使用正弦定理或余弦定理。
6、课堂总结61 回顾余弦定理的推导过程和公式。
611 总结余弦定理的应用方法和注意事项。
7、课后作业71 布置与余弦定理相关的书面作业,包括计算题和证明题。
711 要求学生思考生活中可以用余弦定理解决的实际问题。
8、教学反思81 对教学过程中的优点和不足之处进行反思。
余弦定理的教案
余弦定理的教案
活动一:探索余弦定理
目标:理解并应用余弦定理解决三角形相关问题。
活动准备:
1. 教师准备一些直角三角形和非直角三角形的模型或图形。
2. 准备白板、笔和纸张。
活动步骤:
1. 引入余弦定理的概念:教师向学生解释余弦定理是一个三角形中的一个定理,用于计算两个边和夹角之间的关系。
2. 学生小组讨论:将学生分成小组,每个小组选择一个直角三角形或非直角三角形的模型或图形。
让学生观察并讨论它们之间边长和夹角的关系。
3. 教师演示:教师在白板上画出一个直角三角形或非直角三角形,并标记出边长和夹角。
然后,教师使用余弦定理计算两个边和夹角之间的关系,并解释计算过程。
4. 学生实践:学生使用余弦定理计算自己所选的直角三角形或非直角三角形中的边长和夹角之间的关系。
他们可以自由选择方法,可以使用计算器。
5. 答案分享和讨论:学生将自己的计算结果和解题思路与小组分享,并讨论彼此之间的差异。
6.应用实例:教师提供一些实际问题,鼓励学生运用余弦定理解决这些问题,如计算航空器的航班路径、建筑物的斜坡角度等等。
7.总结:教师述求学生总结余弦定理的公式和应用范围。
活动延伸:
学生可以通过在实际场景中使用余弦定理来解决更多的问题,如测量高楼的高度、计算陡坡的角度等。
可以鼓励学生在小组中分享和讨论解题过程,并提供反馈。
《余弦定理》教案(含答案)
《余弦定理》教案(含答案)第一章:余弦定理的定义与基本概念教学目标:1. 了解余弦定理的定义及其在几何中的应用。
2. 掌握余弦定理的表达式。
3. 能够运用余弦定理解决简单的问题。
教学内容:1. 余弦定理的定义:在一个三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边长度与它们夹角的余弦值的乘积的两倍。
2. 余弦定理的表达式:c²= a²+ b²2ab cos(C),其中c为斜边,a和b为其他两边,C为斜边与a边的夹角。
教学活动:1. 引入三角形的基本概念,引导学生思考三角形中边与角之间的关系。
2. 给出余弦定理的定义,通过示例解释余弦定理的含义和应用。
3. 推导余弦定理的表达式,并解释各符号的含义。
4. 引导学生进行实际例题的计算,巩固余弦定理的应用。
作业:a. ∠A = 30°, a = 5, b = 12b. ∠B = 45°, b = 8, c = 10第二章:余弦定理在直角三角形中的应用教学目标:1. 掌握余弦定理在直角三角形中的应用。
2. 能够解决直角三角形中涉及边长和角度的问题。
教学内容:1. 直角三角形的特殊性质:在一个直角三角形中,余弦定理可以简化为c²= a ²+ b²(其中c为斜边,a和b为直角边)。
2. 利用余弦定理解决直角三角形中的问题:通过已知的边长和角度,求解其他边长和角度。
教学活动:1. 回顾直角三角形的基本概念,引导学生思考直角三角形中边与角之间的关系。
2. 给出余弦定理在直角三角形中的应用,通过示例解释余弦定理在直角三角形中的简化形式。
3. 引导学生进行实际例题的计算,巩固余弦定理在直角三角形中的应用。
作业:a. ∠A = 30°, a = 3, 求解b和c的值。
b. ∠B = 45°, b = 5, 求解a和c的值。
第三章:余弦定理在非直角三角形中的应用教学目标:1. 掌握余弦定理在非直角三角形中的应用。
余弦定理教案(5篇)
余弦定理教案(5篇)余弦定理教案(5篇)余弦定理教案范文第1篇【关键词】学习方式;预习方式;科技手段;教学效率课堂教学效率是关于学习收益和教学时间的综合概念,是指在课堂单位时间内同学的学习收益与老师、同学的教学活动量在时间尺度上的量度。
同学的学习方式,会直接影响到学习收益,从而影响到教学效率。
传统的课堂教学过于强调同学的接受学习、机械训练和对结果学问的教学,表面上看似教学效率高,实质忽视了很重要的一个方面,即同学对过程学问与方法的理解与获得,长远来看不利于同学今后的学习与进展。
同学学问的猎取与力量的提高基本上是在课堂内完成的,所以课堂上应通过老师的设计与引导,使同学能够转变传统的学习方式,从而提高课堂教学效率。
通过实践,我们发觉是现阶段比较符合新课程改革课堂教学基本理念的一种模式,具有很大的研讨价值与空间,是一种理念的革新。
“学案导学”突出同学的自学行为,注意学法指导,培育同学学习力量、情感态度,做到把学习的主动权真正还给了同学,从而提高了课堂教学效率,也解决了课时紧急的冲突。
1 转变备课和预习方式“工欲善其事,必先利其器”,备课是上好课的先决条件,要想提高课堂教学效率,课前不仅老师要做好充分的预备,而且同学也要做相应的预备或预习。
1.1 师生共同备课。
在传统备课模式下,备课时老师对同学的设想,与其在课堂教学实施中的实际状况,有的时候出入较大。
师生共同备课转变了传统备课中,老师依据自己的理解和以往的主观阅历来“备同学”的状况。
老师在集体备课的基础上,实行每班选出三名具有不同数学学业水平的同学,事先让他们依据课本进行初步预习,然后以座谈的方式,了解他们在预习中的困惑,这样更简单在“导学案”编制过程中有的放矢,以提高它在实施过程中的效率,从而使“备同学”这一环节更加客观、精确。
1.2 同学依据“导学案”进行预习。
老师历来强调课前预习的重要性,但由于同学没有具体、周密的预习指导性材料,导致他们对预习缺乏乐观性与主动性,更是由于最重要的检查环节较弱,使同学的课前预备工作有很强的随便性,有的同学走过场。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《余弦定理》教案
(一)教学目标
1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
(二)教学重、难点
重点:余弦定理的发现和证明过程及其基本应用;
难点:勾股定理在余弦定理的发现和证明过程中的作用。
(三)学法与教学用具
学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角 教学用具:直尺、投影仪、计算器
(四)教学设想
[创设情景] C 如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c,
已知a,b 和∠C ,求边c b a
A c B
(图1.1-4)
[探索研究]
联系已经学过的知识和方法,可用什么途径来解决这个问题
用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。
A 如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c
()()222 2 2c c c a b a b
a a
b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B
从而 2222cos c a b ab C =+- (图1.1-5) 同理可证 2222cos a b c bc A =+-
2222cos b a c ac B =+-
于是得到以下定理
余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即 2222cos a b c bc A =+-
2222cos b a c ac B =+-
2222cos c a b ab C =+-
思考:这个式子中有几个量从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角
(由学生推出)从余弦定理,又可得到以下推论:
222
cos 2+-=b c a A bc 222
cos 2+-=a c b B ac 222
cos 2+-=b a c C ba
[理解定理]
从而知余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边;
②已知三角形的三条边就可以求出其它角。
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系
(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
[例题分析]
例1.在∆ABC 中,已知=a c 060=B ,求b 及A
⑴解:∵2222cos =+-b a c ac B
=222+-⋅cos 045
=2121)+-
=8
∴=b
求A 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos 2221,22+-==b c a A bc ∴060.=A
解法二:∵sin 0sin sin45,=a A B b
2.4 1.4
3.8,+=
21.8 3.6,⨯=
∴a <c ,即00<A <090,
∴060.=A
评述:解法二应注意确定A 的取值范围。
例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形
(见课本第8页例4,可由学生通过阅读进行理解)
解:由余弦定理的推论得: cos 222
2+-=b c a A bc
22287.8161.7134.6287.8161.7+-=⨯⨯ 0.5543,≈
05620'≈A ; cos 222
2+-=c a b B ca
222134.6161.787.82134.6161.7+-=⨯⨯ 0.8398,≈
03253'≈B ;
0000180()180(56203253)
''=-+≈-+C A B 09047.
'= [随堂练习]第8页练习第1(1)、2(1)题。
[补充练习]在∆ABC 中,若222a b c bc =++,求角A (答案:A=1200)
[课堂小结]
(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;
(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。
(五)评价设计
①课后阅读:课本第9页[探究与发现]
②课时作业:第11页[习题]A 组第3(1),4(1)题。