光子晶体
光子晶体及其在激光电磁学中的应用
光子晶体及其在激光电磁学中的应用光子晶体是一种具有周期性结构的材料,其晶格常数比可见光波长要小得多,所以具有对光的完美控制特性,其光学性质优于普通的材料。
因此,光子晶体在激光电磁学中有着广泛的应用。
一、光子晶体的构造及其特性光子晶体是一种由周期性结构单元构成的材料,其周期性结构单元必须满足材料中的光子能够在其中传播的条件,也就是说,其周期应该与波长相当。
光子晶体可以用于在某些特定波段和极化状态下完美地反射和透射光线,其光学特性与普通材料不同。
光子晶体的物理特性随着结构和材料的变化而发生变化。
通过调整其内部的构造和成分,可以实现对光场的高度定制,可以控制光的传播方向、速度、损耗等性质。
光子晶体还具有非线性光学性质,可以产生与普通材料不同的非线性光学效应。
二、光子晶体在激光电磁学中的应用光子晶体是一种典型的光学材料,其在激光电磁学中有着很多的应用。
1. 光子晶体光纤光子晶体光纤是一种由光子晶体材料制成的光纤,受到物理尺寸和波长限制的传统光纤无法彻底解决多模干扰问题,导致光纤通信中的数据传输质量下降。
与传统光纤相比,光子晶体光纤的中心井宽和周期性结构单元的数量可以调整,改变传播模式,可实现单模传输,光传输带宽更大,并且混合模式可以避免在传输中的失真。
因此,光子晶体光纤可以用于长距离通讯、高速通讯、卫星通讯等领域。
2. 光子晶体激光器光子晶体激光器是一种基于光子晶体材料制成的激光器,可以用于光通信、光信息存储等领域。
光子晶体激光器利用光子晶体中的光子能带结构,实现了高效的光增强效应,它的光学特性比传统的激光器具有更好的稳定性和更高的高功率输出。
光子晶体激光器也可以实现波长调制,可以在大范围内实现波长调整,具有优良的单模性、高精度和低成本等优点。
这种波长可调激光器可以用于激光雷达、气体探测、医学诊断等领域。
3. 光子晶体光学振荡器光子晶体光学振荡器是一种基于光子晶体材料制成的光学器件,有着极高的透过率和较低的损耗率。
光子晶体的原理与应用
光子晶体的原理与应用概述光子晶体是一种由周期性改变介电常数分布而形成的结构,具有能带结构类似于电子在晶格中的运动。
光子晶体能够控制光的传播和波长选择性,因此在光学领域具有广泛的应用前景。
光子晶体的原理光子晶体的原理基于周期性调制介电常数分布。
通过改变材料的周期性结构,可以实现光子晶体的禁带带隙效应,即在一定频率范围内,光的传播被完全阻止。
光子晶体的禁带带隙可以通过调节结构的周期、材料的折射率以及填充材料来实现。
光子晶体的禁带带隙效应是由几何光学效应和电磁场的相互作用相结合而产生的。
在光子晶体中,光通过周期性结构时,会出现在特定频率范围内的相干散射。
这种相干散射会导致光的传播被阻挡,从而形成禁带。
禁带带隙的宽度取决于周期性结构的参数,包括晶格常数、材料折射率以及填充材料等。
光子晶体的应用光子晶体的光学波导光子晶体可以实现光的传输和波导效应。
在光子晶体中,通过调节光子晶体的周期性结构,可以实现光的导向和控制。
光子晶体光波导可以用于构建高效的光耦合器、分束器、滤波器、光放大器等光学元件。
光子晶体光波导具有低损耗、高效率等特点,被广泛应用于光通信、光子芯片等领域。
光子晶体的传感器光子晶体由于其禁带带隙效应,可以实现光的滤波和波长选择性。
这使得光子晶体成为理想的传感器材料。
通过改变光子晶体的结构和填充材料,可以实现对不同化学和生物分子的敏感度。
光子晶体传感器可以用于检测环境中的气体、液体、生物分子等,具有高灵敏度、高选择性和实时监测等特点。
光子晶体的光学器件光子晶体的禁带带隙效应还可以用于设计和制造光学器件。
通过选择合适的晶格参数和材料,可以实现对特定波长和频率的光的调控。
光子晶体光学器件包括滤光器、反射镜、全反射镜、衍射光栅等。
这些光学器件具有高效率、高分辨率和高准确性的特点,并在光学测量、光通信等领域得到广泛应用。
光子晶体的激光器利用光子晶体的禁带带隙效应,可以实现低阈值、窄带宽的激光器。
光子晶体激光器在光通信、光信息处理等领域具有重要应用前景。
光子晶体
光子晶体光纤(PCF)的特性 :
(1)无截止单模( Endlessly Single Mode)
(2)不同寻常的色度色散 (3)极好的非线性效应 (4)优良的双折射效应
此外,光子晶体还可用于制造各种性能优 良的光通讯器件,如光子晶体激光器。
利用光子晶体的带隙特点,可以制造了出理 想带阻滤波器,获得优良的光波滤波性能。
' r
2
c
2
r ~ E , 即平均介电常数相当于能量本征值
光子晶体中的光子能带不同于半导 体中的电子能带
光子的能量 E p kc 因此其色散关 系的特点是E p 和k呈线性关系
三、光子晶体的应用 --光子晶体光纤(PCF)
分类:实心光纤和空心光纤
实心光纤是将石英玻璃毛细管以周期性规律 排列在石英玻璃棒周围的光纤 空心光纤是将石英玻璃毛细管以周期性规律 排列在石英玻璃管周围的光纤
2 2 r rr r 2 ' c2 r E r c2 r E )的定态波动方程, 可以看出两式得相似之处:
c 一个周期势场;
2
2
r r ~ V r , 即周期变化的介电常数相当于
一、光子晶体简介 二、光子晶体中的量子理论 三、光子晶体的应用-光子晶体光纤 四、光子晶体的发展前景
一、光子晶体简介
光子晶体(photonic crystal) 是一种介电常数随空间周期性变化的新 型光学微结构材料。 从晶体结构来说,晶体内部的原子是周 期性有序排列的,正是这种周期势场的存 在,使得运动的电子受到周期势场的布拉 格散射,从而形成能带结构,带与带之间 可能存在带隙。
优点: (一)光子晶体波导具有优良的弯曲效应。
光子晶体颜色变化的原理
光子晶体颜色变化的原理
光子晶体的颜色变化原理基于光的干涉与衍射现象。
光子晶体是一种由有序排列的微米尺度周期性结构组成的材料,其结构和物理性质具有光学禁带结构。
当入射光与光子晶体的周期结构相互作用时,会发生两种重要的现象:干涉和衍射。
干涉是指光的波峰与波谷相互叠加形成明暗条纹的现象。
光子晶体的周期性结构可以形成光的干涉效应,使得入射光以不同的角度和波长被反射、透射或吸收。
当光子晶体的周期与入射光的波长或角度匹配时,就会发生干涉现象。
干涉现象会使得特定波长的光被反射、透射或吸收,其他波长的光被晶体表面散射。
衍射是光波在穿过狭缝或障碍物后绕过其边缘产生扩散现象。
光子晶体的周期性结构会限制光波的传播方向和传播范围,使得不同波长的光在光子晶体中发生衍射,进而产生不同的波长分量,从而表现出不同的颜色。
由于光子晶体的周期性结构具有宽禁带结构,可以选择性地反射、透射或吸收特定波长的光,因此光子晶体在不同入射角度和观察方向下对光的反射、透射和散射的颜色也会发生变化。
这就是光子晶体颜色变化的原理。
光子晶体
光子晶体光子晶体(Photonic Crystal)指能对光作出反应的特殊晶格。
光子晶体是指能够影响光子运动的规则光学结构,这种影响类似于半导体晶体对于电子行为的影响。
光子晶体以各种形式存在于自然界中,科学界对它的研究已经长达一百年。
原理光子晶体是在1987年由S.John和E.Yablonovitch分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。
由于介电常数存在空间上的周期性,引起空间折射率的周期变化,当介电系数的变化足够大且变化周期与光波长相当时,光波的色散关系出现带状结构,此即光子能带结构(Photonic Band structures)。
这些被禁止的频率区间称为“光子频率带隙”(Photonic Band Gap,PBG),频率落在禁带中的光或电磁波是被严格禁止传播的。
我们将具有“光子频率带隙”的周期性介电结构称作为光子晶体。
特别需要指出的是,介电常数周期性排列的方向并不等同于带隙出现的方向,在一维光子晶体和二维光子晶体中,也有可能出现全方位的三维带隙结构。
应用光子晶体体积非常小,在新的纳米技术中、光计算机、芯片等领域有广泛的应用前景。
使用光子晶体制造的光子晶体光纤,也有比传统光纤更好的传输特性,可以进而应用到通信、生物等诸多前沿和交叉领域。
2005年美国的研究人员成功地使用两种新式二维光子晶体,将光的群速度降低了超过一百倍。
这项装置未来可望被应用于各种光学系统及元件中,其中包括高功率、低阈值的光子晶体激光。
光子晶体也可以将拉曼光讯号放大一百万倍。
英国的Mesophotonics宣称,该公司于2005年的Photonics West会议中发表这种结合光子晶体与表面增强拉曼光谱术(surface enhanced Raman spectroscopy, SERS)的产品,由于灵敏度超高,未来可望应用在医疗诊断、药物输送,以至于环境监控上。
光子晶体光纤光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。
光子晶体技术
光子晶体技术光子晶体是一种具有周期性介电常数或介电导率分布的材料结构。
由于其特殊的光学性质,光子晶体技术已经成为光学、光电子学和纳米科技领域的研究热点。
本文将探讨光子晶体技术的原理、应用以及未来发展方向。
一、光子晶体技术的原理光子晶体技术的实现是通过制备周期性的结构,使得材料对特定波长的光具有反射、传播、干涉等特殊性质。
光子晶体的周期性结构通常是由两种或多种材料交替排列组成,其中每种材料的折射率或导电性质不同。
二、光子晶体技术的应用光子晶体技术在光学和光电子领域有着广泛的应用。
一方面,光子晶体技术可用于设计和制备各种光学器件,例如光波导、光滤波器、光传感器等。
另一方面,光子晶体技术也可应用于光子集成电路、光子计算和光子通信等领域。
1. 光子晶体传感器光子晶体传感器利用光子晶体对特定波长光的敏感性,可以实现高灵敏度和高选择性的传感器。
通过调控光子晶体的结构参数,可以实现对特定物质的浓度、温度、压力等参数的检测。
2. 光子晶体光波导光子晶体光波导是一种基于光子晶体的光传输手段,其具有低损耗、高传输效率的特点。
通过调节光子晶体的结构参数,可以实现对特定波长的光进行引导和控制,从而实现光信号的调制和耦合。
3. 光子晶体滤波器光子晶体滤波器是一种具有特定波长选择性的光学器件。
通过调整光子晶体的结构参数,可以实现对特定波长的光进行滤波,从而实现光的频率选择和光谱分析。
三、光子晶体技术的发展趋势光子晶体技术凭借其独特的光学性质和广泛的应用前景,受到了越来越多的研究关注。
未来,光子晶体技术有望在下述方面有进一步的发展和应用。
1. 多功能光子晶体材料的设计与合成当前的光子晶体材料多局限于某一特定波长范围内应用。
未来,研究人员将致力于开发具有更宽波长范围响应的多功能光子晶体材料,并探索更灵活的调节机制,以满足不同应用场景的需求。
2. 新型光子晶体器件的研发与应用随着光子晶体技术的发展,越来越多的新型光子晶体器件被提出和实现。
光子晶体
光子晶体绪论光子晶体是一种在微米亚微米等光波长的量级上折射率呈现周期性变化的介质材料,按照其折射率变化的周期性,可以分为一维、二维和三维光子晶体。
光子晶体的概念首先在1987年被E.Yablonovitch提出[1]。
1991年,由E. Yablonovitch制成了第一个微波波段的光子晶体后,随着各种工艺的发展,多种多样的晶体结构陆续的被制备出来,许多理论预测得到了验证。
光子晶体的原理光子晶体的原理是从类比晶体开始的。
晶体中原子的周期性的排列使晶体中产生了周期性的势场,当电子在这种周期性势场中运动时会受到布拉格散射,从而形成能带结构。
带与带之间可能存在带隙,电子波的能量如果落在带隙中,就无法继续传播。
不论电磁波还是其它波(如光波),只要受到周期性调制,都有能带结构,也都可能出现带隙,而能量落在带隙中的波一样也不能传播。
光子晶体是在高折射率材料的某些位置周期性地出现低折射率(如人工造成的气泡)的材料,高低折射率的材料交替排列形成周期性结构就可以产生光子晶体带隙,从而由光带隙结构控制着光在光子晶体中的运动[2~5]。
自然界中存在一些有着光子晶体结构的物质,例如用来装饰的蛋白石( Opal),还有一种深海老鼠身上的毛以及一种特殊的蝴蝶翅膀上的粉,它们在不同的角度反射不同波长的光。
通过研究发现它们都是由大小均匀的微米、亚微米量级的结构密堆积而成的[6~7]。
参见图1~5。
但是,这些都是粗糙的光子晶体,因为它们没有形成完全的禁带的形成与大小同两种材料的折射率的差、填充比以及排列方式有着密切的联系。
一般说来,两种材料的折射率差值越大,就越有可能形成光子禁带,当两种材料的折射率差大于2的情况,可以形成完全禁带。
在自然界尚未曾发现此类的晶体。
因实验研究使用的光子晶体必须经过人工制备。
常见的光子晶体的制备方法有自然生长法,机械制备法,光刻法,光学方法,化学刻蚀方法,薄膜生长法,胶体自组织密堆积方法,反蛋白石光子晶体合成方法等[8~13]。
光子晶体设计
光子晶体设计光子晶体是一种具有周期性光学性质的材料, 通过改变其周期性结构以控制光的传播和特性, 广泛应用于光学器件、传感器、光学通信等领域。
在光子晶体的设计过程中,选择合适的材料和优化结构是关键的步骤。
本文将介绍光子晶体设计的基本原理、常用方法和一些应用案例。
一、光子晶体设计原理光子晶体的设计原理基于布拉格衍射和能带理论。
通过在材料中引入周期性的折射率变化,产生布拉格衍射,使特定波长的光在晶体中发生反射和传播。
这种周期性结构的形成会引起光子禁带的产生,即某一范围内的光无法在晶体中传播。
二、光子晶体设计方法1. 自下而上设计方法自下而上的设计方法是通过改变结构参数和材料属性来实现对光子晶体光学性质的调控。
其中一种常用的方法是利用微纳加工技术,如电子束曝光、光刻技术等,在二维或三维材料中制造特定的结构,从而实现光子晶体的设计。
2. 自上而下设计方法自上而下的设计方法是基于计算机模拟和优化算法。
通过选择材料的折射率和结构的周期,采用计算工具如有限元方法、傅里叶光学等进行模拟计算,最终得到满足特定光学性质需求的光子晶体结构。
三、光子晶体应用案例1. 光子晶体波导光子晶体波导是一种在光子晶体中实现光的传播的结构。
由于光子晶体波导的禁带导致传播模式的束缚,使其具有较大的带宽和高的传输效率。
光子晶体波导在微波通信、光通信和集成光学领域有着重要的应用。
2. 光子晶体传感器光子晶体结构对光的敏感性使其成为理想的传感器平台。
通过对光子晶体纳米孔洞或微球的设计,可以实现对不同物质的检测和监测。
光子晶体传感器在生物医学、环境监测和食品安全等方面有广泛的应用。
3. 光子晶体滤波器光子晶体滤波器是利用光子晶体的光学特性实现对特定波长光的选择性传输。
通过调整光子晶体的结构参数和材料折射率,可以实现对光的波长选择性滤波。
光子晶体滤波器在光通信、光谱分析和光学传感等领域中起到重要的作用。
结论光子晶体设计作为一种关键的光学器件设计方法,具有广泛的应用前景。
光子晶体是指具有
光子晶体光子晶体是指具有光子带隙(PhotonicBand-Gap,简称为PBG)特性的人造周期性电介质结构,即频率落在光子带隙内的电磁波是禁止传播的,这种结构有时也称为PBG光子晶体结构,这种新型人工材料即为光子晶体材料。
光子晶体(Photonic Crystal)是在1987年由S.John 和E.Yablonovitch分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。
光子晶体即光子禁带材料,从材料结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体。
在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在带隙。
电子波的能量如果落在带隙中,传播是禁止的。
与半导体类似,光子晶体中光的折射率的周期性交化产生了光的带隙结构,从而有光带隙结构控制光在光子晶体中的运动。
同样,光波的色散曲线形成带状结构,带与带之间可能会出现类似于半导体禁带的“光子禁带”(PhotoIlic Band Gap)。
频率落在禁带中的光波是严格禁止传播的。
其实不管任何波,只要受到周期性的调制.都有能带结构,也都有可能出现带隙。
能量落在带隙中的波是不能传播的,电磁波或者光波也不例外.如果只在一个方向上具有周期结构,光子带隙就只可能出现在这个方向上,如果存在三维的周期结构,就有可能出现全方位的光子带隙,落在带隙中的光在任何方向上都被禁止传播。
我们将具有光子禁带的周期性介质结构称为光子晶体面(Phoooc crystal),或叫做光子带隙材料(Photonic Bandgap Materials)。
由于电磁场的矢量特性,使得光子晶体的理论模拟变的较为困难。
不过,经过许多理论物理学家的努力,目前几种理论上的模拟和实验结果已经取得较好的一致性。
这些理论方法比电子能带理论计算方法更为完善,因为光子之间不存在库仑相互作用,是真正的单粒子问题,而在电子系统中库仑作用不可忽略,固体物理只能采取一定的近似条件来计算。
光子晶体的制备及其应用
光子晶体的制备及其应用光子晶体,是一种能够控制光子传导和储存的新材料,在光子学、光通信、微电子学、化学和生物医学等领域有着广泛的应用。
本文将介绍光子晶体的制备方法及其应用。
一、光子晶体的制备方法光子晶体的制备方法主要包括模板法、垂直自组装法、微影法等,其中模板法是目前应用最广泛的制备方法之一。
以下分别介绍这三种方法。
1. 模板法模板法是通过在模板表面沉积光子晶体的方法来制备光子晶体的。
模板一般有硅胶、聚氨酯、聚焦炭等材料,具体的制备步骤分为以下几个步骤:(1) 制备模板先制备好需要成为模板的材料,如硅胶。
将硅胶涂在玻璃表面,然后将其放入硫酸铜溶液中进行氧化,使硅胶在玻璃表面形成孔洞。
(2) 沉积光子晶体将需要制备的光子晶体材料制成溶液,然后将其滴到硅胶孔洞中,等待其自主形成晶格结构。
最后,用乙醇将硅胶与溶液分离,即可得到光子晶体。
2. 垂直自组装法垂直自组装法是一种利用表面张力使自组装颗粒排列成为光子晶体的方法,主要分为三个步骤:(1) 表面处理将衬底表面进行化学或物理处理,使得粒子可以自由组装。
(2) 悬浮颗粒将粒子置于液体中,然后将液体滴到表面处理后的衬底上,利用表面张力使粒子自动排列成为光子晶体。
(3) 固化晶体将光子晶体放置于紫外灯下进行固化,以保持其原有结构。
3. 微影法微影法是一种通过光默认技术制备光子晶体的方法。
以二氧化硅为例,其制备步骤如下:(1) 制备基板将尽量平整的硅片进行表面处理,使得光可以很好地穿透并形成图案。
(2) 光刻将需要形成的光子晶体图案进行设计,然后用光刻胶对硅片进行覆盖。
(3) 电荷转移将光照射光刻胶,使其发生电荷转移,从而使得光刻胶固定。
(4) 刻蚀利用刻蚀技术将硅片中的光刻胶和不需要刻蚀的硅部分进行区分,最终得到光子晶体。
二、光子晶体的应用由于其微小的尺寸和无规则的结构,光子晶体具有许多惊人的特性和应用。
以下列举几个主要的应用领域:1. 光子学作为一种光绝缘体材料,光子晶体具有很多特殊的光学性质。
光子晶体的特征
光子晶体的特征光子晶体是一种具有周期性介质结构的材料,其特征是能够控制和调节光的传播和散射。
下面就光子晶体的特征进行详细介绍。
1. 光子带隙光子晶体中的介电常数分布呈现出周期性结构,导致了光子带隙的形成。
这意味着在某些频率范围内,光子晶体对于该频率范围内的光波具有禁带作用,使得这些波无法通过材料。
2. 能量传输控制由于光子带隙的存在,光子晶体能够控制和调节能量的传输。
在某些频率范围内,光可以被完全反射或吸收,而在其他频率范围内则可以自由传播。
这种能量传输控制可以应用于激光器、太阳能电池等领域。
3. 引导模式在某些情况下,光子晶体中的禁带可能会形成一条线状结构,称为引导模式。
通过调节禁带宽度和位置,可以实现对引导模式的控制和调节。
这种引导模式可用于制作光纤、光波导等器件。
4. 散射光子晶体中的介质结构可以使得入射光被散射,产生出色彩斑斓的效果。
这种散射可以应用于制作反光衣、防伪标签等领域。
5. 偏振控制由于光子晶体的周期性结构,可以实现对入射光的偏振控制。
通过调节晶格常数和方向,可以使得入射光在不同方向上具有不同的偏振状态。
这种偏振控制可用于制作偏振滤波器等器件。
6. 多功能性由于光子晶体具有上述多种特征,因此可以实现多种功能。
例如,在一个光子晶体中可以同时实现能量传输控制、引导模式和散射等功能。
总之,光子晶体是一种具有周期性介质结构的材料,其特征是能够控制和调节光的传播和散射。
通过调节其介质结构和周期性,可以实现多种功能,应用广泛。
光子晶体分类
光子晶体分类光子晶体是一种具有周期性结构的材料,它的晶格周期与光波的波长相当,因此可以对光波进行调控和控制。
光子晶体的研究是光学领域的一个重要课题,也是材料科学和光电子技术的前沿领域之一。
根据光子晶体的不同特性和应用,可以将其分为三类:一维光子晶体、二维光子晶体和三维光子晶体。
一维光子晶体是指具有一维周期结构的光子晶体。
它由周期性交替排列的高折射率和低折射率材料组成。
在一维光子晶体中,光波在垂直于周期方向的传播受到限制,只能在特定的频率范围内传播。
一维光子晶体具有禁带结构,可以通过调节周期或改变材料的折射率来调控禁带的位置和宽度。
一维光子晶体的应用包括光纤通信、光学传感和光子集成电路等。
二维光子晶体是指具有二维周期结构的光子晶体。
它由周期性排列的高折射率和低折射率材料组成,形成了一个平面上的周期性结构。
二维光子晶体具有二维布里渊区,可以通过控制布里渊区的大小和形状来调控光波的传播和散射。
二维光子晶体具有丰富的光学性质,如光子带隙、光学导波和光学共振等。
二维光子晶体的应用包括光学传感、光电子器件和光学器件等。
三维光子晶体是指具有三维周期结构的光子晶体。
它由周期性排列的高折射率和低折射率材料组成,形成了一个立体的周期性结构。
三维光子晶体具有三维布里渊区,可以在整个光谱范围内形成光子带隙。
光子带隙是指光波在特定频率范围内不能传播的现象,类似于电子在晶体中的能带隙。
利用光子带隙的特性,可以实现光学滤波、光学存储和光学信息处理等应用。
除了以上三类光子晶体,还有一些特殊类型的光子晶体,如非线性光子晶体、拓扑光子晶体和光子晶体波导等。
非线性光子晶体是指具有非线性光学性质的光子晶体,可以实现光学调制和频率转换等功能。
拓扑光子晶体是指具有拓扑性质的光子晶体,可以实现无损传输和边缘态传输等特殊功能。
光子晶体波导是指在光子晶体中形成的光波导道,可以实现光的传输和耦合等功能。
光子晶体的研究不仅具有基础科学意义,还具有重要的应用价值。
光子晶体
Opal
Sea mouse
什么是光子晶体
在半导体材料中由于周期势场的 的作用,电子会形成能带结构,带和 带之间(如价带和导带)有能隙,电 子波的能量如果落在带隙中,传播是 被禁止的。 光子的情况与此类似。如果将具 有不同介电常数的介质材料在空间按 一定的周期排列,由于存在周期性, 在其中传播的光波的色散曲线将成带 状结构,带和带之间可能会出现类似 的半导体带隙的“光子带隙”,频率 落在带隙中的光是被禁止传播的(图 1),我们将由于存在光子带隙而对频 率有选择性的周期性介质结构称为光 子晶体。
' r
c
2
2
r ~ E , 即平均介电常数相当于能量本征值
光子晶体的量子理论 光子晶体中的光子能带不同于半导 体中的电子能带
光子的能量 E p kc 因此其色散关 系的特点是E p 和k呈线性关系
应用
光子晶体光纤 高效率发光二极管 微波天线 在电子计算机技术中的运用 手机辐射保护 低阈值激光发射器 光子晶体波导 光子晶体滤波器 光子晶体谐振腔 高性能反射镜
光子晶体
2013.11.21
目录
1 3 2
光子晶体的简介 光子晶体的量子理论
3 4
光子晶体的应用
光子晶体的未来与展望
光子晶体
光子晶体(Photonic Crystal)是一种在微 米、亚微米等光波长的量级上折射率呈 现周期性变化的介质材料
光子晶体
光子晶体--自然界中的例子
Butterfly
自从1970年以来,可以被放置到微电子芯片的电子元件数量以18月 翻一番的速度增长,然而即使这种被成为摩尔定律的趋势可以在以后的几 年内必将逐渐的走向平缓,直至目前的极限。 要提高CPU速度,也就是缩短CPU完成指令的时间,就必须减少电信 号在各个元件的延迟时间。减小元件体积,缩短它们之间的距离。但是元 件缩小到一定程度后就很难再有大的突,而且其电子元件的发热量将十分 惊人,很有可能因为过热而产生电子漂移现象,导致系统不稳定甚至崩溃。
光子晶体是什么
光子晶体是什么?“光子晶体”是1987年提出的新概念和新材料。
这种材料有一个显著的特点.即它可以如人所愿地控制光子的运动,是光电集成、光子集成、光通讯、微波通讯、空间光电技术以及国防科技等现代高新技术的一种新概念和新材料,也是为相关学科发展和高新技术突破带来新机遇的关键性基础材料。
光子晶体的这一概念是同真实晶体的类比而来的。
我们知道,在固体材料中,由于原子核周期性势场的作用,电子会形成能带结构,带与带之间(如价带与导带)有能隙,称为“禁带”。
将这一思想应用于传输光的介质,如果介质中也存在周期性的结构,那么其中的光子有可能形成类似于电子能带的结构,在带与带之间也会出现“禁带”。
在固体中,能量处于禁带内的电子是不可能存在的。
与此类似,在具有禁带的介质结构中,频率对应于禁带的光不能在其中存在或传播‘把这种由于存在禁带而对频率有选择特性的周期性介质结构称为“光子晶体”,相应的光不能在其中存在或传播的频率范围称为“光子禁带”,或称“光子带隙’。
可见,光子晶体不是简单的晶体而是由不同晶体按特定方式排列而成。
自然界也有光子晶体的例子,如色彩斑斓的蝴蝶翅膀。
不过实验室中所用的光子晶体都是人工设计制作出来的。
光子晶体的最根本特征是具有光子带隙,落在带隙中的光是被禁止传播的。
光子带隙的存在会带来许多新物理和新应用。
Yablonovitch指出:光子晶体的周期性结构可以抑制自发辐射。
爱因斯坦曾经认为自发辐射是不可控制的,它必将不可避免地与受激吸收和受激发射共存。
现在利用光子晶体的思想有可能改变这一论断。
我们知道,自发辐射的几率与光子所在频率的态密度成正比。
当原子被放在一个光子晶体里面,而它自发辐射的光频率正好落在光子禁带中时,由于该频率的态密度为零,因此自发辐射几率为零,相应的自发辐射被抑制。
在现代的光电子技术应用中,抑制自发辐射具有十分重要的现实意义。
例如在半导体激光器中,由于自发辐射的存在而引起较大的附加电流损失,成为激光器闰值的主要原因。
光子晶体
目录
提出背景及发展历史 理论研究 数值研究
光子晶体的制备
实验研究
性质
应用
光子晶体的提出
在1987年之前,光子晶体已取得了一些进展 1987年,Eli Yablonovitch和Sajeev John发表了2篇有关光 子晶体里程碑的文章。
自从1987年起,具有空间周期性介质的结构的一维光 子晶体(如布拉格镜面)就开始被广泛地研究。 此后,二维、三维的光子晶体也逐渐受到了人们的关 注。
4、光子晶体全光开关
光子与非线性光子晶体的相互作用 光束传输过程的开与关 的控制作用。 体积小 全光驱动 更快速的时间响应 更高的开关效率 2005年, 日本NTT研究员 微加工技术 硅片上刻蚀出周期性三角晶格的空气孔, 制备出二维硅光子晶体
5、光子晶体超棱镜
分开能力比常规的要强100-1000倍, 体积只有常规的 1%。 2004年, 英国南安普敦大学与 M esophoton i cs有限 公司的研究人员 能够在可见光波长上工作的光子晶体超棱镜。 从整个可见光延伸到近红外的宽带光谱和角光谱技术 发现, 在几个主要的光子带隙附近, 角分散超过了 1%/nm, 比折射系数相同的普通棱镜大了100多倍,比等效衍射 光栅大了10多倍, 这对光通讯中的信息处理有重要的意义。
更大的设计自由度,是未来集成光路设计的基础。
(2)微谐振腔 原子的自发辐射几率与光子模式的态密度成正比 在光子晶体中引入点缺陷,且其缺陷模频率与原子自 发辐射频率相同 自发辐射将得到显著增强 光子晶体的尺寸与波长在同一量级 高品质因数微谐振腔的设计
光子晶体原理
光子晶体原理光子晶体是一种具有周期性折射率分布的材料,它引入了光子禁带结构,类似于电子在晶体中的禁带结构。
光子晶体的独特结构使其具有许多特殊的光学性质,因此在光学领域中得到了广泛的研究和应用。
光子晶体的原理可以简单地理解为通过一系列周期性的折射率变化来控制光的传播和调制光的性质。
光子晶体的折射率分布具有空间周期性,这种周期性结构会对光的波矢进行布里渊区折叠,从而产生光子禁带,使得特定频率范围内的光无法在光子晶体中传播,这就是光子禁带结构。
光子晶体的制备方法有很多种,常见的包括自组装法、光刻法、溶胶-凝胶法等。
其中,自组装法是一种简单且经济高效的制备方法,通过控制微球颗粒的自组装形成光子晶体的周期结构。
光刻法则是利用光刻胶和光刻机进行光刻加工,制备出具有亚微米或纳米级别尺寸的光子晶体结构。
溶胶-凝胶法则是利用溶胶和凝胶相变制备光子晶体结构。
光子晶体的应用领域非常广泛,包括光学传感、光子芯片、光子集成电路、光子晶体光纤等。
光子晶体在光学传感领域中可以通过改变环境中折射率的变化来实现对光的敏感探测,具有高灵敏度和快速响应的特点。
在光子芯片和光子集成电路中,光子晶体可以用作光学波导、光开关、光调制器等器件的基底材料,实现光信号的处理和传输。
光子晶体光纤则是一种具有光子禁带结构的光纤,可以实现对特定波长范围内光的传输和控制。
光子晶体的原理和应用在光学领域中具有重要的意义。
通过对光子晶体结构和性质的研究,可以实现对光的控制和调制,为光学器件的设计和开发提供了新的思路和方法。
光子晶体的研究也促进了光子学、光电子学等领域的发展,推动了科学技术的进步。
光子晶体原理是通过周期性折射率分布来控制光的传播和调制光的性质。
光子晶体具有光子禁带结构,可以实现对特定频率范围内光的禁带传播。
光子晶体的制备方法多种多样,包括自组装法、光刻法、溶胶-凝胶法等。
光子晶体在光学传感、光子芯片、光子集成电路、光子晶体光纤等领域有着广泛的应用。
光子晶体的制备与应用研究
光子晶体的制备与应用研究光子晶体是一种由周期性变化介电常数的材料构成的晶体结构,具有独特的光学、电学、磁学和声学等性质,受到了广泛的关注。
本文将从光子晶体的制备方法和应用研究两个方面分别进行探讨。
一、光子晶体的制备方法1.离子束刻蚀法离子束刻蚀法是一种制备光子晶体的重要方法,其基本思路是通过离子束在表面上形成周期性的花纹,形成介电常数周期性的结构。
通过离子束刻蚀法可以得到高质量的光子晶体,并且可以制备大面积的光子晶体。
目前,离子束刻蚀法已经广泛应用于光子晶体的制备中。
2.自组装法自组装法是一种在油水界面上自组装纳米颗粒,形成二维薄膜,并进行三维堆积的光子晶体制备方法。
自组装法具有制备简单、实验条件温和等优点。
但是其制备的光子晶体通常只适用于长波长区域,而且要求自组装的纳米颗粒之间尺寸匹配性高,因此自组装法的应用范围相对较窄。
3.溶胶凝胶法溶胶凝胶法是一种利用溶胶制备介电常数周期性的光子晶体的方法。
其基本原理是通过溶胶涂覆在基板表面,采用热处理、溶剂处理等方法形成介电常数周期性的结构。
溶胶凝胶法优点是成本低、适用性广、可制备大面积的光子晶体。
但是其制备过程相对较为繁琐复杂。
二、光子晶体的应用研究1.传感器光子晶体具有高度的灵敏度和选择性,因此被广泛应用于传感器的制备中。
通过调节光子晶体中的介电常数周期性,可以形成高度选择性、高灵敏度的传感器。
同时,光子晶体传感器具有结构简单、入射光谱不受像素细节的影响等优点。
2.激光光子晶体不仅可以应用于光电传感器领域,也可以用于激光器和光学器件的制备中。
激光器中采用光子晶体的重点在于调节激光器的工作波长和谐振腔的品质因子,从而降低激光器的噪声性能、提高工作效率和放大性能。
光子晶体在光学器件方面的应用则主要体现在对电磁波的传递、反射、衍射力量调控方面。
3.光子微波电路光子晶体的一项重要应用是在微波电路中使用,利用其特性实现复杂的滤波和耦合,将光子晶体的介电常数周期性设计为滤波电路的响应频率曲线,使期段传递是其各向异性性能的利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 1.2% Compressively Strained InGaAsP QWs Slab thichness: 10nm QWs separated by 23nm barriers Lattice constant: = 550nm, Radius of the holes: d=215nm Central defect cavity: 19 holes
Core diameter: 10.5m
PCF 制备工艺
带隙宽度可调PCF
Holes filled with air: TIR n589nm=1.80 2000-1 band gap
Holes filled with high n liquid : PBG 3dB band width for gaps=1400nm
PCF 制备工艺
单模有机聚合物光子晶体光纤
PCF 特性
1. 宽带低损单模传输
Near-field pattern
Interstitial holes
Nearfield pattern
528 nm
458 nm
Far-field pattern
633 nm 528 nm 458 nm
The relative intensities of the six lobes was varied and nearly equal. No other mode field patterns are observed confined to defect region. No confined mode could be observed at 633nn.
(c )(d) Patterned photonic crystals with high aspect ratios
应用研究
量子信息处理
光电子学的未来
谢
谢
control =1551nm, prob =1530-1580nm
PCF 应用研究进展
电调 PCF 衰减器
LPG:
PCF 应用研究进展
电调 PCF 衰减器
PCF 应用研究进展
电调PCF衰减器
Dynamic range: 30dB, Insertion loss:<0.8dB, PDL:0.5dB, :1sec
应用:多信道光传输 /光纤传感, 光控光耦合器件
PCF 特性
6. 空气芯光纤
无损耗 ! 无材料色散 !! 无光学非线性 !!!
应用:通信/传感
PCF 应用研究进展
PCF 拉曼放大器
LHF = 75m rcore = 1.6 m Aeff =2. 85m
LB =0.4mm pump =1536nm signal =1650nm0
1998-2000年光子晶体光纤研究热 2000年第一家光子晶体光纤公司成立 2001.10. Photonics Nanostructure Materials and Devices 国际会议在 San Diego召开 OFC 情况
论文: 2001 :6 , 2002:15
国家: 2001 :4 , 2002: 8
n = 1.83(633nm) ,1.80(1.53m), = 0.7dB/m (633nm) , 0.3dB/m(1.53m) n2=4.110-19m2/W (比纯SiO2大20倍),Ts= 519oC (softening temprature)
=1.6 mm
=125 m
PCF 制备工艺
- 空心波导(无介质损耗、无色散、无光学非线性〕 应用:- 实现超高速、超长距离光通信
光子晶体的发展进程
1987年提出光子带隙(PBG)概念 1990年PBG计算机论证
1991年微波PBG实验论证
1993年制造出第一块半导体三维光子晶体 1996年第一根TIR光子晶体光纤
1997年第一根PBG光子晶体光纤
(e)
b
y z
a
Si / SiO2 = 1.5 m gap= 14 % 0,center
制备工艺
溶胶-凝胶(Sol-gel)法 - SiO2 - Opals ( 模板 ) 制备
h
65oC
Si
Substrate
Substrate
微球尺度 855nm1.3%
80oC
T
制备工艺
溶胶-凝胶(Sol-gel)法
-Si - inverted opals 制备
LPCVD
550oC
Substrate
Substrate
Substrate
制备工艺
2层
4层
16层
空气球大小: (a, b): 1mm, (c, e): 670nm a. 透射谱:— 理论 — 实验
(111) surface
b. 理论计算的光子能带
制备工艺
Fig. 2: Photonic crystal hole size after lithography and etch for different triangular lattice designs.
SOI photonic crystals for 1550nm :periods : 400-500nm
高光学非线性PCF
Single mode transmission at 633nm and 1550nm = 550W-1km-1(1550nm)( 比SMF大500倍,比普通PCF大15倍)
PCF 制备工艺
溶胶-凝胶(Sol-gel〕法
Hole diameter: 2.3m
Hole spacing: 4.3m
- 带隙限制微腔自发辐射态密度增强(Purcell效应)
应用:- 实现接近零阈值的激光辐射 - 实现对量子态(量子比特)的操作
Electron quantum boxes
Optical microcavities
光子晶体特性
3.PBG限制“微腔”间的耦合作用
- “微腔”间通过消逝场直接耦合或跳跃式耦合-微腔波导 应用:- 高速度、高选择性、高集成度的动态调控(如滤波 衰减、开关、分插/复用等) - 微腔波导激光器
微腔耦合波导激光器
( CALTECH )
( MIT )
PCS 应用研究进展
光子晶体微腔激光器
PMMA—Electron-beam lithography Cr-Cu layer—Ar+ ion beam etch SiN2 layer—CF4 reactive ion etch InGaAsP QWs region—ECR etch InP Substrate --HCL:H2O=4:1 wet chemical etch
玻璃毛细管聚束熔垃法
20 mm 20 mm 1 mm
30 mm
16 mm
0.8 mm
Solid rod
Hollow tube
1 mm
1 mm
0.03 mm
PCF 制备工艺
玻璃毛细管聚束熔垃法
PCF 制备工艺
玻片-芯组装模压法
=2n2/(Aeff):n2 , Aeff SF57 Schott glass:
光子晶体
概念-光子能带 光子晶体特性
光子晶体(PC)
光子能带
结构参量: 孔径 -d 周期 - 芯径 -
Diamond
一维
二维
三维
d
Defect state
介电常数周期分布的介质形成光子能带,禁止 带隙 (PBG) 频率的光传播 缺陷能级在包层带隙中,缺陷态的光受带隙限制
光子晶体光纤是带缺陷 (纤芯)的二维光子晶体
PCF 应用研究进展
电调 PCF 滤波器
PCF 应用研究进展
PCF 耦合器
PCF 应用研究进展
PCF 宽带波长/模选择耦合器
SMF
HOF
二维光子晶体
(光子晶体平板-PCF )
PCS 制备工艺
微电子工艺
PCS 制备工艺
248nm DUV lithography on SOI
Fig. 1: Photonic crystal waveguide in SOI. Pitch is 460nm, hole-size is 290nm.
大的平坦负色散 = 3.2 m = 047 D = -100 ps/nm/km
应用:色散补偿/色散管理/光孤子技术等
PCF 特性
4.场致折变
实例:可调光纤光栅(热光效应〕
电光效应 ? 声光效应 ? 磁光效应 ? 光折变效应 ? 应用:动态光控制器件
PCF 特性
5. 单纤多芯传输 / 耦合
G=42.8dB NF<6dB
PCF 应用研究进展
PCF波长转换
XPM+narrowband filtering (data rate of 10 Gbit/s) LHF = 5.8m, rcore = 2.0 m, Aeff =2.93(+/-0.3)μm2
=50dB/km, D=+100 ps/nm-km (1550), =31W-1· km-1
hole sizes:160- 300nm.
PCS 特性
PBG限制波导
PCS 特性
PBG限制波导-微腔耦合
PCS 应用研究进展
PC微腔复用/解复用器
PCS 应用研究进展
PC滤波器
PCS 应用研究进展
共面PC谐振腔
1563 nm
1609 nm
Lcavity=6m, Q=400
PCS 应用研究进展
空气球大小: (d, f) : 855mm
(100) surface
c. 理论计算的光子能带