氦原子的能级和光谱
原子物理学褚圣麟第四、五章复习
第四章:碱金属原子和电子自旋锂、钠、钾、铷、铯、钫化学性质相仿、都是一价、电离电势都比较小,容易被电离,具有金属的一般性质。
一、碱金属原子的光谱1、四个线系(锂为例):其他碱金属光谱系相仿,只是波长不同主线系:波长范围最广,第一条线是红色的,其余在紫外,系限2299.7埃;第一辅线系(漫线系):在可见部分;第二辅线系(锐线系):第一条线在红外,其余在可见部分;伯格漫线系(基线系):全在红外。
2、巴尔末氢原子光谱规律: ,5,4,3),1-21(1~22===n nR v H λ 碱金属原子光谱:2*∞-~~nR v v n = R 为里德伯常数,当,所以∞v ~是线系限的波数,且有效量子数*n 不是整数,Δ==-*n TR n 3、碱金属原子的光谱项:22*Δ)-(n R n R T == 4、同一线系的有效量子数与主量子数差别不大;与某一量子数对应不同线系的有效量子数差别明显,引进角量子数加以区分:5、每一线系线系限波数恰好是另一线系第二谱项值中最大的那个。
共振线:主线系第一条。
6、碱金属原子氢原子能级的比较n 很大时,碱金属原子能级 很接近氢原子能级;n 较小时,碱金属原子能级 与氢原子能级相差大; 且n 相同,l 不同的能级高低差别很大。
二、原子实极化和轨道贯穿:原子=原子实+价电子1、原子实:碱金属原子中的电子具有规则组合,共同点是在一个完整的结构之外,多余一个电子,这个完整而稳固的结构称为原子实。
由于原子实的存在,发生原子实的极化和轨道在原子实中的贯穿。
2、价电子:原子实外的那个电子称作价电子。
价电子在较大的轨道上运动,与原子实结合不是很强,容易脱离。
它决定元素的化学性质,在较大的轨道上运动。
3、原子实的极化:由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心发生微小相对位移,于是负电的中心不再在原子核上,形成一个电偶极子。
① 角量子数l 小:轨道偏心率大(椭圆),极化强,能量影响大;② 角量子数l 大:轨道偏心率小(接近圆),极化弱,能量影响小。
氦原子能级和光谱特点
氦原子能级和光谱特点
氦原子的能级是由两个电子构成的,因此它们的能级结构比单电子原子更加复杂。
氦原子的能级结构具有以下特点:
1. 氦原子的基态为1s2电子组态,其中两个电子都在最低能级中。
除此之外,氦原子的能级结构与氢原子类似。
2. 由于有两个电子,氦原子的能级具有自旋多重度,即不同自旋状态的能级能够在相同的能量下存在。
这意味着氦原子的光谱线将比氢原子的光谱线更加复杂。
3. 氦原子的光谱中包含了许多离散的光谱线,其中一些对应于电子的跃迁,如能级的激发和退激发。
其他光谱线则由于电子的旋转和振动引起。
氦原子的能级和光谱特点对于研究物理学、化学和天文学等领域都有重要意义。
能级
氦基态 11S0 的电子组态 1s1s=(1s)2
单电子激发态的电子组态: 1个 电子永远处于1s态,另一电子可 跃迁到 2s,2p,3s,3p, 3d,…
4.1.3.理解能级图(2)
• 电子组态一定,有两套能级:
–单一态(S = 0),三重态(S = 1) (?) –三重态能级小于单一态能级 (?)
G2
G1
l2
G4
s2
4.2.2. L-S 耦合和 j-j 耦合(2)
• 两个电子的 L-S 耦合
– G1, G2 > G3, G4 先耦合较强的相互作用 后耦合较弱的相互作用
(s1s2 )(l1l2 ) (S , L) J • 两个电子的 j-j 耦合
– G3, G4 > G1, G2
L-S 耦合的原子态 2S 1LJ
(1s)2态: (n1,l1,m1)=(1,0,0) (1s)2态: (n2,l2,m2)=(1,0,0) 泡利不相容原理
ms1 ms2
13S1不存在
4.3.2.应用举例(2)
• 同科电子: n和 l 二量子数相同的电子 • 为什么同科电子中,三重态能级小于单一态能级? 两个同科电子: n1 =n2, l1=之间无跃迁; (?) –套内跃迁两套线系: 仲氦(单一态), 正氦 (三 重态)
4.1.3.理解能级图(3)
• 三重态中,无 (1s)2 13S1 态 (?) • 存在亚稳态
–不能自发跃迁,较长寿命的态: (1s2s)21S0 ,23S1
• 能量差与电离能
L L1 L2
L l (l 1)
(s1s2 )(l1l2 ) (S , L) J
l l1 l2 , l1 l2 1,,| l1 l2 |
多电子原子泡利原理(3)
ps
(
1 2
,1 2
)1
(
1 2
,1 2
)0
现在举例说明哪些是LS耦合,哪些是jj耦合 碳C、硅Si、锗Ge、锡Sn、铅Pb 基态时的价电子的组态如下 C 2p2p, Si 3p3p, Ge 4p4p, Sn 5p5p, Pb 6p6p
基态的一个p电子激发到高一级的s态,就得到如下的组态
C 2p3s, Si 3p4s, Ge 4p5s, Sn 5p6s, Pb 6p7s
。这种作用方式称为LS耦合。
下面具体讨论PL、 PS 和 PJ
下面具体讨论PL、 PS 和 PJ
Pl1
l(1 l1
1)h
2
Pl2
l(2 l2
1)h
2
PL
L(L 1)h
2
L l1 l2 ,l1 l2 1 ,
Ps1
s(1 s1
1)h
2
3h
2 2
Ps2
s(2 s2
1)h
2
3h
2 2
PS
3、氦的单线的主线系是电子从诸 1P 态跃迁到基态 1S 的结果; 而三重态的主线系是从诸 3P到第一激发态 3S 的跃迁的结果
4、三重态裂距,在n较小时 P 态明显,在n较大时 P 态也不明
显,D、F 态一直也不明显。
5、三重态与单一态之间没有跃迁。图 5.1 中有一条 591.6 埃的谱线,开始有人认为是三重态与单一态之间的跃迁,后来 有人认为是氖发出的。
第一激发态是3P,激发电势是 2.7 伏特,而氦的第一激发态是3S ,
激发电势是 19.77 伏特。足见氦的基态是一个很稳固的结构。
2、在镁的光谱中,单一态和三重态之间一般没有跃迁,但
原子物理学5
同一电子组态在j-j耦合中和L-S耦合中形成的原子 态的数目相同,代表原子态的J值也是相同的。
例题:
若某原子的两个价电子处于2s2p组态,利用j-j耦合, 求可得到其原子态的个数。
同一电子组态在j-j耦合中和L-S耦合中形成的原 子态对应的能级间隔不同。
1P 1
3 1 ( , )1 2 2 3 1 ( , )2 2 2
5
5 4
4 3
4
3 2
4 3
4
3
4
3
2 2
19.77eV
2
主线系 第二辅线系 第一辅线系 柏格曼线系
E 1
He原子能级图
He原子能级结构
两套结构: 单层:S=0,重数为1; 两套能级间不发生跃迁 三层:S=1,重数为3;
两个亚稳态:
21S0 和23S1
电离能和第一激发电势很大 在三层结构中没有(1s)对应的能级(?) 三重态能级低于相应的单一态能级
倒序排列:
3P > 3P > 3P 0 1 2
能级的形成:
基态:两个电子都处于最低的1s态 激发态:所有能级都是由一个电子处于1s态,另一 个电子被激发到较高能态形成的。
试计算一下如果两个电子都处于激发态至少 需要多少能量?
单层结构 n
7.62eV
1S 1P 0 1 1D 2 1F 3 3S 1 3P 2
不同的电子组态具有不同的能量 H: 2s↔2p; 能级间隔小 2s ↔1s 能级间隔大 He: 1s1s ↔1s2s 能级间隔大 Mg: 3s3s ↔3s3p 能级间隔小 原子态 每一种电子组态都对应相应的原子态 H: 基态1s ↔ 2S1/2,激发态3p ↔ 32P1/2, 32P3/2 多电子原子的原子态是怎样的呢?
原子物理学课件_5第五章
3、氦的基态11S0与第一激发态23S1之间的能量差相对 于H原子而言要大的多,氦电离能(He+)为24.6eV,是 所有元素中最大的。 4、三层结构能级中没有来自两个电子都处在1s态的 能级。 除此之外,在氦能谱中, 除基态中两个电子都处在 最低的1s态外,其它能级 都是一个电子处在1s态,另 一个电子被激发到2s, 2p, 3s等态形成的,见右图:
把上述情况推广到更多的电子系统:
L-S耦合: ( s1 s 2 )( l 1 l 2 ) ( S , L ) J (25-1)
j-j耦合: ( s1 l1 )( s 2 l 2 )( s 3 l 3 ) ( j1 j 2 j 3 ) J (25-2)
20
例2 pp组态,按L-S 耦合:
s1 s2 1 / 2; l1 l2 1
所以S=0, 1; L=2, 1, 0; L, S 合成 J: S=0, L=0 时,J=0; S=0, L=1 时,J=1; S=0, L=2 时,J=2; S=1, L=2 时,J=3,2,1; S=1, L=1 时, J=2,1,0; S=1, L=0 时,J=1;从而得到的十个原子态分 别为:
12
通过给定的电子组态我们可以确定它的原子态。
在碱金属原子中只有一个价电子,我们曾讨论过这个价电 子的 与 l 合成总角 s与 s l 的相互作用,在那里我们看到 动量 j , j s l ;求得了 j 的可能值,就得到了原子 态的可能形式2Lj 以及能量的可能值Enlj;
21
把L-S耦合得出的原子态与相应的能级图对照,我们又发 现了一个新的问题: 根据L-S耦合,我们可以得出ss组态的原子态为:
§5.1 氦的光谱和能级(PPT-YBY)
形成的能级。即:
(5)凡电子组态相同的,三重态的能级总低于单一态中相 应的能级。 (6)在元素周期表中第二族的元素的能谱与氦有相仿的结构2 源自0 (20.55 eV )1
2 3S1 (19.77 eV )
(3)氦的基态与第一激发态之间能量相差很大
E1 ( 1So 2 3S1 ) 19.77eV
电离能也是所有元素中最大的。
(4)在三层结构那套能级中没有
1s 2 1 3 s1
E11S 24.58eV
o
1s 2
第05章 多电子原子 泡利原理 §5.1 氦的光谱和能级
一、氦的光谱 一套谱单线系 两套谱线系 一套谱线多线系 二、电子组态及能级 1、电子组态
1s1 (nl )1
2、氦原子能级结构特点.如下图1.1所示
(1)有两套结构
两套能级之间没有相互跃迁,它们各自内部跃迁便产生了 两套相互独立的光谱。
(2)存在着几个亚稳态。
原子物理学复习
第一章 原子的基本状况一、学习要点1.原子的质量和大小,R ~ 10-10 m , N o =×1023/mol2.原子核式结构模型 (1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析 (3)原子的核式结构模型 (4)α粒子散射理论: 库仑散射理论公式:(5)原子核大小的估计 (会推导): 散射角θ:),2sin11(Z 241220θπε+⋅=Mv e r mα粒子正入射:2024Z 4Mv e r m πε= ,m r ~10-15-10-14 m二、基本练习1.选择(1)原子半径的数量级是: A .10-10cm; C. 10-10m(2)原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180︒ B.α粒子只偏2︒~3︒ C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小()(X)Au AA g M N ==12-27C 1u 1.6605410kg12==⨯的质量22012c 42v Ze b tgM θπε=角散射(3)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍 A. 1/4 B . 1/2 C . 1 D. 24一强度为I 的α粒子束垂直射向一金箔,并为该金箔所散射。
若θ=90°对应的瞄准距离为b ,则这种能量的α粒子与金核可能达到的最短距离为:A. b ; B . 2b ; C. 4b ; D. 。
2.简答题(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么 3.褚书课本P 20-21:(1).(2).(3);第二章 原子的能级和辐射 一、学习要点:1.氢原子光谱:线状谱、4个线系(记住名称、顺序)、广义巴尔末公式)11(~22nmR -=ν、光谱项()2n R n T =、并合原则:)()(~n T m T -=ν2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞2222422Z 2Z )41(πε,n =1.……(3)实验验证:(a )氢原子4个线系的形成)11(Z ~,)4(222232042n m R ch e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁)(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势 3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等)(1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等 (2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动ee m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =.能量224222Z )41(ne E n μπε-=,里德伯常数变化Mm R R eA +=∞11重氢(氘)的发现 4.椭圆轨道理论索末菲量子化条件q q n h n pdq ,⎰=为整数a nn b n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,222022422,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并。
第五章 多电子原子
,| l1 l2 |
,| s1 s2 | ,| l s |
例题:两各价电子一个处于 p 态,一个处于
d 态,求 L-S 耦合后的量子数 l、s 和 j。
解:由题目知道 l1=1,l2=2, 可得:l=3、2、1 又因为 s1=1/2、s2=1/2 所以有 s=0、1 当 s=1,l=1 时,j=2、1、0
示了微观粒子遵从的一个重要规律。
一、确定电子状态的量子数
主量子数n:决定了原子能量的主要部分。
n=1、2、3、 4、 5、 6…
K、L、M、N、O、 P… 轨道角量子数l:决定了轨道的角动量,并由于 轨道形状的不同而影响能级,同一n分成不同l 的 能级。
l =0、1、2、3、4、5、6……
s、p、d、f、g、h……
一般来说, 同一电子组态形成的原子态
中,三重态能级低于单态能级,因为三重态
s=1,两个电子的自旋是同向的
1、氦原子光谱:两套(单线、多线)
氦原子光谱的线系可分成两组,其中一组 的几个系都是单线;
一组中的几个线系都是复杂结构,其中主 线系和第二辅线系的每一条谱线都分裂成靠 得很近的三条谱线,第一辅线系的每一条谱 线都分裂成靠得很近的六条谱线。
历史 上曾分 别把它 们叫做 正氦 (s=0)和 仲氦 (s=1), 后来得 知这是 同一种 氦原子 的两种 不同自 旋状态 。
2、氦原子能级:单重、三重
经光谱分析可得氦原子的能级有两 套,一套是单能级,另一套是三重能 级。两套能级之间没有跃迁,在两套 能级中各自内部的跃迁,就产生了两 组相互独立的谱线。
5.2 角动量耦合和对氦光谱的解释
原子物理复习要点
原子物理学复习要点第一章 原子的核式结构一、学习要点1.原子的质量和大小M A =A N A (g), R ~10-10 m ,N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2.原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论:库仑散射理论公式(会推导):θπεcot 422002Mv Ze b =卢瑟福散射公式: 2sin )Z ()41(4220220θπεσΩ=d Mv e d ,θθπd d sin 2=Ω实验验证:A N n Mv t d dN μρθ=⎪⎭⎫ ⎝⎛∝Ω-- ; )21(,Z ,,2sin 220214,μ靶原子的摩尔质量 (4)微分散射面的物理意义、总截面(5)原子核大小的估计 (会推导): 散射角θ:),2sin 11(Z 2412020θπε+⋅=Mv e r mα粒子正入射:20024Z 4Mv e r m πε= ,m r ~10-15-10-14m二、基本练习1.褚书课本P 20-212.选择(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.9⨯10-10B.3.05⨯10-12C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2.简答题(1)什么是电子?简述密立根油滴实验.(2)简述卢瑟福原子有核模型的要点.(3)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(4)什么是微分散射截面?简述其物理意义.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV ,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .第二章 玻尔氢原子理论一、学习要点:1.氢原子光谱:线状谱、五个线系(记住名称、顺序)、广义巴尔末公式)11(~22n m R -=ν、 光谱项()2nR n T =、并合原则:)()(~n T m T -=ν 2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……(3)实验验证:(a )氢原子五个线系的形成)11(Z ~,)4(222232042n m R c h e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁 )(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等) (1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动e e m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =. 能量2242202Z )41(n e E n μπε-=,里德伯常数变化Mm R R e A +=∞11 重氢(氘)的发现及相关理论计算4.椭圆轨道理论 索末菲量子化条件q q n h n pdq ,⎰=为整数a n nb n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,2220224220 ,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并5空间量子化:(1)旧量子论中的三个量子数n ,m n n =ψϕ,的名称、取值范围、物理量表达式、几何参量表达式名 称 取 值 物理量表达式 几何参量表达式 nn ϕψn(2)空间量子化(ϕP 空间取向)、电子的轨道磁矩(旧量子论)、斯特恩—盖拉赫实验6.玻尔对应原理及玻尔理论的地位二、基本练习(共29题)1.楮书P76--772.选择题(1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1B .n(n-1)/2C .n(n+1)/2D .n(2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(4)氢原子基态的电离电势和第一激发电势分别是:A .13.6V 和10.2V;B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V(5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:A.5.291010-⨯mB.0.529×10-10mC. 5.29×10-12mD.529×10-12m(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )?A.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?A.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A .0.66 eV B.12.09eV C.10.2eV D.12.57eV(10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A .3 B.10 C.1 D.4(11)有速度为1.875m/s 106⨯的自由电子被一质子俘获,放出一个光子而形成基态氢原子,则光子的频率(Hz )为:A .3.3⨯1015; B.2.4⨯1015 ; C.5.7⨯1015; D.2.1⨯1016.(12)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(13)玻尔磁子B μ为多少焦耳/特斯拉?A .0.9271910-⨯ B.0.9272110-⨯ C. 0.9272310-⨯ D .0.9272510-⨯(14)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A .3∞R /8 B.3∞R /4 C.8/3∞R D.4/3∞R(15)象μ-子(带有一个单位负电荷)通过物质时,有些在核附近的轨道上将被俘获而形成μ-原子,那么μ-原子基态轨道半径与相应的电子轨道半径之比为(μ-子的质量为m=206m e )A.1/206B.1/(206)2C.206D.2062(16)电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(17)根据玻尔理论可知,氦离子H e +的第一轨道半径是:A .20a B. 40a C. 0a /2 D. 0a /4(18)一次电离的氦离子 H e +处于第一激发态(n=2)时电子的轨道半径为:A.0.53⨯10-10mB.1.06⨯10-10mC.2.12⨯10-10mD.0.26⨯10-10m(19)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV 为单位至少需提供的能量为:A .54.4 B.-54.4 C.13.6 D.3.4(20)在H e +离子中基态电子的结合能是:A.27.2eVB.54.4eVC.19.77eVD.24.17eV(21)夫—赫实验的结果表明:A 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化(22)夫—赫实验使用的充气三极管是在:A.相对阴极来说板极上加正向电压,栅极上加负电压;B.板极相对栅极是负电压,栅极相对阴极是正电压;C.板极相对栅极是正电压,栅极相对阴极是负电压;D.相对阴极来说板极加负电压,栅极加正电压(23)处于基态的氢原子被能量为12.09eV 的光子激发后,其轨道半径增为原来的A .4倍 B.3倍 C.9倍 D.16倍(24)氢原子处于基态吸收1λ=1026Å的光子后电子的轨道磁矩为原来的( )倍:A .3; B. 2; C.不变; D.93.简答题(1)19世纪末经典物理出现哪些无法解决的矛盾?(1999长春光机所)(2)用简要的语言叙述玻尔理论,并根据你的叙述导出氢原子基态能量表达式.(1998南开大学)(3)写出下列物理量的符号及其推荐值(用国际单位制):真空的光速、普朗克常数、玻尔半径、玻尔磁子、玻尔兹曼常数、万有引力恒量. (2000南开大学)(4)解释下列概念:光谱项、定态、简并、电子的轨道磁矩、对应原理.(5)简述玻尔对原子结构的理论的贡献和玻尔理论的地位与不足.4.计算题(1)单色光照射使处于基态的氢原子激发,受激发的氢原子向低能级跃迁时可能发出10条谱线.问:①入射光的能量为多少?②其中波长最长的一条谱线的波长为多少?(hc=12400eV·Å)(2)已知一对正负电子绕共同质心转动会形成类似氢原子结构-正电子素.试求:①正电子素处于基态时正负电子间的距离;②n=5时正电子素的电离能(已知玻尔半径0a =0.529Å).(3)不计电子自旋当电子在垂直于均匀磁场B 的平面内运动时,试用玻尔理论求电子动态轨道半径和能级(提示: B v m E e n ⋅-=ϕμ221 ; n me 2 =ϕμ n p =ϕ) (4)氢原子巴尔末系的第一条谱线与He +离子毕克林系的第二条谱线(6→4)两者之间的波长差是多少?(R H =1.09678×10-3 Å, R He =1.09722×10-3 Å)(5)设氢原子光谱的巴耳末系的第一条谱线αH 的波长为αλ,第二条谱线βH 的波长为βλ,试证明:帕邢系的第一条谱线的波长为βαβαλλλλλ-=.(2000.上海大学)(6)一个光子电离处于基态的氢原子,被电离的自由电子又被氦原子核俘获,形成处于2=n 能级的氦离子He +,同时放出波长为500nm 的光子,求原入射光子的能量和自由电子的动能,并用能级图表示整个过程.(1997北京师大)(7)在天文上可观察到氢原子高激发态之间的跃迁,如108=n 与109=n 之间,请计算此跃迁的波长和频率. (1997.中科院)(8) He +离子毕克林系的第一条谱线的波长与氢原子的巴耳末系αH 线相近. 为使基态的He +离子激发并发出这条谱线,必须至少用多大的动能的电子去轰击它?(2001.中科院)(9)试用光谱的精细结构常数表示处于基态的氢原子中电子的速度、轨道半径、氢原子的电离电势和里德伯常数. (1999.中科院)(10)计算氢原子中电子从量子数为n 的状态跃迁到1-n 的状态时所发出谱线的频率. (2001.中科院固体所)第三章 量子力学初步一、学习要点轨道角动量()1,,2,1,0,1-=+=n l l l p l ,l 称为轨道角量子数,轨道角量子数l =0 1 2 3 4 …电 子 态 s p d f g …原 子 态 S P D F G …能量()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……轨道投影角动量()l l l l m m p l l lz ,1,,1,0,,1,,----== ,称轨道磁量子数,表征轨道角动量对外场方向的取向,轨道角动量对外场方向的投影图描述电子空间运动的三个量子数l m l n ,,的名称、取值范围、所表征的物理量表达式二、基本练习(1)按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数n 时,对应的状态数是:A .2n; B.2n+1; C.n 2; D.2n 2(2)按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.n 2;B.2n;C.l ;D.2l +1(3)按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.2(2l +1);B.2l +1;C. n;D.n 2(4)按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当nl m 确定后对应的状态数为:A.1;B.2;C.2l +1;D. n(5)试画出2=l 时电子轨道角动量在磁场中空间量子化示意图,并标出电子轨道角动量在外磁场方向z 的投影的各种可能值.(中山大学1993)第四章 碱金属原子一、学习要点1.碱金属原子光谱和能级(1)四个线系:主线系、第一辅线系(漫)、第二辅线系(锐)、柏格曼系(基)共振线、线系限波数、波数表达式(2)光谱项()()222222Z Z n R n R n R n RT l σ-==∆-==**;σ-=∆-=∆-=**Z Z ,ll n n n n (3)起始主量子数Li:n=2 ; Na:n=3 ; K:n=4 ; Rb:n=5 ;Cs:n=6 ; Fr:n=7(4)碱金属原子能级.选择定则1±=∆l(5)原子实极化和轨道贯穿是造成碱金属原子能级与氢原子不同的原因2.电子自旋(1)实验基础与内容:电子除具有质量、电荷外,还具有自旋角动量()21(,1=+=s s s p s 称自旋角量子数)和自旋磁矩B s s e s p m e μμμ3,=-= . 自旋投影角动量21,±==s s sz m m p 称自旋磁量子数 (2)单电子角动量耦合:总角动量()⎪⎪⎩⎪⎪⎨⎧=≠±=+=0,210,21,1l l l j j j p j ,称总角量子数(内量子数、副量子数;总角动量的投影角动量()j j j j m m p j j jz ,1,,1,,----== ,称总磁量子数(3)描述一个电子的量子态的四个量子数:强场:s l m m l n ,,,;弱场:j m j l n ,,,原子态(光谱项)符号 j s L n 12+S 态不分裂, ,,,,G F D P 态分裂为两层3.碱金属原子光谱和能级的精细结构:(1)原因:电子自旋—轨道的相互作用(2)能级和光谱项的裂距;(3)选择定则:1±=∆l ,1,0±=∆j画出锂、钠、钾原子的精细结构能级跃迁图4.氢原子光谱和能级的精细结构:(1)原因:相对论效应和电子自旋-轨道相互作用;(2)狄拉克能级公式;(3)赖曼系第一条谱线和巴尔末线系αH 线的精细分裂(4)蓝姆移动*二.基本练习:1.褚书P1432.选择题:(1)单个f 电子总角动量量子数的可能值为:A. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/2(2)单个d 电子的总角动量投影的可能值为:A.2 ,3 ;B.3 ,4 ;C. 235, 215; D. 3/2, 5/2 . (3)已知一个价电子的21,1==s l ,试由s l j m m m +=求j m 的可能值:A .3/2,1/2 ,-1/2 ,-3/2 ; B. 3/2 ,1/2 ,1/2, -1/2 ,-1/2,-3/2;C .3/2,1/2 ,0,-1/2, -3/2; D. 3/2,1/2 ,1/2 ,0,-1/2, -1/2,-3/2;(4)锂原子光谱由主线系.第一辅线系.第二辅线系及柏格曼系组成.这些谱线系中全部谱线在可见光区只有:A.主线系;B.第一辅线系;C.第二辅线系;D.柏格曼系(5)锂原子主线系的谱线在不考虑精细结构时,其波数公式的正确表达式应为: A.nP S -=2~ν; B. S nP 2~→=ν; C .nP S →=2~ν; D .S nP 2~-=ν (6)碱金属原子的光谱项为:A.T=R/n 2; B .T=Z 2R/n 2; C .T=R/n *2; D. T=RZ *2/n *2(7)锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)?A.一条B.三条C.四条D.六条(8)已知锂原子光谱主线系最长波长为6707埃,辅线系线系限波长为3519埃,则Li 原子的电离电势为:A .5.38V B.1.85V C.3.53V D.9.14V(9)钠原子基项3S 的量子改正数为1.37,试确定该原子的电离电势:A.0.514V;B.1.51V;C.5.12V;D.9.14V(10)碱金属原子能级的双重结构是由于下列哪一项产生:A.相对论效应B.原子实的极化C.价电子的轨道贯穿D.价电子的自旋-轨道相互作用(11)产生钠的两条黄谱线的跃迁是:A.2P 3/2→2S 1/2 , 2P 1/2→2S 1/2;B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2 , 2D 3/2→2P 3/2(12)若已知K 原子共振线双重成分的波长等于7698.98埃和7664.9埃,则该原子4p 能级的裂距为多少eV ?A.7.4×10-2; B .7.4×10-3; C .7.4×10-4; D .7.4×10-5.(13)对锂原子主线系的谱线,考虑精细结构后,其波数公式的正确表达式应为: A.ν~= 22S 1/2-n 2P 1/2 ν~= 22S 1/2-n 2P 3/2 B. ν~= 22S 1/2→n 2P 3/2 ν~= 22S 1/2→n 2P 1/2C. ν~= n 2P 3/2-22S 1/2 ν~= n 2P 1/2-22S 3/2D. ν~= n 2P 3/2→n 2P 3/2 ν~= n 2P 1/2→n 21/2(14)碱金属原子光谱精细结构形成的根本物理原因:A.电子自旋的存在B.观察仪器分辨率的提高C.选择定则的提出D.轨道角动量的量子化(15)已知钠光谱的主线系的第一条谱线由λ1=5890埃和λ2=5896埃的双线组成,则第二辅线系极限的双线间距(以电子伏特为单位):A.0;B.2.14⨯10-3;C.2.07⨯10-3;D.3.42⨯10-2(16)考虑电子自旋,碱金属原子光谱中每一条谱线分裂成两条且两条线的间隔随波数增加而减少的是什么线系?A.主线系;B.锐线系;C.漫线系;D.基线系(17)如果l 是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:A.0=∆l ;B. 0=∆l 或±1;C. 1±=∆l ;D. 1=∆l(18)碱金属原子的价电子处于n =3, l =1的状态,其精细结构的状态符号应为:A .32S 1/2.32S 3/2; B.3P 1/2.3P 3/2; C .32P 1/2.32P 3/2; D .32D 3/2.32D 5/2(19)下列哪种原子状态在碱金属原子中是不存在的:A .12S 1/2; B. 22S 1/2; C .32P 1/2; D. 32S 1/2.32D 5/2(20)对碱金属原子的精细结构12S 1/2 12P 1/2, 32D 5/2, 42F 5/2,22D 3/2这些状态中实际存在的是:A.12S 1/2,32D 5/2,42F 5/2;B.12S 1/2 ,12P 1/2, 42F 5/2;C.12P 1/2,32D 5/2,22D 3/2;D.32D 5/2, 42F 5/2,32D 3/2(21)氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于:A.自旋-轨道耦合B.相对论修正和极化贯穿C.自旋-轨道耦合和相对论修正D.极化.贯穿.自旋-轨道耦合和相对论修正(22)对氢原子考虑精细结构之后,其赖曼系一般结构的每一条谱线应分裂为:A.二条B.三条C.五条D.不分裂(23)考虑精细结构,不考虑蓝姆位移,氢光谱Hα线应具有:A.双线B.三线C.五线D.七线(24)氢原子巴尔末系的谱线,计及精细结构以后,每一条谱线都分裂为五个,但如果再考虑蓝姆位移其谱线分裂条数为:A.五条B.六条C.七条D.八条(25)已知锂原子主线系最长波长为λ1=67074埃,第二辅线系的线系限波长为λ∞=3519埃,则锂原子的第一激发电势和电离电势依次为(已知R =1.09729⨯107m -1)A.0.85eV,5.38eV;B.1.85V ,5.38V;C.0.85V ,5.38VD.13.85eV ,5.38eV(26)钠原子由nS 跃迁到3P 态和由nD 跃迁到3P 态产生的谱线分别属于:A.第一辅线系和基线系B.柏格曼系和锐线系C.主线系和第一辅线系D.第二辅线系和漫线系(27)d 电子的总角动量取值可能为: A. 215,235; B . 23,215; C. 235,263; D. 2,63.简答题(1)碱金属原子能级与轨道角量子数有关的原因是什么?造成碱金属原子精细能级的原因是什么?为什么S 态不分裂, ,,,,G F D P 态分裂为两层?(2)造成氢原子精细能级和光谱的原因是什么?(3)试由氢原子能量的狄拉克公式出发,画出巴尔末系第一条谱线分裂后的能级跃迁图,并写出各自成分的波数表达式(4)在强磁场下描述一个电子的一个量子态一般需哪四个量子数?试写出各自的名称、.取值范围、力学量表达式?在弱磁场下情况如何?试回答上面的问题.(5)简述碱金属原子光谱的精细结构(实验现象及解释).4.计算题(1)锂原子的基态光谱项值T2S=43484cm-1,若已知直接跃迁3P→3S产生波长为3233埃的谱线.试问当被激发原子由3P态到2S态时还会产生哪些谱线?求出这些谱线的波长(R =10972⨯10-3埃-1)(2)已知铍离子Be+主线系第一条谱线及线系限波长分别为3210埃和683埃,试计算该离子S项和P项的量子亏损以及锐线系第一条谱线的波长.(北大1986)(3)锂原子的基态是S2,当处于D3激发态的锂原子向低能级跃迁时,可能产生几条谱线(不考虑精细结构)?这些谱线中哪些属于你知道的谱线系的?同时写出所属谱线系的名称及波数表达式. 试画出有关的能级跃迁图,在图中标出各能级的光谱项符号,并用箭头都标出各种可能的跃迁. (中科院2001)(4)①试写出钠原子主线系、第一辅线系、第二辅线系和伯格曼系的波数表达式.②已知:35.1=∆s ,86.0=∆p,01.0=∆d,求钠原子的电离电势.③若不考虑精细结构,则钠原子自D3态向低能级跃迁时,可产生几条谱线?是哪两个能级间的跃迁?各对应哪个线系的谱线?④若考虑精细结构,则上问中谱线分别是几线结构?用光谱项表达式表示出相应的跃迁.(中科院1998)第五章多电子原子一、学习要点1.氦原子和碱土金属原子:(1)氦原子光谱和能级(正氦(三重态)、仲氦(单态))(2)镁原子光谱和能级2.重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.*复杂原子光谱的一般规律:位移律、交替律、三个电子的角动量耦合6.普用选择定则(电子组态的跃迁选择定则,又称宇称跃迁选择定则,或拉波特定则;L-S耦合选择定则等)6.氦氖激光器*二、基本练习1.褚书P168-169习题2.选择题(1)关于氦原子光谱下列说法错误的是:A.第一激发态不能自发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第一激发态能量相差很大;D.三重态与单态之间没有跃迁(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为:A.3;B.4;C.6;D.5(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(6)氦原子的电子组态为n1pn2s,则可能的原子态:A.由于n不确定不能给出确定的J值,不能决定原子态;B.为n1pn2s 3D2,1,0和n1pn2s 1D1;C.由于违背泡利原理只存单态不存在三重态;D.为n1pn2s 3P2,1,0和n1pn2s 1P1.(7)C++离子由2s3p 3P2,1,0到2s3s 3S1两能级的跃迁,可产生几条光谱线?A.6条;B.3条;C.2条;D.1条.(8)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和1s2s3S1是简并态(9)泡利不相容原理说:A.自旋为整数的粒子不能处于同一量子态中;B.自旋为整数的粒子能处于同一量子态中;C.自旋为半整数的粒子能处于同一量子态中;D.自旋为半整数的粒子不能处于同一量子态中.(10)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(11)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(12)一个p电子与一个 s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(13)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(14)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(15)硼(Z=5)的B+离子若处于第一激发态,则电子组态为:A.2s2pB.2s2sC.1s2sD.2p3s(16)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(17)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(18)今有电子组态1s2p,1s1p,2d3p,3p3s,试判断下列哪些电子组态是完全存在的:A.1s2p ,1s1pB.1s2p,2d3p C,2d3p,2p3s D.1s2p,2p3s(19)电子组态1s2p所构成的原子态应为:A1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(20)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(21)试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是完全存在的?A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 B .1s2p 3P 2 1s2p 1D 1C. 1s2p 3P 2 2s2p 3P 2D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 1(22)在铍原子中,如果3D 1,2,3对应的三能级可以分辨,当有2s3d 3D 1,2,3到2s2p 3P 2,1,0的跃迁中可产生几条光谱线?A .6 B.3 C.2 D.9(23)有状态2p3d 3P →2s3p 3P 的跃迁:A.可产生9条谱线B.可产生7条谱线C 可产生6条谱线 D.不能发生(24)已知Cl (Z=17)原子的电子组态是1s 22s 22p 63p 5,则其原子态是:A.2P 1/2;B.4P 1/2 ;C.2P 3/2;D.4P 3/2(25) 原子处在多重性为5,J 的简并度为7的状态,试确定轨道角动量的最大值: A. 6; B. 12; C. 15; D. 30(26)试确定D 3/2谱项可能的多重性:A.1,3,5,7;B.2,4,6,8; C .3,5,7; D.2,4,6.(27)某系统中有三个电子分别处于s 态.p 态.d 态,该系统可能有的光谱项个数是:A .7; B.17; C.8; D.18(28)钙原子的能级应该有几重结构?A .双重; B.一、三重; C.二、四重; D.单重3.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则.(2)L-S 耦合的某原子的激发态电子组态是2p3p ,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p 向2p3s 可能产生的跃迁.(首都师大1998)(3)写出两个同科p 电子形成的原子态,那一个能级最低?(4)写出两个同科d 电子形成的原子态,那一个能级最低?(5)写出5个同科p 电子形成的原子态,那一个能级最低?(6)写出4个同科p 电子形成的原子态,那一个能级最低?(7)汞原子有两个价电子,基态电子组态为6s6s 若其中一个电子被激发到7s 态(中间有6p 态)由此形成的激发态向低能级跃迁时有多少种可能的光谱跃迁?画出能级跃迁图.(8)某系统由一个d 电子和一个2P 3/2原子构成,求该系统可能的光谱项.(9)某系统由spd 电子构成,试写出它的光谱项.(10)碳原子的一个价电子被激发到3d 态,①写出该受激原子的电子组态以及它们在L —S 耦合下形成的原子态; ②画出对应的能级图并说明这些能级间能否发生电偶极跃迁?为什么?第六章 磁场中的原子一、学习要点1.原子有效磁矩 J J P m e g2-=μ, )1(2)1()1()1(1++++-++=J J S S L L J J g (会推导) 2.外磁场对原子的作用:(1)拉莫尔进动圆频率(会推导): B m e g eL 2=ω(2)原子受磁场作用的附加能量:B g M B E B J J μμ=⋅-=∆附加光谱项()1-m 7.464~,~4B mc eB L L g M mc eB g M T J J ≈===∆ππ 能级分裂图(3)史—盖实验;原子束在非均匀磁场中的分裂B J g M v L dz dB m s μ221⎪⎭⎫ ⎝⎛-=,(m 为原子质量) (4)塞曼效应:光谱线在外磁场中的分裂,机制是原子磁矩与外磁场的相互作用,使能级进一步的分裂所造成的. 塞曼效应的意义①正常塞曼效应:在磁场中原来的一条谱线分裂成3条,相邻两条谱线的波数相差一个洛伦兹单位L ~Cd 6438埃 红光1D 2→1P 1氦原子 66781埃 1D 2→1P 1②反常塞曼效应:弱磁场下:Na 黄光:D 2线 5890埃 2P 3/2→2S 1/2(1分为6);D 1线5896埃 2P 1/2→2S 1/2(1分为4)Li ( 2D 3/2→2P 1/2)格罗春图、相邻两条谱线的波数差、能级跃迁图选择定则 )(1);(0);(1+-+-=∆σπσJ M 垂直磁场、平行磁场观察的谱线条数及偏振情况③帕邢—贝克效应:强磁场中反常塞曼效应变为正常塞曼效应()()B M M B E B S L S L μμμ2+=⋅+-=∆ ,()L M M SL ~2~∆+∆=∆ν,1,0,0±=∆=∆L S M M ()L L ~,0,~~~0-+=νν (5)顺磁共振、物质的磁性二、基本练习1.楮书P1972.选择题(1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; B.1; C.2; D.3(2)正常塞曼效应总是对应三条谱线,是因为:A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同;C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁(3)B 原子态2P 1/2对应的有效磁矩(g =2/3)是 A. B μ33; B. B μ32; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ∆除正比于B 之外,同原子状态有关的因子有:A.朗德因子和玻尔磁子B.磁量子数、朗德因子C.朗德因子、磁量子数M L 和M JD.磁量子数M L 和M S(5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A ;)(0);(1πσ±=∆J M B. )(1);(1σπ+-=∆J M ;0=∆J M 时不出现;C. )(0σ=∆J M ,)(1π±=∆J M ;D. )(0);(1πσ=∆±=∆S L M M(6)原子在6G 3/2状态,其有效磁矩为:A .B μ315; B. 0; C. B μ25; D. B μ215- (7)若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值:A .1和2/3; B.2和2/3; C.1和4/3; D.1和2(8)由朗德因子公式当L=S,J≠0时,可得g 值:A .2; B.1; C.3/2; D.3/4(9)由朗德因子公式当L=0但S≠0时,可得g 值:A .1; B.1/2; C.3; D.2(10)如果原子处于2P 1/2态,它的朗德因子g 值:A.2/3; B.1/3; C.2; D.1/2(11)某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为:A .2个; B.9个; C.不分裂; D.4个(12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:A.4D 3/2分裂为2个;B.1P 1分裂为3个;C.2F 5/2分裂为7个;D.1D 2分裂为4个(13)如果原子处于2P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:A.3个B.2个C.4个D.5个(14)态1D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?A.3个B.5个C.2个D.4个(15)钠黄光D 2线对应着32P 3/2→32S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:A.3条B.6条C.4条D.8条(16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2P 3/2)在磁场中发生塞曼效应,光谱线发生分裂,沿磁场方向拍摄到的光谱线条数为A.3条B.6条C.4条D.9条(17)对钠的D 2线(2P 3/2→2S 1/2)将其置于弱的外磁场中,其谱线的最大裂距max~ν∆和最小裂距min~ν∆各是 A.2L 和L/6; B.5/2L 和1/2L; C.4/3L 和2/3L; D.5/3L 和1/3L(18)使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成A.不分裂B.3条C.5条D.7条(19)(1997北师大)对于塞曼效应实验,下列哪种说法是正确的?A .实验中利用非均匀磁场观察原子谱线的分裂情况;B .实验中所观察到原子谱线都是线偏振光;C .凡是一条谱线分裂成等间距的三条线的,一定是正常塞曼效应;D .以上3种说法都不正确.3.计算题。
原子物理简介
r s1 ( s1 + 1) h , p s 2 =
r PS =
s 2 ( s 2 + 1) h
它们耦合的总角动量的大小由量子数S表示为:
S ( S + 1) h
⎧s1 > s2取2s2 + 1个值⎫ 当⎨ ⎬ s1 < s2取2s1 + 1个值⎭ ⎩
其量子数取值限定为:
s1 + s2 ; s1 + s2 −1L s1 − s2 PSz = mS h
右图是L-S耦合总能 2s3s 级和跃迁光谱图
1S 0
2s3s
1P 1
3S
1 3P 2,1,0
2s2p
2s2p
2s2
1S 0
例题3:求一个P电子和一个d电子(n1p n2d)可能 形成的原子态。 S= L=1 2 3 0
1 1 1
1
3 3 3
P 1 D2 F3
P0,1,2 D1,2,3 F2,3,4
ps
11 ( )1 22 11 ( )0 22
两个价电子p和s在jj耦合中形成的能级
注意:同一电子组态在j-j耦合和在L-S耦合中形成的原 子组态的数目是相同的,而且代表原子态的J值也是相同的, 所不同的是能级间隔,这反映几个相互作用强弱对比不同。
原子能级的类型实质上是原子内部几种相互作用强弱 不同的表现, L-S耦合和j-j耦合是两个极端情况,有些能级类 型介于二者之间,只有程度的差别,很难决然划分,j-j耦合一般 出现在高激发态和较重的原子中。
1 1
P 1 D2 F 3
S=0, 单一态
1
3
P0 P1 P2 D D D F F F
3 2 1 4 3 2
第五章泡利原理
第五章多电子原子:泡利原理一、学习要点1. 氦原子和碱土金属原子:氦原子光谱和能级(正氦(三重态)、仲氦(单态))2. 重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.元素周期律:元素周期表,玻尔解释.6.原子的电子壳层:主壳层:K LMNO P Q次壳层、次支壳层电子填充壳层的原则:泡利不相容原理、能量最小原理7.原子基态的电子组态(P228表27.2)1.选择题(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(7)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l 1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和 1s2s3S1是简并态(8)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(9)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(10)一个p电子与一个s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(11)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(12)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(13)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(14)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(15)电子组态1s2p所构成的原子态应为:A.1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C.1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(16)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(18)在铍原子中,如果3D1,2,3对应的三能级可以分辨,当有2s3d3D1,2,3到2s2p3P2,1,0的跃迁中可产生几条光谱线?A.6 B.3 C.2 D.9(19)钙原子的能级应该有几重结构?A.双重; B.一、三重; C.二、四重; D.单重(20)元素周期表中:A.同周期各元素的性质和同族元素的性质基本相同;B.同周期各元素的性质不同,同族各元素的性质基本相同C.同周期各元素的性质基本相同,同族各元素的性质不同D.同周期的各元素和同族的各元素性质都不同(21)当主量子数n=1,2,3,4,5,6时,用字母表示壳层依次为:A.K LMONP;B.KLMNOP;C.KLMOPN;D.KMLNOP;(23)在原子壳层结构中,当l=0,1,2,3,…时,如果用符号表示各次壳层,依次用下列字母表示:A.s,p,d,g,f,h....B.s,p,d,f,h,g...C.s,p,d,f,g,h...D.s,p,d,h,f,g...(24)电子填充壳层时,下列说法不正确的是:A.一个被填充得支壳层,所有的角动量为零;B.一个支壳层被填满半数时,总轨道角动量为零;C.必须是填满一个支壳层以后再开始填充另一个新支壳层;D.一个壳层中按泡利原理容纳的电子数为2n2(25)实际周期表对K.L.M.N.O.P主壳层所能填充的最大电子数依次为:A.2,8,18,32,50,72;B.2,8,18,18,32,50;C.2,8,8,18,32,50;D.2,8,8,18,18,32.(26)按泡利原理,主量子数n确定后可有多少个状态?A.n2; B+1); C.2j+1; D.2n2(27)某个中性原子的电子组态是1s22s22p63s3p,此原子是:A.处于激发态的碱金属原子;B.处于基态的碱金属原子;C.处于基态的碱土金属原子;D.处于激发态的碱土金属原子;(28)氩(Z=18)原子基态的电子组态及原子态是:A.1s22s22p63p81S0; B.1s22s22p62p63d83P0C.1s22s22p6 3s23p61S0; D. 1s22s22p63p43d22D1/2(29)某个中性原子的电子组态是1s22s22p63s23p65g1,此原子是:A.处于激发态的碱土金属原子;B.处于基态的碱土金属原子;C.处于基态的碱金属原子;D.处于激发态的碱金属原子.(30)有一原子,n=1,2,3的壳层填满,4s支壳层也填满,4p支壳层填了一半,则该元素是:A.Br(Z=35); B.Rr(Z=36); C.V(Z=23); D.As(Z=33)(31)由电子壳层理论可知,不论有多少电子,只要它们都处在满壳层和满支壳层上,则其原子态就都是:A.3S0;B.1P1;C.2P1/2;D.1S0.(32)氖原子的电子组态为1s22s22p6,根据壳层结构可以判断氖原子基态为:A.1P1;B.3S1;C.1S0;D.3P0.2.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则、能量最小原理、莫塞莱定律.(2)L-S耦合的某原子的激发态电子组态是2p3p,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p向2p3s可能产生的跃迁.(首都师大1998)(3)写出铍原子基态、第一激发态电子组态及相应光谱项.(1991中山大学)3.计算题(1)已知氦原子基态的电子组态是1s1s,若其中一个电子被激发到3s态,问由此激发态向低能态跃迁时,可以产生几条光谱线?要求写出相关的电子组态及相应的原子态,并画出能级跃迁图。
推荐-1氦原子的光谱和能级2多电子原子的电子组态和原
3、特殊性: 两套类似碱金属原子的光谱,一套是单线 一套有复杂的结构
4、有两套能级结构
一套是单层能级 另一套大都是三层能级
两套之间无跃迁
2套光谱
LS耦合合成 原子态
氦原子能级图
特殊性总结为:
从He的能级图可得
1.两套光谱线系,两套能级
两套光谱线系都分别有类似碱金属原子光谱的主线系,一辅系,
二辅系,柏格曼系等。
原子核+1电子 原子实+1电子
多电子体系 2He, 4Be, 12Mg等,2电子以上 碱土金属:Be,Mg,Ca,Sr,Ba,Ra,Zn,Ge,Hg,两个活跃的价电子
He:Z=2
Be:Z=4=212+2 Mg:Z=12=2(12+22)+2 Ca:Z=20=2(12+22+22)+2 Sr:Z=38=2(12+22+32+22)+2 Ba:Z=56=2(12+22+32+32+22)+2 Ra:Z=88=2(12+22+32+42+32+22)+2
和极化等效应导致采用nl 来标识每个电子(类似碱金属原
子)。相对我们的观测来说,两个电子同时处在激发的nl上是
不可能的,大部分情况是一个电子在1s上,另一个电子可以
在1s、2s、2p、3s、3p、3d等等上。 He原子面临问题(理论的全面革新):
He的能级
1、有两套能级结构
一套是单层能级 另一套大都是三层能级
即两电子的自旋取向必须相反,总自旋S 只能为0 .只能形 成 1S0
电子组态1sns(n≠1)可以形成二个原子态:1S0 , 3S1 同理,nsns也只形成一个原子态: 1S0
氦的光谱和能级5.具有两个价电子的原子态ppt课件
P Lzm Lh
m L取 从 .L到 L共 2L1个 值
PL
Pl1
Pl1
Pl1
PL
5
PL
3
1
Pl 2
(a)
Pl 2
Pl 2
(c)
(b)
轨道角动量矢. 量合成
例如:两个电子的角动量量子数分别是 l1 3和l2 2
pr l1 pr l 2
l1(l1 1)h
12 h ,
2
l2 (l2 1)h
6h
这四种运动之间有六种相互作用 G1(s1s2)、G2(l1l2)、G3(l1s1)、
G4(l2s2)、G5(l1s2)、G6(l2s1)
l1 G3 l1, s1
G5 l1, s2
G2 l1, l2 G6 l2, s1
s1
G1 s1, s2
l2 G4 l2 , s2
s2
.
二、 L-S耦合
2
它们耦合的总角动量的量子数L=5,4,3,2,1
r 总 角 动 量PL L(L1)h
302h, 202h, 122h, 62h, 22h
.
3、两个自旋角动量的耦合
设s1和s2分别是两个电子自旋角动量量子数,
p s1s1 (s1 1 r2 h )r ,p s2 r s2(s2 12 h )
耦 合 规 则 :P L P l 1 P l2 ( P 1 5 1 图 5 .3 )
它们耦合的总角动量的大小由量子数L表示为
PL
L(L1)2h(约化普朗)克常数
其量子数取值限定为
Ll1l2;l1l21Ll1l2
当 ll1 1 ll2 2取 取 2 2ll1 2 1 1个 个 值 值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氦原子的能级和光谱
氦原子的能级和光谱
氦原子是一种特殊的原子,它在自然界中有着广泛的用途。
氦原子是化学反应中极其重要的物质,并形成了大气层中大部分重要的气体,它也是构成我们太阳表面的基本成分。
氦原子的能级是十二种,包括1s1、1s2、2s1、2s2、2p1、2p2、2p3、3s1、3s2、3p1、3p2和3p3。
这些能级代表着其在太阳风中的表面温度和发射光谱。
例如,1s1级代表着氦原子在太阳风中最低的温度,它的谱线可以被非常低的温度分辨出来;同样的道理,温度越高,对应的天然原子的谱线衰减也越弱。
此外,由于氦原子的多样性,它们的使用范围也很广泛。
氦原子能够被用于无线电通信,尤其是激光通信,氦原子也可以用来检测物体的特性,例如我们可以用氦原子检测蒸汽的温度和压力。
因此,氦原子不仅仅在自然界中具有广泛的应用,而且它在科学研究中扮演着巨大的作用。
它在工业制造方面的应用也越来越多,比如在飞机设计、医疗保健中等。
由此可见,氦原子从根本上改变了我们的生活,并为广大人民群众提供了无可比拟的便利。