流体力学(流体运动学)

合集下载

流体力学第2章流体运动学基本概念

流体力学第2章流体运动学基本概念
式中:a,b,c被称为拉格朗日变数。不同的一组(a,b,c) 表示不同的流体质点。
10




对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t 其加速度可表示为:
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达 式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t

v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v ( v v )t t

第三章流体运动学

第三章流体运动学
第三章 流体运动学
机械工程学院
第三章 流体运动学
研究内容:流体运动的位移、速度、加速度和转速等随时间和 空间坐标的变化规律,不涉及力的具体作用问题。但从中得出 的结论,将作为流体动力学的研究奠定基础。
第1节 研究流体运动的两种方法
第2节 流体运动学的基本概念 第3节 流体运行的连续方程 第4节 相邻点运动描述――流体微团的运动分析
特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且 还与时间有关。
即:
() 0 t
3.2 基本概念
二、均匀流动与非均匀流动
1. 均匀流动
流场中各流动参量与空间无关,也即流场中沿流程的每一个断面 上的相应点的流速不变。位不变
v v ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t )
由于空间观察点(x,y,z)是固定的,当某个质点
从一个观察点运动到另外一个观察点时,质点位移是 时间t的函数。故质点中的(x,y,z,t)中的x,y,z不是 独立的变量,是时间的函数:
x x (t ) y y (t ) z z (t )
所以,速度场的描述式:
u x u x {x(t) , y(t) , z(t) , t} u y u y {x(t) , y(t) , z(t) , t} u z u z {x(t) , y(t) , z(t) , t}
v2
s1
s2
v1
折点
v2
s
强调的是空间连续质点而不是某单个质点
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动

第三章 流体运动学.ppt

第三章 流体运动学.ppt
1786年,他接受法王路易十六的邀请, 定居巴黎,直至去世。近百余年来,数学领 域的许多新成就都可以直接或间接地溯源于 拉格朗日的工作。
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理

流体运动学(课件)

流体运动学(课件)

由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。

工程流体力学 第4章 流体运动学

工程流体力学 第4章 流体运动学
质量表示时,为质量流量,以 qm 标记;以体积表示为体 积流量,以 qV 标记,可表示为
qV
vdA
A
断面平均流速:过流断面各点速度的断面平均值,以V标记,有
V
vdA
A
qV
AA
对任一点有
v V v
§4-2 描述流体运动的基本概念
四、一、二、三元流动
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动
v v (x, y, z) p p(x, y, z)
§4-2 描述流体运动的基本概念
三、流管、流束、流量与平均速度 流管:流场中过封闭曲线上各点作流线所围成的管状
曲面,见图。
流束:流管内所有流线的集合为流束。 微小流束:断面积无限小的流束。 总流:无数流束的总和。 注:(1)流束表面没有流体穿越;
间曲线,该瞬时位于曲线上各点的流体质点的速度与曲线在 该点相切,(如图示)。
§4-2 描述流体运动的基本概念
(2)流线的作法:欲作流场中某瞬时过A点的流线,可
在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v2;再在 v2上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当
工程流体力学 第四章 流体运动学
§4-1 描述流体运动的两种方法
流体运动学研究流体运动的规律,不追究导致运动的力 学因素。
研究流体运动的方法
一、拉格朗日法(Lagrange Method) 拉格朗日法又称随体法。它追踪研究每一个流体质点的
运动规律,综合所有的流体质点,从而得到整个流场的运动 规律,参见图。
a y

流体力学——3 流体运动学

流体力学——3 流体运动学
因而,流体质点和空间点是两个完全不同的概念。
空间点上的物理量:是指占据该空间点的流体质点的物理量。 流体的运动要素(流动参数):表征流体运动的各种物理量, 如表面力、速度、加速度、密度等,都称为流体的运动要素。
流 场:充满运动流体的空间。
流体运动的描述方法: 流体和固体不同,流体运动是由无数质点构成的连续
对于某个确定的时刻,t 为
常数, a、b、c为变量,x、y、 z只是起始坐标a、b、c的函数,
则式(3.1)所表达的是同一时 刻不同质点组成的整个流体在 空间的分布情况。
若起始坐标a、b、c及时间t为均为变量,x、y、z是两
者的函数,则式(3.1)所表达的是任意一个流体质点的运 动轨迹。

速度矢量
u uxi uy j uzk
通过该点流线上的微元线段
ds dxi dyj dzk
速度与流线相切
i
jk
u ds ux uy uz 0
dx dy dz
dx dy dz ux uy uz
uxdy uydx 0 uydz uzdy 0 uzdx uxdz 0
定点M,其位置坐标(x,
y, z)确定。 M为流场中
的点,其运动情况是M点
坐标(x, y, z)的函数,
也是时间 t 的函数。如速

u
可表示为:
u u( x, y, z,t)
表示成各分量形式:
uuxy
ux ( x, uy ( x,
y, z,t) y, z,t)
uz uz ( x, y, z, t )
拉格朗日法物理概念清晰,简明易懂,与研究固体质 点运动的方法没什么不同的地方。但由于流体质点运动轨 迹极其复杂,要寻求为数众多的质点的运动规律,除了较 简单的个别运动情况之外,将会在数学上导致难以克服的 困难。而从实用观点看,也不需要了解质点运动的全过程。 所以,除个别简单的流动用拉格朗日法描述外,一般用欧 拉法。

流体力学

流体力学
第四章 流体流体运动学和流体动 力学基础
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。

欧拉法


着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t

流体力学 3-1-2流体运动学

流体力学 3-1-2流体运动学
v y y 1

v x 1 x v y 1 t
其余各项的偏导数为零,所以加速度分布为:
ax x t 1
ay y t 1
az 0
(2)根据拉格朗日方法:
ax dvx dx 1 vx 1 x t 1 dt dt
dy ay 1 v y 1 y t 1 dt dt
dy
z z
dz
dz
ax
d x x x x y x z x dt t x y z
x y z dt t x y z d az z z x z y z z z dt t x y z ay
x ae2t , y bet , z cet
试求:用欧拉方法描述该流动的速度场是怎样的。
a xe2t , b yet , c zet
三、拉格朗日法和欧拉法的转化
(A)由拉格朗日法到欧拉法的转化思路
二、欧拉法
用欧拉法描述流体的运动时,运动要素是空间坐标x,y, z和时间变量t的连续可微函数。x,y,z,t 称为欧拉变量, t 时刻( x,y,z )处的速度场表示为:
u x u x ( x, y , z , t ) u y u y ( x, y , z , t ) u z u z ( x, y , z , t )
u x A. t
ux ux B. ux t x
ux ux ux C .ux uy uz x y z
ux ux ux ux D. ux uy uz t x y z
C 的变化情况 2.欧拉法研究_____ (A) 每个质点的速度 (C) 流经每个空间点的流速 (B) 每个质点的轨迹 (D) 流经每个空间点的质点轨迹

水力学 第三章 流体运动学

水力学 第三章  流体运动学
§3-1 描述流体运动的两种方法
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。

流体力学第二讲流体运动学

流体力学第二讲流体运动学

如可果得是不可压缩流体的平面无旋流动,必然同时存在速度势
和流函数。u x
= y x
uy
= x y
联系流函数与速度势的一对重要的关系式,在数学分析中 称柯西-黎曼(Cauchy-Riemann)条件,满足这种关系的两个 函数称为共轭函数。
grad
注 : rotgrad 0
2024/6/5
21

u
代入连续性方程
u 0
,可以得到:
0 0
在直角坐标系中:
2 2 2
x 2
y 2
z 2
0
----拉普拉斯方程。
它是一个线性的二阶偏微分方程。
线性方程的一个突出特点就是解的可以叠加性,
即如果 1,2,......, n是上式的解,则这些解的任意线性 组合 c11 c22 ...... cnn 也是上式的解。
解:(1)流线的微分方程是
dx dy xt yt
上式中的 t 是参数变量,当作常数,对上式积分,得
上式可写为
ln(x+t)=-ln(-y+t)+lnc
(x+t).(-y+t)=c
由上式可知,在流体中任一瞬时的流线是一双曲线族。
当 t=0,x=-1,y=-1,代入上式,得 c=-1。因此,通过点 A
x t 1
消去 t,得 x y 2
y t 1
2024/6/5
10
3、脉线:
是指运动流体中,用下述方法做成的一种“染色线” ,在流场中的一个固定点处,用某种装置(尽量小,而不 致于对所要考虑的流动发生明显干扰)连续不断的对流经 该点的流体质点染色,许多染色点形成一条纤细色线称为 脉线.
烟筒
2024/6/5

《流体力学》流体运动学

《流体力学》流体运动学

流体力学辅导材料3:第3章流体运动学【教学基本要求】1.了解描述流体运动的两种方法。

了解迹线与流线的概念。

掌握欧拉法质点加速度的表达式。

2.理解总流、过流断面、流量、断面平均流速的概念;理解定常流与非定常流、均匀流与非均匀流、渐变流与急变流、有压流与无压流。

3.熟练掌握总流的连续性方程。

4.理解无旋流与有旋流,掌握其判别方法。

5. 掌握流函数、速度势函数与速度的关系。

知道流网法、势流叠加法解平面势流的原理。

【学习重点】1.流线与迹线;质点加速度的欧拉表述法。

2.总流的连续性方程。

3.无旋流与有旋流的判别。

4.流函数、速度势与流速的关系。

【内容提要和学习指导】3.1 流动描述3.1.1 描述流动的两种方法描述流动的方法有拉格朗日法和欧拉法。

1. 拉格朗日(Lagrange)法:拉格朗日法以研究个别流体质点的运动为基础,通过对每个流体质点运动规律的研究来获得整个流体的运动规律。

这种方法又称为质点系法。

拉格朗日法的基本特点是追踪单个质点的运动。

此法概念明确,但复杂。

一般不采用拉格朗日法。

2. 欧拉(Euler)法:欧拉法是以考察不同流体质点通过固定的空间点的运动情况来了解整个流动空间内的流动情况,即着眼于研究各种运动要素的分布场。

这种方法又叫做流场法。

欧拉法中,流场中任何一个运动要素可以表示为空间坐标和时间的函数。

例如,在直角坐标系中,流速v是随空间坐标)yx和时间t而变化的,称为流速场。

,(z,用欧拉法描述流体运动时,质点加速度等于时变加速度和位变加速度之和,表达式为:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==z u u yu u xu u tu dtdu a z u u y u u x u u t u dt du a z u u y u u x u u t u dt du a z z z yz xz zy y z y y y x y yy x zx y x x x xx (3-6)3.1.2 迹线与流线在研究流动时,常用某些线簇图像表示流动情况。

流体力学-第3章

流体力学-第3章

ux
uy
E
u x dx u x dy u x dz ux x 2 y 2 z 2 u x dx u x dy u x dz ux x 2 y 2 z 2 ux u x dx u x dy u x dz x 2 y 2 z 2
v1
v2
s1
s2
v1
折点
v2
s
注1:在非恒定流情况下,流线会随时间变化。在恒定流情况下, 流线不随时间变,流体质点将沿着流线走,迹线与流线重合。故: 恒定流中流线与迹线重合,非恒定流中流线与迹线不重合
流线动画
注2:迹线和流线最基本的差别是:迹线是同一流体质点在 不同时刻的位移曲线,与拉格朗日观点对应,而流线是同 一时刻、不同流体质点速度矢量与之相切的曲线,与欧拉 观点相对应。即使是在恒定流中,迹线与流线重合,两者 仍是完全不同的概念。
恒定流动 质量守恒定律
1v1 A1dt 2 v2 A2 dt 3v3 A3 dt vAdt
1v1 A1 2 v2 A2 3v3 A3 vA
不可压缩流体 1 2 3
v1 A1 v2 A2 v3 A3 vA Q
同理: 任一元流断面:dA1,d A2, …… 对应流速: u1, u2, ……
Qm
例6 如图气流压缩机用直径d1=76.2mm的管子吸入密度 ρ1=4kg/m3的氨气,经压缩后,由直径d2=38.1mm的管子以 v2=10m/s的速度流出 ,此时密度增至ρ2=20kg/m3 。求(1)质 量流量;(2)流入流速。 v
1
解:(1)质量流量为
Qm Q 2 v2 A2 20 10
一、流动的分类
1、恒定流和非恒定流(定常流和非定常流) 恒定流动:流动参量不随时间变化的流动。 u u ( x, y , z )

流体力学知识点

流体力学知识点

流体力学知识点流体力学是研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、化工、生物医学等。

下面我们来一起了解一些流体力学的重要知识点。

一、流体的性质流体具有易流动性,即它们在微小的切应力作用下就会发生连续的变形。

流体的密度和黏度是两个重要的物理性质。

密度是指单位体积流体的质量。

对于均质流体,密度是一个常数;对于非均质流体,密度会随位置而变化。

例如,空气在不同高度的密度不同。

黏度则反映了流体内部的内摩擦力。

黏度大的流体,如蜂蜜,流动起来比较困难;而黏度小的流体,如水,流动相对容易。

二、流体静力学流体静力学主要研究静止流体的压力分布规律。

帕斯卡定律指出,在密闭容器内,施加于静止液体上的压力将以等值传递到液体各点。

这在液压系统中有着重要的应用。

另一个重要的概念是浮力。

当物体浸没在流体中时,它受到的浮力等于排开流体的重量。

这就是阿基米德原理。

例如,船舶能够漂浮在水面上,就是因为受到的浮力等于其自身的重量。

三、流体运动学流体运动学关注流体的运动方式和描述方法。

流线是用来描述流体流动的重要概念。

流线是在某一瞬时,在流场中画出的一条空间曲线,在该曲线上,流体质点的速度方向与曲线相切。

流量是指单位时间内通过某一截面的流体体积或质量。

四、流体动力学流体动力学研究流体运动与受力之间的关系。

伯努利方程是流体动力学中的一个关键方程,它表明在理想流体的稳定流动中,沿着一条流线,总水头(位置水头、压力水头和速度水头之和)保持不变。

例如,在水平管道中,流速大的地方压力小,流速小的地方压力大。

这可以解释为什么飞机机翼上方的流速快、压力低,从而产生升力。

五、黏性流体的流动实际流体都具有黏性。

在黏性流体的流动中,会产生内摩擦力,导致能量损失。

层流和湍流是两种常见的流动状态。

层流时,流体的质点作有规则的平行运动,各层之间互不干扰;而湍流时,流体的质点作不规则的随机运动。

流体力学 3-3-4流体运动学讲解

流体力学 3-3-4流体运动学讲解

uxdt
)
dx
四 空间运动的连续性方程
流入与流出微元六面体 的质量——x方向
(d ydzuxdt)
x
dx

(ux
x
)
dxd
y d z dt
y方向
(
u
y
y
)
d
x
d
y
d
z
dt
z方向
(
uz
z
)
d
x
d
y
d
z
dt
dt时间内六面体 的净流量为
[(ux) (uy )
x
y

(2)对于不稳定流,经过同一点的流线其空间方位和形状 是随时间改变的。
(3)由于稳定流动的速度分布与时间无关,所以流线的形 状和位置不随时间变化。同时流体质点只能沿着流线运动, 否则将会有一个与流线相垂直的速度分量。所以稳定流动 的迹线与流线重合。
2.流线的性质
(4)不稳定流动包含两方面的含义:大小或方向随时间变化。
3.流线方程
设流线上一点的速度矢量为u,流线上的微元线段矢量dr
由流线定义,矢量表示的微分方程为
u
dr

0
在直角坐标系中,依矢量运算法则可知u与dr成比例,即
ux
dx
x, y,
z,
t

uy
dy
x, y,
z,
t

uz
dz
x, y,
z,
t
式中的t代表的是同一瞬时,当作常数处理。
在不稳定流动中,流线微分方程积分的结果包括时间t,不
解:取控制面如图,设自由面上水位变化是均匀的,并设控制面A3上流 体的出流速度为v3,由不可压缩流体的连续方程可得

第三讲 流体运动学

第三讲 流体运动学

任一物理量的质点导数
d (t t , x x, y y, z z ) (t , x, y, z ) lim dt t 0 t
3-2 物理量的质点导数
d (t t , x x, y y, z z ) (t , x, y, z ) lim dt t 0 t
与空间坐标无关,则称为均匀场(均匀流动)。
V V V p p p ... 0 x y z x y z
流动参数仅是时间t的函数,则用欧拉法可表示为:
V =V (t)
3-1 流体运动的描述
三、流场的两个特例
如图所示装置,将阀门A和B的开度调节到使水箱中的水 位保持不变。
二、欧拉法与控制体
速度场可表示为: 压强、密度和温度场表示为:
u u x, y , z , t v v x, y , z , t w w x, y , z , t
其中 x, y, z , t 为欧拉变数
p p ( x, y , z , t ) ( x, y , z , t ) T T ( x, y , z , t )
拉格朗日法
研究对象是一定质点 不能直接反映参数的空间分布 能直接反映质点的时变过程
表达式复杂 数学求解较困难 可直接应用牛二定律建立基本运动方程 (但对所考察物质体的可辨识性有要求)
欧拉法
研究对象是空间某固定点或断面
直接反映参数的空间分布 不能直接反映质点的时变过程
表达式相对 简单 数学求解相对简单 无法直接应用牛二定律建立 基本运动方程
当地(时变)加速度
dV V V V 矢量式为 a dt t
迁移(位变)加速度
3-2 物理量的质点导数

流体

流体

用 F 表示外力的矢量和在时间 t 内的平均值。由
质点系的动量定理得
Ft v2l2S2 v1l1S1.
t t
以t 除上式,得 l2 l1 F v2S2 v1 S1.
对上式取 t→0的极限, 成为瞬时值,最后有: F
二、流体的粘滞性
流体流动时,将表现出或多或少的粘性,它是 当流体运动时,层与层之间有阻碍相对运动的内摩 擦力。在某些问题中,若流体的流动性是主要的, 粘性居于极次要的地位,可认为流体完全没有粘性。 这样的理想模型叫做非粘性流体,若粘性起着重要 作用,则需看作粘性流体。 三、理想流体 如果在流体运动的问题中,可压缩性和粘性都 处于极为次要的地位,就可以把它当作理想流体。 理想流体是不可压缩又无粘性的流体。
图11.9为粘性流体内部某一点附近的流动情况,两 部分以不同的速率 1和 运动。建立直角坐标系 2 O-xyz,y轴与流速 1、 2 的方向垂直,且用y表 示以速率 1和 2运动的两层流体间的距离,流速 变化率为: v v 2 v1
v v
v v
y
v v

取上式当 y 0 的极限,得
第十一章 流体力学
§11.1 理想流体
一、流体的可压缩性 流体包含气体和液体,可以发生形状和大小的改变,但是 流体主要具备体积压缩,例如用力推动活塞以压缩密闭气缸中的 气体,在撤消外力后,气体将活塞推出。 无论气体还是流体都是可压缩的,在500大气压下,每增加一大 气压,水的体积的减少量不到原体积的两万分子一。因为压缩量 很少,通常可不考虑液体的可压缩性,气体的可压缩性非常明显, 譬如用不太大的力推动活塞即可使汽缸中的气体明显地压缩。但 是,在一定条件下,我们常常可以把流动着的气体看作是不可压 缩的。因为气体密度小,即使压力差不太大,流速不很高,也能 够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于 均匀。在一定问题中,若可不考虑流体的压缩性,便可将抽象为 不可压缩流体的理想模型,反之,则需看作是可压缩流体。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。

下面将对流体力学的一些重要知识点进行总结。

一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。

比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。

2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。

膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。

液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。

3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。

粘性的大小用动力粘度μ 或运动粘度ν 来表示。

牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。

4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。

表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。

二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。

2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。

3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。

4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。

真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。

5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。

6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。

流体力学四章节流体运动学

流体力学四章节流体运动学

(4.6)
w
iw x
jw y
k
w
z
w
w
2 x
w
2 y
w
2 z
ppx,y,z,t
(4.7)
x,y,z,t
第7页
退出 返回
(4.8)
第四章 流体运动学
第一节 流体运动的描述
因为质点在流场内是连续的,所以流体加速度的各分量为
同样
dwx wx wx x wx y wx z dt t x t y t z t
A
a
t0 et0
1
B
b
t0 1 et0
将A,B,C值代入前式得到
Cc
xaett00 1et t1
ybet0t01et t1 zc
这就是流场中的迹线方程式,也就是质点空间坐标的拉格朗日表达式,它
表示一迹线族。若某一个质点,当 t0 0时其起始位置 a 1,b2,c 3,
则这个质点的迹线方程式为 x2et t1 y3et t1 z 3
D D B t B tw x B xw y B yw z B zB t wBtwB (4.11)
(三)两种描述方法的关系 拉格朗日法和欧拉法两种表达式可以互换。例如,从拉格朗日法的坐标 位置表达式(4.1),可以求出用x,y,z,t 表示的拉格朗日变数a,b, c 的关系式
第9页 退出 返回
第四章 流体运动学
y,
z, t
wz
z t
wz x,
y,
z,
t
(b)
第10页 退出 返回
第四章 流体运动学
第一节 流体运动的描述
将(b)式进行积分,则
x F1C1, C2, C3, t

流体力学(流体运动学)

流体力学(流体运动学)

§3 -2
流场的基本概念
恒定流与非恒定流 迹线和流线 一维、二维、 一维、二维、三维流动 流管、 流管、流束及总流 过流断面、 过流断面、流量和平均流速 均匀流和非均匀流
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流) 恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
(3) (4)
将(3)、(4)式代入(1)式得 A′( x)e t + A( x)e t = A( x)e t + t
A′( x)e t = t
A′( x) = te − t

dA( x) = te − t dt
(分部积分公式:∫ uv ′dx = uv − ∫ vu ′dx )
用分部积分得
A( x ) = −(te − t − ∫ e − t dt ) = −te − t − e − t + A
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u x = u x ( x, y , z , t )
u y = u y ( x, y , z , t )
p = p ( x, y, z, t)
u z = u z ( x, y , z , t )
实际中,恒定流只是相对的,绝对的恒定流是不存在的。本课 程主要研究恒定流动问题。
二、迹线和流线
1、迹线 、
用矢量表示
r r ∂u r r + (u ⋅ ∇)u a= ∂t
式中
r r r r a = ax i + a y j + az k
哈密尔顿算子(Hamiton)
r r v r u = uxi + u y j + uz k
∂ r ∂ r ∂ r ∇= i + j+ k ∂x ∂y ∂z
对比拉格朗日法和欧拉法的不同变量,就可以看出两者的区别: 前者以a、b、c为变量,是以一定质点为对象;后者以x、y、z为变 、 、 、 、 量,是以固定空间点为对象。 只要对流动的描述是以固定空间,固定断面,或固定点为对象, 应采用欧拉法,而不是拉格朗日法。
三、一维、二维、三维流动 一维、二维、
流体的运动要素是空间坐标和时间的函数。按照流体运动要素 与空间坐标有关的个数(维数),可以把流体分为一维流、二维流 、三维流。 一维(一元)流动,若流场中的运动参数仅与一个空间自变量 有关,这种流动称为一维流动。即
u = u ( x, t)
之为二维流动。
p = p ( x, t )
随时间的变化率,称为当地加速度(时变加速度)。后三项之和 则表示流体质点在同一时间内,因坐标位置变化而形成的加速度, 称为位变加速度(迁移加速度)。
同理可得:
ay =
duy dt
=
∂uy ∂t
+ ux
∂uy ∂x
+ uy
∂uy ∂y
+ uz
∂uy ∂z
du z ∂u z ∂u z ∂u z ∂u z az = = + ux + uy + uz dt ∂t ∂x ∂y ∂z
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
dx,dy,dz表示在无穷小一段时间内流体质点的位移分量,由 , , 位移分量对时间的导数得出速度分量表达式

dx dy dz ux = uy = uz = dt dt dt dux ∂u x ∂u x ∂u x ∂u x ax = = + ux + uy + uz dt ∂t ∂x ∂y ∂z
式中,右边第一项表示流体质点在某一点(x,y,z)的速度 ( , , )
流体质点的加速度
∂ 2 x (a , b, c, t ) ax = ∂t 2
ay ∂ 2 y (a, b, c, t ) = ∂t 2
∂ 2 z (a, b, c, t ) az = ∂t 2 流体质点的压力p和密度ρ也同样是(a,b,c)和的函数 , ,
p = p ( a , b, c , t )
2、流束 充满在流管内部的全部流体,称为流束。断面无穷小的流束, 称为微小流束或元流。 3、总流 在流动周界内全部微小流束(元流)的总和称为总流。
五、过流断面、流量和平均流速 过流断面、
1、过流断面(过水断面)
垂直于所有流线的流体横断面 称为过流断面。 如果流线互相平行,这时过流 断面为平面,否则过流断面为曲面。
uz = dz dt
y A
B z x y x
dx、dy、dz为ds在各坐标轴上的投影,由上式得
dx dy dz = = = dt ux u y uz
(3-1)
上式为迹线的微分方程,表示质点M的轨迹。
2、流线 流线是在同一时刻流场中连续不同位置质点的流动方向线。 流线的特点: ①流线上各质点的流速都与流线相切。 ②流线不能相交,即某瞬时通过流场中 固定点只能有一条流线。 ③恒定流时,流线与迹线重合。 ④流线是光滑曲线不能转折。
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
这种通过描述每一质点的运动达到了解流体运动的方法,称为拉格朗日法 拉格朗日法。 拉格朗日法 表达式中的自变量(a,b,c),称为拉格朗日变量 拉格朗日变量。 ( , , ) 拉格朗日变量 流体质点的速度为
∂x (a , b, c, t ) ux = ∂t ∂y ( a , b, c, t ) uy = ∂t ∂z (a , b, c, t ) uz = ∂t
运动开始前,质点的起始坐标为(a,b,c),经过时间t,它运动到(x,y, ( , , ) ( , , z)。x、y、z表示任一流体质点经过时间t的位置,是(a,b,c)及t的函数,即 ) 、 、 ( , , )
x = x ( a , b, c, t ) y = y ( a , b, c, t ) z = z (a, b, c, t )
流线的微分方程表达式为
v i
v j
v k
dx dy dz = = ux uy uz
迹线与流线的比较:
①流线由无穷多个质点组成的,它是表示这无穷多个流体质 点在某一固定瞬间运动的曲线。迹线则表示在一段时间过程中同一 流体质点运动的曲线。 ②流线与迹线方程是不相同的,迹线方程式以时间t为自变量, 由此决定其运动轨迹。流线方程式中,时间t是给ห้องสมุดไป่ตู้量,随时间t不 同,流线方程式也不相同。 ③在恒定流中,流线与迹线相重合。即流线和迹线是一致的, 没有区别。
v 设 u = { x , u y , u z }得 u
dy dz v dx dz v dx dy v v v ds × u = dx dy dz = i− j+ k u y uz ux uy ux uz ux u y uz v v v = (u z dy − u y dz )i − (u z dx − u x dz ) j + (u y dx − u x dy )k = 0
ρ = ρ (a , b, c, t )
二、欧拉法
物理学中场定义为物理量在空间的分布,如速度场、压力场等。流体力学 中,流场 流场是指流体质点运动经过的全部空间。欧拉法以流场为研究对象,以空间 流场 点为着眼点,研究空间点上各质点的运动要素及其变化规律,来获得整个流场的 运动特性。 欧拉法不是跟踪个别质点,而是在同一时间研究流场中各质点的流速、压力 的变化。质点的流速、压力和密度均是空间坐标(x,y,z)和时间 t 的函数, ( , , ) 变量 x,y,z,t 统称为欧拉变量 欧拉变量。即 , , , 欧拉变量
∂u x =0 ∂t ∂t
∂u y ∂t ∂t
=0
∂u z =0 ∂t ∂t
∂p =0 ∂t ∂t
其速度和压强表示为:
u x = u x ( x, y , z )
u y = u y ( x, y, z )
u z = u z ( x, y, z )
p = p ( x, y, z )
若流场的流动参数的全部或其中之一与时间变化有关,即随时 间变化而改变,则这类流场的流动称为非恒定流,其速度和压强的 描述为
§3-l -
流体运动的描述方法
把流体流动占据的空间称为流场。 在流场中,每个质点均有确定的速度和压力,都是空间坐标和时间的连续函 数。流场也可以理解为速度场和压力场的综合。 表征流体运动的量,如速度、压力等统称为运动要素。
一、拉格朗日法
拉格朗日法研究对象是单个流体质点, 研究其运动要素(位置、速度) 拉格朗日法研究对象是单个流体质点,研究其运动要素( 位置、速度 )等的 质点 变化过程,显然是一种质点系法。 变化过程,显然是一种质点系法。拉格朗日法着眼于流体各质点本身的运动情况 ,也就是要表示出每个流体质点自始自终的运动过程。 把任一流体质点在初始时刻 t0 时的坐标(a,b,c)作为该质点的标志,则 ( , , ) 不同的(a,b,c)就表示流动空间的不同质点。这样,不同的(a,b,c)变数 ( , , ) ( , , ) 表示流场中的不同质点。
xy = 1 (等边双曲线方程)
迹线的微分方程
dx = ux = x + t dt dy = uy = −y + t dt
(1) (2)
(1)、(2)式为非齐次常系数的线性常微分方程。 由(1)式得
dx −x=0 dt
dx = dt x
则 那么
x = A( x)e t
x ′ = A′( x)e t + A( x)e t
2、流量
单位时间内流经过流断面的流体量,称为流量。 通常用体积流量Q,质量流量M和重力流量G表示,其相应的 单位是m3/s,kg/s和N/s。 ,
边界急剧变化处,液体质点受惯性作用会脱离固体边界,主流 与边界之间产生旋涡区。 而且随着边界的变化,流线有疏有密。流线密,表示流速大, 流线疏,表示流速小。
★流线微分方程
在流线上过任意点取微元有向线 r v 段 ds ,d s = {dx , dy , dz } ,过该点
相关文档
最新文档