2009年深圳中考数学试题与答案(word版)

合集下载

(word完整版)2009年深圳中考数学试卷(含答案),推荐文档

(word完整版)2009年深圳中考数学试卷(含答案),推荐文档

2009 年深圳市初中毕业生学业考试数学试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4 页。

考试时间90 分钟,满分 100 分。

第一部分选择题一、选择题(此题有10 小题,每题 3 分,共 30 分)1.假如 a 的倒数是1,那么 a2009 等于()A. 1 B. 1C. 2009 D.20092.由若干个同样的小立方体搭成的几何体的三视图以下图,则搭成这个几何体的小立方体的个数是()A. 3B.4C.5D.6主视图左视图俯视图3.用配方法将代数式 a2+4 a- 5 变形,结果正确的选项是()A.(a+2)2- 1B. (a+2)2- 5C. (a+2)2+4D. (a+2) 2- 94.横跨深圳及香港之间的深圳湾大桥( Shenzhen Bay Bridge )是中国独一倾斜的独塔单索面桥,大桥全长 4770 米,这个数字用科学计数法表示为(保存两个有效数字)()A. 47 102 B. 4.7 103 C.103 D.1035.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.以下图是同一副扑克中的 4 张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是()1B.1 3 2 yA .C.D.3 24 37.如图,反比率函数y4 的图象与直线y 1 x 的交点Ax 3O 为 A, B,过点 A 作 y 轴的平行线与过点 B 作 x 轴的平行线订交于点C,则△ABC的面积为()C xBA. 8 B. 6C. 4 D. 28.如图,数轴上与1, 2 对应的点分别为A,B,点 B 对于点 A 的对称点为 C,设点 C 表示的数为 x,则 x22 ()xA . 2B .2 2C .3 2D . 29.某商场的老板销售一种商品,他要以不低于进价20%价钱才能销售,但为了获取更多收益,他以高 出进价 80%的价钱标价.若你想买下标价为 360 元的这类商品,最多降价多少时商铺老板才能销售()A .80 元B . 100 元C .120 元D . 160 元10.如图,已知点 A 、 B 、 C 、D 均在已知圆上, AD//BC , AC 均分 ∠BCD , ∠ ADC 120o ,四边形 ABCD 的周长为 10cm .图中暗影部分的面积为()AD3A .B .32BC2 34 3C.D.第二部分(非选择题,共70 分)二、填空题 (此题有 6 小题,每题 3 分,共 18 分)11.小明在 7 次百米跑练习中成绩以下:次数 第一次 第二次 第三次 第四次 第五次 第六次 第七次 成绩/秒则这 7 次成绩的中位数是秒12. 小明和小兵两人参加学校组织的理化实验操作测试,近期的5 次测试成绩以下图,则小明 5 次成绩的方差 S 125 次成绩的方差 S 2212与小兵 之间的大小关10 小明 86小兵224系为 S 1S 2 .(填“ >”、“ <”、“=”)22 3 4 51 13.如图,矩形 ABCD 中,由 8 个面积均为 1 的小正方形构成的 L 型模板如图搁置,则矩形ABCD 的周长为_.14 . 已 知 a 11 1 21 1 31 1 42 3 2 , a 22 3 4 3 , a 33 4 5 4 ,...,依照上述规律,则1 3815a 99.15.如图 a 是长方形纸带, ∠ DEF =20 °,将纸带沿 EF 折叠成图 b ,再沿 BF 折叠成图 c ,则图 c 中的∠ CFE的度数是.AEDA EAE AA AFAB FC B GC C B GAAABDAAB图 a图 b图 c16.刘谦的魔术表演风靡全国,小明也学起了刘谦发了然一个魔术盒,当随意实数对(时,会获取一个新的实数:Aa 2+b- 1,比如把( 3, - 2)放入此中,就会获取D B CF Ca ,b )进入此中32+( - 2) - 1=6 . 现将实数对( m, - 2m)放入此中,获取实数2,则 m=.三、解答题(本大题有7 题,共 52 分)17.( 6 分)计算:22 ( 3)2 ( 3.14)0 8sin 45 .18.( 6 分)先阅读理解下边的例题,再按要求解答:2例题:解一元二次不等式x90 .解:∵ x29 ( x 3)( x3) ,∴( x 3)( x 3) 0 .由有理数的乘法法例“两数相乘,同号得正”,有( 1)x 3 0( 2)x 30 x 3 0 x 3 0解不等式组(1),得x 3 ,解不等式组(2),得x 3,故 ( x 3)( x 3) 0 的解集为x 3或 x 3 ,即一元二次不等式x2 9 0 的解集为x 3或 x 3.问题:求分式不等式5 x 10的解集 .2 x 319.( 6 分)如图,斜坡AC 的坡度(坡比)为1: 3 , AC= 10 米.坡顶有一旗杆BC,旗杆顶端 B 点与BA 点有一条彩带AB 相连, AB= 14 米.试求旗杆BC 的高度.CD A 20.( 7 分)深圳大学青年志愿者协会对报名参加2011 年深圳大运会志愿者选拔活动的学生进行了一次与大运知识相关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适合的办理,将成绩分红三个等级 :一般、优异、优异,并将统计结果绘成了以下两幅不完好的统计图,请你依据图中所给信息解答以下问题:( 1 )请将两幅统计图增补完好;( 2 )小亮班共有名学生参加了此次测试,假如青年志愿者协会决定让成绩为“优异”的学生参加下一轮的测试 , 那么小亮班有人将参加下轮测试;( 3 )若这所高校共有1200 名学生报名参加了此次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估量全校共有多少名学生能够参加下一轮的测试。

2009年广东深圳中考数学真题试卷

2009年广东深圳中考数学真题试卷

2009年广东深圳中考数学真题试卷一、选择题(共10小题;共50分)1. −3的倒数是 A. −13B. −3 C. 13D. 32. 经公安部交管局统计,今年5月份全国因道路交通事故造成伤亡共25591人.这个数用科学记数法可以表示为 A. 2.5591×105B. 25.591×103C. 2.5591×104D. 2.5591×1063. 如图,平放在台面上的圆锥体的主视图是 A. B.C. D.4. 下列图形中,既是轴对称图形又是中心对称图形的是 A. B.C. D.5. 某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为 A. 1万件B. 19万件C. 15万件D. 20万件6. 化简x2−6x+92x−6的结果是 A. x+32B. x2+92C. x2−92D. x−327. 班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付A. 45元B. 90元C. 10元D. 100元8. 二次函数y=ax2+bx+c的图象如图所示,若点A1,y1,B2,y2是它图象上的两点,则y1与y2的大小关系是 A. y1<y2B. y1=y2C. y1>y2D. 不能确定9. 不等式组2x−6<6−2x,2x+1>3+x2的整数解是 A. 1,2B. 1,2,3C. 13<x<3 D. 0,1,210. 如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是A. 3B. 5C. 52D. 522二、填空题(共6小题;共30分)11. 计算:y32÷y5= ______.12. 如图,点A为反比例函数y=−3x的图象在第二象限上的任一点,AB⊥x轴于点B,AC⊥y轴于点C,则矩形ABOC的面积是______.13. 为了准备毕业联欢的抽奖活动,小华准备了10个白球,2个红球,8个黄球,每个球除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一支.那么小亮抽奖一次得到钢笔的概率是______.14. 如图,小明利用升旗用的绳子测量学校旗杆BC的高度,他发现绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A点并与地面形成30∘角时,绳子末端D距A点还有1米,那么旗杆BC的高度为______ 米.15. 下面是按一定规律摆放的图案,按此规律,第2010个图案与第1∼4个图案中相同的是第______ 个.(只填数字).16. 如图,在Rt△ABC中,∠C=90∘,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= ______.三、解答题(共7小题;共91分)17. 计算:∣−4∣−9+3−2−2009−π20.18. 解分式方程:xx−1−31−x=3.19. 随着网络的普及,越来越多的人喜欢到网上购物.某公司对某个网站2005年到2008年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图(如图a)和条形统计图(如图b).请你根据统计图提供的信息完成下列填空:(1)2005年该网站共有网上商店______ 个;(2)2008年该网站网上购物顾客共有______ 万人次;(3)这4年该网站平均每年网上购物顾客有______ 万人次.20. 如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50∘,求∠EGC的大小.21. 如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠BAD;,求DC的长.(2)若sin∠BEC=3522. 某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)每名熟练工招聘n0<n<10名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?23. 已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA,OB的长和经过点A,B,C的抛物线的关系式.(2)如图2,点D的坐标为2,0,点P m,n是该抛物线上的一个动点(其中m>0,n> 0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD,CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.答案第一部分 1. A 2. C 3. A 4. B 5. B 6. D 7. B 8. C 9. A 10. D第二部分11. y 12. 3 13. 110 14. 10 15. 2 16. 75第三部分17. 原式=4−3+19−1=19.18. 方程两边同乘 x −1 ,得:x +3=3x −3.解得x =3.经检验 x =3 是原方程的解. 19. (1) 20 (2) 3600 (3) 125020. (1) ∵ 四边形 ABCD 是正方形,BE ⊥BF , ∴AB =CB ,∠ABC =∠EBF =90∘, ∴∠ABC −∠EBC =∠EBF −∠EBC . 即 ∠ABE =∠CBF .在 △ABE 与 △CBF 中, BE =BF ,∠ABE =∠CBF ,AB =CB ,∴△ABE ≌△CBF ;(2) ∵BE =BF ,∠EBF =90∘, ∴∠BEF =45∘.又 ∠EBG =∠ABC −∠ABE =40∘, ∴∠EGC =∠EBG +∠BEF =85∘. 21. (1) 连接 OC , DC 是切线得 OC ⊥DC ; 又 AD ⊥DC , ∴AD ∥OC , ∴∠DAC =∠ACO .又由 OA =OC 得 ∠BAC =∠ACO ,∴∠DAC=∠BAC.即AC平分∠BAD.(2)∵AB为直径,∴∠ACB=90∘.又∵∠BAC=∠BEC,∴BC=AB⋅sin∠BAC=AB⋅sin∠BEC=6.∴AC= AB2−BC2=8.又∵∠DAC=∠BAC=∠BEC,且AD⊥DC,∴CD=AC⋅sin∠DAC=AC⋅sin∠BEC=245.22. (1)设每名熟练工和新工人每月分别可以安装x辆和y辆汽车,根据题意得:x+2y=8,2x+3y=14,解得:x=4,y=2.则每名熟练工和新工人每月分别可以安装4辆和2辆汽车.(2)设熟练工数为m名,则新工人数为mn,根据题意得:2mn+4m×12=240,当m=1时,n=8;当m=2时,n=3;当m=3时,n=43;当m=4时,n=12;当m=5时,n=0(舍去).故工厂有四种招聘方案,分别为:1名熟练工招8名新工人,2名熟练工每人招3名新工人,3名熟练工招4名新工人,4名熟练工招2名新工人.(3)由(2)得知4种生产方式,1名熟练工和8名新工人;2名熟练工和6名新工人;3名熟练工和4名新工人,4名熟练工和2名新工人,因为新工人的数量多于熟练工,所以只有前三种方案可供选择,方案一:W=1×2000+8×1200=11600(元);方案二:W=2×2000+6×1200=11200(元);方案三:W=3×2000+4×1200=10800(元),故工厂应招聘4名新工人,这样每月支出的金额最少.23. (1)设OA的长为x,则OB=5−x,∵OC=2,AB=5,∠BOC=∠AOC=90∘,∠OAC=∠OCB,∴△AOC∽△COB,∴OC2=OA⋅OB,∴22=x5−x,解得:x1=1,x2=4,∵OA<OB,∴OA=1,OB=4,∴点A,B,C的坐标分别是:A−1,0,B4,0,C0,2.设经过点A,B,C的抛物线的关系式为:y=ax2+bx+c,将 A ,B ,C 三点的坐标代入得 a −b +2=0,16a +4b +2=0,c =2,解得: a =−12,b =32,c =2.∴ 这个二次函数的表达式为:y =−12x 2+32x +2.(2) ①当 △BDE 是等腰三角形时,点 E 的坐标分别是: 3,12 , 45,85 , 4−4 55,2 55.②如图 1,连接 OP ,S △CDP=S 四边形CODP −S △COD=S △COP +S △ODP −S △COD=1×2m +1×2n −1×2×2=m +n −2=−12m 2+52m=−12 m −52 2+258.∴ 当 m =52 时,△CDP 的面积最大,此时 P 点的坐标为 52,218 ,S △CDP 的最大值是 258.。

2009年广东省中考数学试卷(Word版)(含解析)

2009年广东省中考数学试卷(Word版)(含解析)

★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.22.(2009•广东•2•3′)计算(a3)2的结果是()A.a5B.a6C.a8D.a-13.(2009•广东•3•3′)如图所示,几何体的主(正)视图是()A.B.C.D.4.(2009•广东•4•3′)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.7.26×1010元B.72.6×109元C.0.726×1011元D.7.26×1011元5.(2009•广东•5•3′)如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A.B.C.D.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2009•广东•6•4′)分解因式2x3﹣8x= .7.(2009•广东•7•4′)已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC= cm.8.(2009•广东•8•4′)一种商品原价120元,按八折(即原价的80%)出售,则现售价应为元.9.(2009•广东•9•4′)在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n= .10.(2009•广东•10•4′)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块(用含n的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2009•广东•11•6′)计算:|﹣|+﹣sin30°+(π+3)0.12.(2009•广东•12•6′)解方程13.(2009•广东•13•6′)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.14.(2009•广东•14•6′)如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);(2)求证:BM=EM.15.(2009•广东•15•6′)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2009•广东•16•7′)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17.(2009•广东•17•7′)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.18.(2009•广东•18•7′)在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过D点作DE∥AC交BC的延长线于点E.(1)求△BDE的周长;(2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP=DQ.19.(2009•广东•19•7′)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C,第2个平行四边形A1 B1 C1 C和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(2009•广东•20•9′)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.21.(2009•广东•21•9′)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.,,22.(2009•广东•22•9′)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.2考点:算术平方根。

2009年广东省中考数学试卷与答案

2009年广东省中考数学试卷与答案

第7题图BADA 第13题图D C BAD C B A 2009年广东省中考数学试卷一、 选择题(本大题5小题,每小题3分,共15分) 1. 4的算术平方根是( )A.±2B.2C.2±D.2 2. 计算()23a 结果是( )A.6aB.9aC.5aD.8a3. 如图所示几何体的主(正)视图是( )4. 《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学计数法表示正确的是( )A.元101026.7⨯B.9106.72⨯元C.1110726.0⨯元D.111026.7⨯元5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( ) 二、填空题(本大题5小题,每小题4分,共20分)6. 分解因式x x 823-=_______________________.7. 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_________cm. 8. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为__________元.9. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一球,摸到黄球的概率是54,则n=__________________.10. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖________块,第n 个图形中需要黑色瓷砖_______________块(用含n 的代数式表示).11. 计算-+-921sin30°+()03+π.12. 解方程11122--=-x x13. 如图所示,在平面直角坐标系中,一次函数y=kx+1的图像与反比例函数xy 9=的图像在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C.如果四边形OBAC 是正方形,求一次函数的关系式.14. 如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD.(1) 用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹); (2)求证:BM=EM.第15题图45°30°FEP B A 第18题图Q POE D C B A 第17题图图2足球乒乓球20%篮球40%排球15. 如图所示,A 、B 两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:414.12,732.13≈≈)四、解答题(二)(本大题4小题,每小题7分,共28分)16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少位学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.18. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长; (2)点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ.第20题图图2图1A 19. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O ,以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1;再以A 1B 1、A 1C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1;……依次类推。

2009年广东省中考数学试卷含答案

2009年广东省中考数学试卷含答案

第7题图BAD C BA DCBA 2009年广东省初中毕业生学业考试数学说明:全卷共4页,考试用时100分钟,满分120分.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 4的算术平方根是( )A.±2B.2C.2±D.22. 计算()23a结果是( )A.6aB.9aC.5aD.8a 3. 如图所示几何体的主(正)视图是( )4. 《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿 元,用科学计数法表示正确的是( )A.元101026.7⨯ B.9106.72⨯元 C.1110726.0⨯元 D.111026.7⨯元5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下 一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填在答题卡相应的位置上. 6. 分解因式x x 823-=_________________.7. 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°, 则BC=_________cm.8. 一种商品原价120元,按八折(即原价的80%)出售,则 现售价应为__________元.9. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同,若 从中随机摸出一球,摸到黄球的概率是54,则n=__________________.第14题图E DC B A 第15题图45°30°FEPBA10. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中 有黑色瓷砖________块,第n 个图形中需要黑色瓷砖_______________块(用含n 的代数式 表示).三、解答题(一)(本大题5小题,每小题6分,共30分) 11. 计算-+-921sin30°+()03+π. 12. 解方程11122--=-x x 13. 如图所示,在平面直角坐标系中,一次函数y=kx+1 的图像与反比例函数x y 9=的图像在第一象限相交于点A 过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C.边形OBAC 是正方形,求一次函数的关系式.14. 如图所示,△ABC 是等边三角形,D 点是AC 的中点, 延长BC 到E ,使CE=CD.(1) 用尺规作图的方法,过D 点作DM ⊥BE , 垂足是M (不写作法,保留作图痕迹); (2)求证:BM=EM.15. 如图所示,A 、B 两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:414.12,732.13≈≈)第18题图Q OE D C B A 第17题图图2足球乒乓球20%篮球40%排球第19题图C 2C 1A 2B 2B 1O 1OA 1DCB AC OBB 1C C B A 11116. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少位学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.18. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;(2)点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ.19. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为 邻边作第3个平行四边形1211C B B O ……依此类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形 、第2个平行四边形和第6个平行四边形的面积.第22题图N MDC B A 第20题图图2图1A20.(1)如图1,圆内接△ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G ,求证:阴影部分四边形OFCG 的面积是△ABC 的面积的31. (2)如图2,若∠DOE 保持120°角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 的面积的31.21. 小明用下面的方法求出方程032=-x 的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.22. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN , 求此时x 的值.2009年广东省初中毕业生学业考试数 学参考答案一、选择题1.B2.A3.B4.A5.C 二、填空题6.2x(x+2)(x-2);7.4;8.96;9.8;10.10,3n+1. 三、解答题(一) 11. 解: 1131422=+-+=原式 12.解:去分母得:2=-(x+1) 解得:x=-3 检验:当x=-3时,分母219180x -=-=≠ 所以原方程的解是:x=-3.13.解:2OBAC OB 9S == 正方形,∴OB=AB=3, ∴点A的坐标为(3,3)∵点A在一次函数y=kx+1的图像上, ∴3k+1=3,解得:k=23∴一次函数的关系式是:21.3y x =+ 14.(1)作图(略) (2)证明:∵△ABC 是等边三角形,∴AB=BC,∠ABC =∠ACB=60° ∵AD=CD,∴∠CBD=∠ABD=30° ∵CD=CE ,∠ACB =∠E+∠CDE=60°,∴∠E =30° ∴∠E =∠CBD,∴BD=DE ∵DM⊥BE,∴BM=EM.15.解:过点P 作PQ ⊥AB 于Q ,则有∠APQ=30°,∠BPQ=45° 设PQ=x ,则PQ=BQ=x ,AP=2AQ=2(100-x). 在Rt △APQ 中,∵tan ∠APQ=tan30º =AQ PQ,即1003xx -=.∴50(3x =又∵50(363.4≈>50,∴计划修筑的这条高速公路会穿越保护区。

深圳深圳市中考数学 2009年广东省深圳市中考数学试卷(含解析版)

深圳深圳市中考数学 2009年广东省深圳市中考数学试卷(含解析版)

2009年广东省深圳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的倒数是( )A.﹣3B.C.﹣D.32.(3分)经公安部交管局统计,今年5月份全国因道路交通事故造成伤亡共25591人.这个数据用科学记数法可以表示为( )A.2.5591×105B.25.591×103C.2.5591×104D.2.5591×106 3.(3分)如图,平放在台面上的圆锥体的主视图是( )A.B.C.D.4.(3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.5.(3分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A.1万件B.19万件C.15万件D.20万件6.(3分)化简的结果是( )A.B.C.D.7.(3分)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A.45元B.90元C.10元D.100元8.(3分)二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.不能确定9.(3分)不等式组的整数解是( )A.1,2B.1,2,3C.D.0,1,2 10.(3分)如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是( )A.3B.5C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:(y3)2÷y5= .12.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是 .13.(3分)为了准备毕业联欢的抽奖活动,小华准备了10个白球,2个红球,8个黄球,每个球除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一支.那么小亮抽奖一次得到钢笔的概率是 .14.(3分)如图,小明利用升旗用的绳子测量学校旗杆BC的高度,他发现绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A点并与地面形成30°角时,绳子末端D距A点还有1米,那么旗杆BC的高度为 米.15.(3分)下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~4个图案中相同的是第 个.(只填数字).16.(3分)如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .三、解答题(共7小题,满分52分)17.(5分)计算:.18.(6分)解分式方程:.19.(6分)随着网络的普及,越来越多的人喜欢到网上购物.某公司对某个网站2005年到2008年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图(如图a)和条形统计图(如图b).请你根据统计图提供的信息完成下列填空:(1)2005年该网站共有网上商店 个;(2)2008年该网站网上购物顾客共有 万人次;(3)这4年该网站平均每年网上购物顾客有 万人次.20.(8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50°,求∠EGC的大小.21.(8分)如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠BAD;(2)若sin∠BEC=,求DC的长.22.(9分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?23.(10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.2009年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的倒数是( )A.﹣3B.C.﹣D.3【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数计算即可得解.【解答】解:∵3×=1,∴3的倒数是.故选:B.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)经公安部交管局统计,今年5月份全国因道路交通事故造成伤亡共25591人.这个数据用科学记数法可以表示为( )A.2.5591×105B.25.591×103C.2.5591×104D.2.5591×106【考点】1I:科学记数法—表示较大的数.【专题】12:应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将25 591用科学记数法表示为2.5591×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,平放在台面上的圆锥体的主视图是( )A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找到从正面看得到的平面图形的即可.【解答】解:从正面看得到的平面图形为一个等腰三角形,故选A.【点评】考查圆锥给定位置的主视图,注意主视图是从物体正面看得到的平面图形.4.(3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A.1万件B.19万件C.15万件D.20万件【考点】V5:用样本估计总体.【分析】先计算出100件样本中合格品的百分比,约等于这20万件的合格率,再估计该厂这20万件产品中合格品.【解答】解:(100﹣5)÷100×100%×20=19(万件),故选B.【点评】考查用样本估计总体的方法,总体合格率约等于样本合格率.6.(3分)化简的结果是( )A.B.C.D.【考点】66:约分.【分析】先对分子分母进行因式分解,然后再约分即可.【解答】解:原式==;故选:D.【点评】对分式进行化简时,应先将分子、分母中能够分解因式的部分进行分解因式,然后进行约分.7.(3分)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A.45元B.90元C.10元D.100元【考点】1C:有理数的乘法.【专题】12:应用题.【分析】根据九折可以知道实际售价为2×0.9=1.8元,一共买50张,则需付款1.8×50=90元.【解答】解:班长应付款为:2×0.9×50=90(元).故选:B.【点评】本题主要考查有理数的乘法运算,同学们只要明白九折表示原价的0.9倍,即可得解.8.(3分)二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.不能确定【考点】H5:二次函数图象上点的坐标特征.【专题】16:压轴题.【分析】利用二次函数的性质即可解答.【解答】解:从题中给出的图象可以看出,对称轴为直线x=﹣3,a<0,又点A、B位于对称轴右侧,y随x的增大而减小,则y1>y2.故选:C.【点评】本题考查了二次函数图象上点的坐标特征,学会比较图象上点的坐标的大小.9.(3分)不等式组的整数解是( )A.1,2B.1,2,3C.D.0,1,2【考点】CC:一元一次不等式组的整数解.【专题】16:压轴题.【分析】先求出不等式组的解集,再求出其整数解.【解答】解:,由①得,x<3,由②得,x>,不等式的解集为<x<3,其整数解是1,2.故选:A.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.(3分)如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是( )A.3B.5C.D.【考点】LB:矩形的性质.【专题】16:压轴题.【分析】根据∠EDC:∠EDA=1:3,可得∠EDC=22.5°,∠EDA=67.5°,再由AC=10,求得DE.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=10,OA=OC=AC=5,OB=OD=BD=5,∴OC=OD,∴∠ODC=∠OCD,∵∠EDC:∠EDA=1:3,∠EDC+∠EDA=90°,∴∠EDC=22.5°,∠EDA=67.5°,∵DE⊥AC,∴∠DEC=90°,∴∠DCE=90°﹣∠EDC=67.5°,∴∠ODC=∠OCD=67.5°,∴∠ODC+∠OCD+∠DOC=180°,∴∠COD=45°,∴OE=DE,∵OE2+DE2=OD2,∴2DE2=OD2=25,∴DE=,故选:D.【点评】本题主要考查了勾股定理和矩形的性质,是一道中等题.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:(y3)2÷y5= y .【考点】47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减的运算性质计算即可.【解答】解:(y3)2÷y5,=y6÷y5,=y.【点评】本题主要考查幂的乘方,同底数幂的除法的性质,熟练掌握运算性质是解题的关键.12.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是 3 .【考点】G5:反比例函数系数k的几何意义.【专题】31:数形结合.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【解答】解:点A为反比例函数y=的图象在第二象限上的任一点,则矩形ABOC的面积S=|k|=3.故答案为:3.【点评】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.(3分)为了准备毕业联欢的抽奖活动,小华准备了10个白球,2个红球,8个黄球,每个球除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一支.那么小亮抽奖一次得到钢笔的概率是 .【考点】X4:概率公式.【分析】先求出球的总个数,找出符合条件的球的总数,再根据概率公式求解即可.【解答】解:∵小华准备了10个白球,2个红球,8个黄球,∴球的总个数为10+2+8=20个,∴随机摸一个摸到红球的概率是=,∵摸到红球可获钢笔一支,∴小亮抽奖一次得到钢笔的概率是.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.14.(3分)如图,小明利用升旗用的绳子测量学校旗杆BC的高度,他发现绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A点并与地面形成30°角时,绳子末端D距A点还有1米,那么旗杆BC的高度为 10 米.【考点】KU:勾股定理的应用.【分析】如图,根据已知条件知AB+1﹣BC=11米,再由,∠BAC=30°,得到BC=AB,接着就可以求出旗杆BC的高度.【解答】解:如图,依题意得AB+1﹣BC=11米,而在Rt△ABC中,∠BAC=30°,∴BC=AB,∴BC=10米.故填空答案:10.【点评】此题比较简单,直接利用直角三角形中30°的角所对的边等于斜边的一半就可以求出结果.15.(3分)下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~4个图案中相同的是第 2 个.(只填数字).【考点】38:规律型:图形的变化类.【专题】16:压轴题;2A:规律型.【分析】本题的关键是要找出4个图形一循环,然后再求2010被4整除后余数是2,从而确定是第2个图形.【解答】解:根据题意可知箭头是1、2、3、4即4个一循环,又因为2010÷4=502…2,所以是第2个图形.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.16.(3分)如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .【考点】KQ:勾股定理.【专题】16:压轴题.【分析】设出AC、CD的长,由勾股定理列方程组求出AC、CD的长.【解答】解:设AC=x,CD=y,由勾股定理得:,消去x,得:(y+5)2﹣y2=39,整理,得:10y=14,即y=,故CD的长为.【点评】此题主要考查了勾股定理和二元二次方程组的解法,难度适中.三、解答题(共7小题,满分52分)17.(5分)计算:.【考点】2C:实数的运算.【专题】11:计算题.【分析】本题涉及绝对值、零指数幂、负指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)解分式方程:.【考点】B3:解分式方程.【专题】11:计算题.【分析】本题考查解分式方程的能力,因为1﹣x=﹣(x﹣1),所以最简公分母为(x﹣1).【解答】解:(1)方程两边同乘(x﹣1),得:x+3=3x﹣3,解得x=3.经检验x=3是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化.19.(6分)随着网络的普及,越来越多的人喜欢到网上购物.某公司对某个网站2005年到2008年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图(如图a)和条形统计图(如图b).请你根据统计图提供的信息完成下列填空:(1)2005年该网站共有网上商店 20 个;(2)2008年该网站网上购物顾客共有 3600 万人次;(3)这4年该网站平均每年网上购物顾客有 1250 万人次.【考点】VC:条形统计图;VD:折线统计图;W2:加权平均数.【专题】21:阅读型;27:图表型.【分析】(1)分析折线图,易得答案;(2)分析折线图和扇形图可知,2008年有80个网店,每个网上商店平均45万人购物,则可求得结果;(3)根据平均数公式计算求解.【解答】解:(1)分析折线图可得:2005年该网站共有网上商店20个;(2)80×45=3600万人次;(3)平均每年网上购物顾客=(20×5+30×10+50×20+80×45)÷4=1250万人次.【点评】本题考查折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.(8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50°,求∠EGC的大小.【考点】KB:全等三角形的判定;LE:正方形的性质.【专题】11:计算题;16:压轴题.【分析】(1)证全等三角形由AB=BC,BE=BF,∠ABE+∠EBC=∠CBF+∠EBC⇒∠BAE=∠CBF,可证的全等.(2)因为BE=BF再根据(1)可得∠EFB=∠BEF=45°,∠EGC=∠EBG+∠BEF=45°+40°=85°【解答】(1)证明:∵四边形ABCD是正方形,BE⊥BF∴AB=CB,∠ABC=∠EBF=90°(1分)∴∠ABC﹣∠EBC=∠EBF﹣∠EBC即∠ABE=∠CBF(2分)又BE=BF(3分)∴△ABE≌△CBF;(4分)(2)解:∵BE=BF,∠EBF=90°∴∠BEF=45°(5分)又∠EBG=∠ABC﹣∠ABE=40°(6分)∴∠EGC=∠EBG+∠BEF=85°.(8分)(注:其它方法酌情给分)【点评】本题关键在于全等三角形的证明以及等腰三角形性质的运用,等腰三角形两底角相等.21.(8分)如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠BAD;(2)若sin∠BEC=,求DC的长.【考点】MC:切线的性质.【专题】11:计算题;14:证明题.【分析】(1)连接OC,易证AD∥OC,则∠DAC=∠ACO,则只要证明∠CAO=∠ACO,根据等边对等角即可证明;(2)∠BEC=∠BAC,则直角△ABC中即可求得∠ABC,根据三角函数即可求得AB、AC的长,而∠DCA=∠CBA,在直角△ACD中即可利用三角函数求得CD 的长.【解答】(1)证明:连接OC,由DC是切线得OC⊥DC;又AD⊥DC,∴AD∥OC,∴∠DAC=∠ACO.又由OA=OC得∠BAC=∠ACO,∴∠DAC=∠BAC.即AC平分∠BAD.(2)解:方法一:∵AB为直径,∴∠ACB=90°又∵∠BAC=∠BEC,∴BC=AB•sin∠BAC=AB•sin∠BEC=6.∴AC=.又∵∠DAC=∠BAC=∠BEC,且AD⊥DC,∴CD=AC•sin∠DAC=AC•sin∠BEC=.方法二:∵AB为直径,∴∠ACB=90°.又∵∠BAC=∠BEC,∴BC=AB•sin∠BAC=AB•sin∠BEC=6.∴.又∵∠DAC=∠BAC,∠D=∠ACB=90°,∴△ADC∽△ACB,,即,解得.【点评】本题考查了圆的切线的性质及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.22.(9分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?【考点】9A:二元一次方程组的应用;FH:一次函数的应用.【专题】12:应用题;521:一次方程(组)及应用;533:一次函数及其应用.【分析】(1)设熟练工和新工人每月分别可以安装x辆和y辆汽车,根据题意列出方程组,解出方程组即是所求;(2)设需熟练工人数为m,根据题意列出方程,分析m取各值时,n的数值是多少;(3)根据工资总额=熟练工的工资×人数+新员工的工资×人数,可得出W关于n的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设每名熟练工和新工人每月分别可以安装x辆和y辆汽车,根据题意得:,解得:.答:每名熟练工和新工人每月分别可以安装4辆和2辆汽车.(2)设需熟练工m名,根据题意得:2n×12+4m×12=240,∴n=10﹣2m.∵0<n<10,∴0<m<5.当m=1时,n=8;当m=2时,n=6;当m=3时,n=4;当m=4时,n=2.∴共有四种方案:①需要1名熟练工人,另招聘8名新工人;②需要2名熟练工人,另招聘6名新工人;③需要3名熟练工人,另招聘4名新工人;④需要4名熟练工人,另招聘2名新工人.(3)根据题意得:W=1200n+(5﹣n)×2000=200n+10000.∵要使新工人数量多于熟练工,∴n=4、6、8.∵200>0,∴当n=4时,W取最小值,最小值为10800.【点评】本题考查了一次函数的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)根据各数量之间的关系,找出W关于n的函数关系式.23.(10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.【考点】H7:二次函数的最值;H8:待定系数法求二次函数解析式;HF:二次函数综合题;ID:两点间的距离;K3:三角形的面积;KH:等腰三角形的性质.【专题】16:压轴题.【分析】(1)由Rt△ABC中,CO⊥AB可证△AOC∽△COB,由相似比得OC2=OA•OB,设OA的长为x,则OB=5﹣x,代入可求OA,OB的长,确定A,B,C三点坐标,求抛物线解析式;(2)根据△BDE为等腰三角形,分为DE=EB,EB=BD,DE=BD三种情况,分别求E点坐标;(3)作辅助线,将求△CDP的面积问题转化.方法一:如图1,连接OP,根据S△CDP=S四边形CODP﹣S△COD=S△COP+S△ODP﹣S△COD,表示△CDP的面积;方法二:过点P作PE⊥x轴于点F,则S△CDP=S梯形COFP﹣S△COD﹣S△DFP,表示△CDP的面积;再利用二次函数的性质求出△CDP的最大面积和此时点P的坐标.【解答】解:(1)设OA的长为x,则OB=5﹣x;∵OC=2,AB=5,∠BOC=∠AOC=90°,∠OAC=∠OCB;∴△AOC∽△COB,∴OC2=OA•OB∴22=x(5﹣x)…(1分)解得:x1=1,x2=4,∵OA<OB,∴OA=1,OB=4;…(2分)∴点A、B、C的坐标分别是:A(﹣1,0),B(4,0),C(0,2);(注:直接用射影定理的,不扣分)方法一:设经过点A、B、C的抛物线的关系式为:y=ax2+bx+2,将A、B、C三点的坐标代入得…(3分)解得:a=,b=,c=2所以这个二次函数的表达式为:…(4分)方法二:设过点A、B、C的抛物线的关系式为:y=a(x+1)(x﹣4)…(3分)将C点的坐标代入得:a=所以这个二次函数的表达式为:…(4分)(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)①当△BDE是等腰三角形时,点E的坐标分别是:,,.…1+1+(1分)(注:符合条件的E点共有三个,其坐标,写对一个给1分)②如图1,连接OP,S△CDP=S四边形CODP﹣S△COD=S△COP+S△ODP﹣S△COD…(8分)==m+n﹣2==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.…(10分)另解:如图2、图3,过点P作PF⊥x轴于点F,则S△CDP=S梯形COFP﹣S△COD﹣S△DFP…(8分)==m+n﹣2==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.(注:只回答有最大面积,而没有说明理由的,不给分;点P的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)【点评】本题考查了二次函数的综合运用.关键是根据直角三角形中斜边上的高分得的两个三角形相似,利用相似比求A、B两点坐标,确定抛物线解析式,根据等腰三角形的性质求E点坐标,利用作辅助线的方法表示△CDP的面积,由二次函数的性质求三角形面积的最大值.。

2009-2013年深圳中考试题(含答案)

2009-2013年深圳中考试题(含答案)

2009-2013年深圳中考题(含参考答案) 深圳市2013年初中毕业生学业考试数学试卷第一部分:选择题一、填空题(共12小题,每小题3分,满分36分) 1、3-的绝对值是( ) A .3B . 3-C .13-D .132、下列算式正确的是( ) A .222()a b a b +=+; B .22()ab ab = C .325()a a =D .23a a a ∙=3、某活动中共募集捐款32000000元,将数据32000000用科学计数法表示为( ) A .80.3210⨯B .63.210⨯C .73.210⨯D .63210⨯4、如下图,其中是轴对称图形但不是中心对称图形的是( )5、某校有21名同学参加比赛,预赛成绩各不相同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这21名同学成绩的( ) A .最高分B . 中位数C .极差D .平均数6、分式242x x -+的值为0,则x 的取值是( )A .2x =-B .2x =±C .2x =D .0x =7、在平面直角坐标系中,点(20,)P a -与点(,13)Q b 关于原点对称,则a b +的值为( ) A .33B .33-C .7-D .78、小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。

已知爸爸比小朱的速度快100米/分,求小朱的速度。

若设小朱的速度是x 米/分,则根据题意所列方程正确的是( )A .1440144010100x x -=-B .1440144010100x x =++C .1440144010100x x =+-D .1440144010100x x-=+A. 线段B. 等边三角形C .正方形D. 圆30°图19、如图1,有一张一个角为30,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( ) A .8或23B .10或423+C .10或23D .8或423+10、下列命题是真命题的有( )①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧 A .1个B . 2个C .3个D .4个11、已知二次函数2(1)y a x c =--的图像如图2所示,则一次函数y ax c =+的大致图像可能是( ) 12、如图3,已知直线1l ∥2l ∥3l ,相邻两条平行线间的距离相等。

2009年广东省深圳市中考数学试卷

2009年广东省深圳市中考数学试卷

2009年广东省深圳市中考数学试卷一、选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)6.(3分)(2009•深圳)化简的结果是()129.(3分)(2009•深圳)不等式组的整数解是()11.(3分)(2009•深圳)计算:(y3)2÷y5=_________.12.(3分)(2009•深圳)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是_________.13.(3分)(2009•深圳)为了准备毕业联欢的抽奖活动,小华准备了10个白球,2个红球,8个黄球,每个球除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一支.那么小亮抽奖一次得到钢笔的概率是_________.14.(3分)(2009•深圳)如图,小明利用升旗用的绳子测量学校旗杆BC的高度,他发现绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A点并与地面形成30°角时,绳子未端D距A点还有1米,那么旗杆BC 的高度为_________米.15.(3分)(2009•深圳)下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~4个图案中相同的是第_________个.(只填数字).16.(3分)(2009•深圳)如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=_________.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题6分,第20题8分,第21题8分,第22题9分,第23题10分,共52分)17.(5分)(2009•深圳)计算:.18.(6分)(2009•深圳)解分式方程:.19.(6分)(2009•深圳)近来莆田的网上商店发展很快.某公司对某个网站2007年到2010年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图和条形统计图.请你根据统计图提供的信息完成下列填空:(1)2007年该网站共有网上商店_________个;(2)2010年该网站网上购物顾客共有_________万/人次;(3)这4年该网站平均每年网上购物顾客有_________万/人次.20.(8分)(2009•深圳)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50°,求∠EGC的大小.21.(8分)(2009•深圳)如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O 于点E.(1)求证:AC平分∠BAD;(2)若sin∠BEC=,求DC的长.22.(9分)(2009•深圳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?23.(10分)(2009•深圳)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.2009年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)的倒数是.6.(3分)(2009•深圳)化简的结果是()=;8.(3分)(2009•深圳)二次函数y=ax+bx+c的图象如图所示,若点A(1,y1)、B(2,y2)是它图象上的两9.(3分)(2009•深圳)不等式组的整数解是()解:>不等式的解集为<OA=OC=BD=5DE=32512.(3分)(2009•深圳)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥yy=主要考查了反比例函数除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一支.那么小亮抽奖一次得到钢笔的概率是.=,∴小亮抽奖一次得到钢笔的概率是米,若把绳子往外拉直,绳子接触地面A点并与地面形成30°角时,绳子未端D距A点还有1米,那么旗杆BCBC=AB15.(3分)(2009•深圳)下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~4个图案中相同的CD=.,y=.22题9分,第23题10分,共52分)17.(5分)(2009•深圳)计算:..18.(6分)(2009•深圳)解分式方程:.和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图和条形统计图.请你根据统计图提供的信息完成下列填空:(1)2007年该网站共有网上商店60个;(2)2010年该网站网上购物顾客共有4900万/人次;(1)求证:△ABE≌△CBF;于点E.(1)求证:AC平分∠BAD;(2)若sin∠BEC=,求DC的长.AC=.,即解得22.(9分)(2009•深圳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)根据题意,得解得坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没三点的坐标代入得,……的坐标分别是:,,.=m+n=m=,).=m+n=m=,).。

2009年深圳市中考数学试题及标准答案下载

2009年深圳市中考数学试题及标准答案下载

慧通教育网/2009年深圳市初中毕业生学业考试数学试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

2.考生必须在答题卡上按规定作答;答题卡必须保持清洁,不能折叠。

3.答题前,请将姓名、考生号、考场等用规定的笔填涂在答题卡指定的位置上。

4.本卷选择题1—10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑;非选择题11—22,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内相应位置上,写在本卷或其他地方无效。

第一部分 选择题一、选择题(本题有10小题,每题3分,共30分)1.如果a 的倒数是-1,那么a 2009等于( )A .1B .-1C .2009D .-20092.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( ) A .3 B .4 C .5 D .6主视图 左视图 俯视图 3.用配方法将代数式a 2+4a -5变形,结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-94.横跨深圳及香港之间的深圳湾大桥(Shenzhen Bay Bridge )是中国唯一倾斜的独塔单索面桥,大桥全长4770米,这个数字用科学计数法表示为(保留两个有效数字)( ) A .24710⨯ B .34.710⨯ C .34.810⨯ D .35.010⨯5.下面的图形中,既是轴对称图形又是中心对称图形的是( )慧通教育网/A .B .C .D .6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A .13B .12C .34D 7.如图,反比例函数4y x=-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平 行线相交于点C ,则ABC △的面积为( )A .8B .6C .4D .28.如图,数轴上与1A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则2x x+=( ) A B .C .D .29.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ) A .80元 B .100元 C .120元 D .160元 10.如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分BCD ∠,120ADC = ∠,四边形ABCD 的周长为10cm .图中阴影部分的面积为( ) A .B .C .D .B第二部分(非选择题,共70分)二、填空题(本题有6小题,每题3分,共18分)11.小明在7次百米跑练习中成绩如下:次成绩的中位数是秒12.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差21S与小兵5次成绩的方差22S之间的大小关系为21S22S.(填“>”、“<”、“=”)13.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为_.14.已知123112113114,,,...,1232323438345415a a a=+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a=.15.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是.16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m,-2m)放入其中,得到实数2,则m= .A DACBAEAFAACA CB图a图c1 2 3 4 5小明小兵慧通教育网/慧通教育网/三、解答题(本大题有7题,共52分)17.(6分)计算:202( 3.14)π---︒. 18.(6分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >,解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-,即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集.19.(6分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米. 试求旗杆BC 的高度.20.(7分)深圳大学青年志愿者协会对报名参加2011年深圳大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:ABCD慧通教育网/(1)请将两幅统计图补充完整;(2)小亮班共有名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有人将参加下轮测试;(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试。

2009年深圳初中毕业生学业考试数学

2009年深圳初中毕业生学业考试数学

2009年深圳市初中毕业生学业考试数学参考答案:一、选择题1. B;2.B;3. D;4. C;5. C;6. C;7.A;8.C;9. C;10. B;二、填空题11.12.9;12.<;13.14.1009999;15. 120°;16. 3或-1;三、解答题17.174 -.18. 解:由有理数的除法法则“两数相除,同号得正”,有(1)510230xx+>⎧⎨-<⎩(2)510230xx+<⎧⎨->⎩解不等式组(1),得135x-<<,解不等式组(2),得无解,故分式不等式5123xx+<-的解集为135x-<<.19.解:延长BC交AD于E点,则CE⊥AD.在Rt△AEC中,AC=10,由坡比为1CAE=30°,∴CE=AC·sin30°=10×12=5,AE=AC·cos30°=10.在Rt△ABE中,BE=11.∵BE=BC+CE,∴BC=BE-CE=11-5=6(米).答:旗杆的高度为6米.20. 解:(1)略;(2)40,20;(3)600.21.解:设搭配A种造型x个,则B种造型为(50)x-个,依题意,得:8050(50)34904090(50)2950x xx x+-⎧⎨+-⎩≤≤解得:3331xx⎧⎨⎩≤≥,∴3133x≤≤∵x是整数,x可取31、32、33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720(元)方法二:方案①需成本:31×800+19×960=43040(元);方案②需成本:32×800+18×960=42880(元);ABCD E方案③需成本:33×800+17×960=42720(元);∴应选择方案③,成本最低,最低成本为42720元. 22. 解:(1)B (1(2)设抛物线的解析式为y =ax (x+a ),代入点B (1,,得a =因此2y x =(3)如图,抛物线的对称轴是直线x =—1,当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 为y =kx +b .所以20.k k b k b b ⎧⎪⎧+⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得因此直线AB 为y =+ 当x =-1时,y =, 因此点C 的坐标为(-1.(4)如图,过P 作y 轴的平行线交AB 于D .当x =-12时,△P AB 的面积的2221()()213212PAB PAD PBD D P B A S S S y y x x x ∆∆∆=+=--⎡⎤⎫=+-+⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=+⎫=+⎪⎝⎭1,2P ⎛- ⎝⎭. 23. 解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P 在线段OB 上时,作PE ⊥CD于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE ,∴△AOB ∽△PEB ,∴2,AO PE AB PB PB =,∴PB =∴8PO BO PB =-=,∴8)P -,∴8k =-. 当圆心P 在线段OB 延长线上时,同理可得P (0,8), ∴k =8, ∴当k8或k =8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.深圳市2010年初中毕业生学业考试数学试卷答案第一部分:选择题1、A2、C3、 D4、B5、D6、A7、C8、B9、C 10、A 11、B 12、D第二部分:填空题:13、4(1)(1)x x +- 14、3 15、9 16、15 解答题:17、原式=191192-+⨯= 图118、22(3)(3)(3)2(3)31a a a a a a a a a a a a +-+-=-=+=+--原式当2a =时,原式=419、(1)、120;(2)、48︒;(3)32.1810⨯ 20、(1)证明:如右图1,1903,2903︒︒∠=-∠∠=-∠,12∴∠=∠又,OC OD OA OE ==,AOC BOD ∴∆≅∆(2)由AOC BOD ∆≅∆有:2AC BD ==,45CAO DBO ︒∠=∠=,90CAB ∴∠=︒,故CD =21、(1)、设进价为a 元,依题意有:(150)7580a +%=⨯%,解之得:40a =(元) (2)、依题意,215(204)(6040)4604004()6252W x x x x x =+--=-++=--+ 故当157.52x ==(元)时,625W =最大(元) 22、(1)、因为点A 、B 均在抛物线上,故点A 、B∴403a c a c +=⎧⎨+=-⎩ 解之得:14a c =⎧⎨=-⎩;故24y x =-为所求(2)如图2,连接BD ,交y 轴于点M ,则点M 就是所求作的点设BD 的解析式为y kx b =+,则有203k b k b +=⎧⎨-+=-⎩,12k b =⎧⎨=-⎩,故BD 的解析式为2y x =-;令0,x =则2y =-,故(0,2)M -(3)、如图3,连接AM ,BC 交y 轴于点N ,由(2)知,OM=OA=OD=2,90AMB ∠=︒ 易知BN=MN=1, 易求AM BM ==122ABMS=⨯=;设2(,4)P x x -, 依题意有:214422AD x -=⨯,即:2144422x ⨯-=⨯解之得:x =±0x =,故 符合条件的P 点有三个:123((0,4)P P P --23、(1)、如图4,OE =5,2r =,CH =2图2(2)、如图5,连接QC 、QD ,则90CQD ∠=︒,QHC QDC ∠=∠ 易知CHPDQP ∆∆,故DP DQPH CH=, 322DQ =,3DQ =,由于4CD =, 3cos cos 4QD QHC QDC CD ∴∠=∠==;(3)、如图6,连接AK ,AM ,延长AM , 与圆交于点G ,连接TG ,则90GTA ∠=︒ 2490∴∠+∠=︒34∠=∠,2390︒∴∠+∠=由于390BKO ∠+∠=︒,故,2BKO ∠=∠; 而1BKO ∠=∠,故12∠=∠在AMK ∆和NMA ∆中,12∠=∠;AMK NMA ∠=∠ 故AMK NMA ∆;MN AMAM MK=; 即:24MN MK AM ==故存在常数a ,始终满足MN MK a = 常数4a =深圳市2011年初中毕业生学业考试数学试卷答案第一部分:选择题第二部分:填空题 13、(1)(1)a a a +-14、415、2n + 16、13解答题17、解:原式=618、解:方程两边同时乘以:(x +1)(x -1),得: 2x(x -1)+3(x +1)=2(x +1)(x -1) 整理化简,得 x =-5经检验,x =-5是原方程的根原方程的解为:x =-5(备注:本题必须验根,没有验根的扣2分)19、(1)200 (2)36 (3)如图1 (4)180(1)证明:如图2,连接AB 、BC , ∵点C 是劣弧AB 上的中点∴CA CB = ∴CA =CB 又∵CD =CA ∴CB =CD =CA ∴在△ABD 中,CB=12AD ∴∠ABD =90° ∴∠ABE =90° ∴AE 是⊙O 的直径(22)解:如图3,由(1)可知,AE 是⊙O 的直径 ∴∠ACE =90°∵⊙O 的半径为5,AC =4 ∴AE =10,⊙O 的面积为25π在Rt △ACE 中,∠ACE =90°,由勾股定理,得:CE==∴11422ACE S AC CE ∆=⨯⨯=⨯⨯=∴112525222O ACE S S S ππ∆=-=⨯-=-⊙阴影21、(1)证明:如图4,由对折和图形的对称性可知, CD =C ′D ,∠C =∠C ′=90°在矩形ABCD 中,AB =CD ,∠A =∠C =90° ∴AB =C ’D ,∠A =∠C ’ 在△ABG 和△C ’DG 中,∵AB =C ’D ,∠A =∠C ’,∠AGB =∠C ’GD ∴△ABG ≌△C ’DG (AAS ) ∴AG =C ’G(2)解:如图5,设EM =x ,AG =y ,则有: C ’G =y ,DG =8-y , DM=12AD=4cm 在Rt △C ’DG 中,∠DC ’G =90°,C ’D =CD =6, ∴222''C G C D DG += 即:2226(8)y y +=- 解得: 74y = ∴C ’G =74cm ,DG =254cm 又∵△DME ∽△DC ’G∴DM ME DC CG =, 即:476()4x =解得:76x =, 即:EM =76(cm )∴所求的EM 长为76cm 。

2009年广东省中考数学试卷及答案详解

2009年广东省中考数学试卷及答案详解

2009年广东省中考数学试卷一、选择题(共5小题,每小题3分,满分15分)1.(3分)(2011•呼伦贝尔)4 的平方根是()A .2±B .2C .2-D .162.(3分)(2009•上海)计算32()a的结果是()A.5a B.6a C.8a D.1a-3.(3分)(2010•常州)如图所示,几何体的主(正)视图是()A.B.C.D.4.(3分)(2009•中山)《广东省2009 年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726 亿元,用科学记数法表示正确的是()A .10⨯元 D .117.26100.72610⨯元⨯元 B .9⨯元 C .117.261072.6105.(3分)(2009•广东)如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A .B .C .D .二、填空题(共5小题,每小题4分,满分20分)6.(4分)(2017•淄博)分解因式:3-=.x x287.(4分)(2009•中山)已知O 的直径8AB cm =,C 为O 上的一点,30BAC ∠=︒,则BC = cm .8.(4分)(2009•中山)一种商品原价 120 元, 按八折 (即 原价的80%)出售, 则现售价应为 元 .9.(4分)(2009•中山)在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是45,则n = .10.(4分)(2009•中山)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖 块(用含n 的代数式表示).三、解答题(共12小题,满分85分)11.(6分)(2009•中山)计算:01||sin 30(3)2π-︒++. 12.(6分)(2009•中山)解方程:22111x x =---. 13.(6分)(2009•广东)如图所示, 在平面直角坐标系中, 一次函数1y kx =+的图象与反比例函数9y x=的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线, 垂足为点B 、C . 如果四边形OBAC 是正方形, 求一次函数的关系式 .∆是等边三角形,D点是AC的中点,14.(6分)(2009•中山)如图所示,ABC=.延长BC到E,使CE CD(1)用尺规作图的方法,过D点作DM BE⊥,垂足是M;(不写作法,保留作图痕迹)(2)求证:BM EM=.15.(6分)(2009•中山)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段)AB,经测量,森林保护中心P在A城市的北偏东30︒和B城市的北偏西45︒的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不≈ 1.414)1.732≈16.(7分)(2009•中山)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制, 3 轮感染后,被感染的电脑会不会超过700 台?17.(7分)(2009•中山)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.18.(7分)(2009•广东)在菱形ABCD 中, 对角线AC 与BD 相交于点O ,5AB =,6AC =. 过D 点作//DE AC 交BC 的延长线于点E .(1) 求BDE ∆的周长;(2) 点P 为线段BC 上的点, 连接PO 并延长交AD 于点Q . 求证:BP DQ =.19.(7分)(2009•中山)如图所示,在矩形ABCD 中,12AB =,20AC =,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ;再以11A B 、1AC 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ⋯依此类推.(1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C ,第2个平行四边形和第6个平行四边形的面积.20.(9分)(2009•中山)(1)如图1,圆内接ABC ∆中,AB BC CA ==,OD 、OE 为O 的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC ∆的面积的13. (2)如图2,若DOE ∠保持120︒角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC ∆的两条边围成的图形(图中阴影部分)面积始终是ABC ∆的面积的13.21.(9分)(2009•中山)小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.22.(9分)(2009•中山)正方形ABCD 边长为4,M、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt ABM Rt MCN ∆∆∽;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt ABM Rt AMN ∆∆∽,求此时x 的值.2009年广东省中考数学试卷参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.(3分) 4 的平方根是( )A .2±B . 2C .2-D . 16【考点】21 :平方根【分析】根据平方根的定义, 求数a 的平方根, 也就是求一个数x ,使得2x a =,则x 就是a 的一个平方根 .【解答】解:(2±2)4=,4∴的平方根是2±.故选:A .【点评】本题主要考查平方根的定义, 解题时利用平方根的定义即可解决问题 .2.(3分)计算32()a 的结果是( )A .5aB .6aC .8aD .1a -【考点】47:幂的乘方与积的乘方【分析】根据幂的乘方()m n mn a a =,即可求解.【解答】解:原式326a a ⨯==.故选:B .【点评】本题主要考查了幂的乘方法则,正确理解法则是解题关键.3.(3分)如图所示,几何体的主(正)视图是( )A .B .C .D .【考点】2U :简单组合体的三视图【分析】根据三视图画法规则:(1)高平齐:正视图和侧视图的高保持平齐;(2)宽相等:侧视图的宽和俯视图的宽相等;(3)长对正:正视图和俯视图的长对正.【解答】解:由图可得,主视图应该是三列,正方体的数目分别是:1、2、1. 故选:B .【点评】本题考查的是三视图中主视图的确定,注意三视图的规律.4.(3分)《广东省 2009 年重点建设项目计划 (草 案) 》显示, 港珠澳大桥工程估算总投资 726 亿元, 用科学记数法表示正确的是( )A .107.2610⨯元B .972.610⨯元C .110.72610⨯元D .117.2610⨯元【考点】1I :科学记数法-表示较大的数【专题】12 :应用题【分析】数据绝对值大于 10 或小于 1 时科学记数法的表示形式为10n a ⨯的形式 . 其中1||10a <…,n 为整数, 确定n 的值时, 要看把原数变成a 时, 小数点移动了多少位,n 的绝对值与小数点移动的位数相同 . 当原数绝对值大于 10 时,n 是正数;当原数的绝对值小于 1 时,n 是负数 .【解答】解: 726 亿107.2610=⨯元 .故选:A .【点评】本题考查的是科学记数法 . 任意一个绝对值大于 10 或绝对值小于 1的数都可写成10n a ⨯的形式, 其中1||10a <…. 对于绝对值大于 10 的数, 指数n 等于原数的整数位数减去 1 .5.(3分)如图所示的矩形纸片, 先沿虚线按箭头方向向右对折, 接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形, 然后将纸片打开是下列图中的哪一个( )A .B .C .D .【考点】9P :剪纸问题【专题】16 :压轴题; 28 :操作型【分析】根据长方形的轴对称性作答 .【解答】解: 展开后应是C .故选:C .【点评】本题主要考查学生的动手能力及空间想象能力 . 对于此类问题, 学生只要亲自动手操作, 答案就会很直观地呈现 .二、填空题(共5小题,每小题4分,满分20分)6.(4分)分解因式:328x x -= 2(2)(2)x x x -+ .【考点】55:提公因式法与公式法的综合运用【分析】先提取公因式2x ,再对余下的项利用平方差公式分解因式.【解答】解:328x x -,22(4)x x =-,2(2)(2)x x x =+-.【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式. 运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.7.(4分)已知O 的直径8AB cm =,C 为O 上的一点,30BAC ∠=︒,则BC =4 cm .【考点】KO :含30度角的直角三角形;5M :圆周角定理【分析】根据圆周角定理,可得出90C ∠=︒;在Rt ABC ∆中,已知了特殊角A∠的度数和AB 的长,易求得BC 的长.【解答】解:AB 是O 的直径,90C ∴∠=︒; 在Rt ACB ∆中,30A ∠=︒,8AB cm =; 因此142BC AB cm ==. 【点评】本题主要考查圆周角定理以及特殊直角三角形的性质.8.(4分)一种商品原价 120 元, 按八折 (即 原价的80%)出售, 则现售价应为 96 元 .【考点】1C :有理数的乘法【专题】12 :应用题【分析】本题考查的是商品销售问题 . 一种商品原价 120 元, 按八折 (即 原价的80%)出售, 则现售价应为12080%⨯.【解答】解: 根据题意可得:12080%96⨯=元 .故答案为: 96 .【点评】本题比较容易, 考查根据实际问题进行计算 .9.(4分)在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是45,则n = 8 . 【考点】4X :概率公式【分析】根据黄球的概率公式列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有2n +个球,其中黄球n 个,根据古典型概率公式知:P (黄球)425n n ==+. 解得8n =.故答案为:8.【点评】用到的知识点为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n =.10.(4分)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 10 块,第n 个图形中需要黑色瓷砖 块(用含n 的代数式表示).【考点】38:规律型:图形的变化类【专题】16:压轴题【分析】分析几何模型,进行合理的运算,图形的变换作出正确解答.【解答】解:本题考查的是规律探究问题.从图形观察每增加一个图形,黑色正方形瓷砖就增加3块,第一个黑色瓷砖有3块,则第3个图形黑色瓷砖有10块,第N 个图形瓷砖有43(1)31n n +-=+(块).故答案为:10;31n +.【点评】本题考查学生能够在实际情景中有效的使用代数模型.三、解答题(共12小题,满分85分)11.(6分)计算:01||sin 30(3)2π-︒++. 【考点】5T :特殊角的三角函数值;15:绝对值;22:算术平方根;6E :零指数幂【专题】11:计算题【分析】本题要分清运算顺序,先把绝对值,乘方计算出来,再进行加减运算.【解答】解:原式1131422=+-+=. 【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值等考点的运算.12.(6分)解方程:22111x x =---. 【考点】3B :解分式方程【专题】11:计算题【分析】等号左边的分式的分母因式分解为:(1)(1)x x +-,那么本题的最简公分母为:(1)(1)x x +-.方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.结果需检验.【解答】解:方程两边都乘(1)(1)x x +-,得:2(1)x =-+,解得:3x =-.检验:当3x =-时,(1)(1)0x x +-≠.3x ∴=-是原方程的解.【点评】本题考查分式方程的求解.当分式方程的分母能进行因式分解时一定先进行因式分解,这样便于找到最简公分母.13.(6分)如图所示, 在平面直角坐标系中, 一次函数1y kx =+的图象与反比例函数9y x=的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线, 垂足为点B 、C . 如果四边形OBAC 是正方形, 求一次函数的关系式 .【考点】GB :反比例函数综合题【专题】15 :综合题; 41 :待定系数法【分析】若四边形OBAC 是正方形, 那么点A 的横纵坐标相等, 代入反比例函数即可求得点A 的坐标, 进而代入一次函数即可求得未知字母k .【解答】解:29OBAC S OB ==正方形,3OB AB ∴==,∴点A 的坐标为(3,3)点A 在一次函数1y kx =+的图象上,23k ∴=, ∴一次函数的关系式是:213y x =+. 【点评】解决本题的关键是利用反比例函数求得关键点点A 的坐标, 然后利用待定系数法即可求出函数的解析式 .14.(6分)如图所示,ABC ∆是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE CD =.(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M ;(不写作法,保留作图痕迹)(2)求证:BM EM =.【考点】KK :等边三角形的性质【专题】13:作图题【分析】(1)按照过直线外一点作已知直线的垂线步骤来作图;(2)要证BM EM =可证BD DE =,根据三线合一得出BM EM =.【解答】(1)解:作图如下;(2)证明:ABC ∆是等边三角形,D 是AC 的中点BD ∴平分ABC ∠(三线合一)2ABC DBE ∴∠=∠CE CD =CED CDE ∴∠=∠又ACB CED CDE ∠=∠+∠2ACB E ∴∠=∠又ABC ACB ∠=∠22DBC E ∴∠=∠BD DE ∴=又DM BE ⊥BM EM ∴=.【点评】本题考查了过直线外一点作已知直线的垂线及考查了等边三角形和等腰三角形的性质;作图题要注意保留做题痕迹.证得BD DE =是正确解答本题的关键.15.(6分)如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段)AB ,经测量,森林保护中心P 在A 城市的北偏东30︒和B 城市的北偏西45︒的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护1.732≈ 1.414)≈【考点】TB :解直角三角形的应用-方向角问题【专题】12:应用题【分析】过点P 作PC AB ⊥,C 是垂足.AC 与BC 就都可以根据三角函数用PC表示出来.根据AB 的长,得到一个关于PC 的方程,解出PC 的长.从而判断出这条高速公路会不会穿越保护区.【解答】解:过点P 作PC AB ⊥,C 是垂足.则30APC ∠=︒,45BPC ∠=︒,tan 30AC PC =︒,tan 45BC PC =︒.AC BC AB +=,tan 30tan 45100PC PC km ∴︒+︒=,∴1)100PC +=,50(350(3 1.732)63.450PC km km ∴=≈⨯-≈>.答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.16.(7分)某种电脑病毒传播非常快, 如果一台电脑被感染, 经过两轮感染后就会有 81 台电脑被感染 . 请你用学过的知识分析, 每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制, 3 轮感染后, 被感染的电脑会不会超过 700 台?【考点】AD :一元二次方程的应用【专题】12Z :其他问题【分析】本题可设每轮感染中平均一台会感染x 台电脑, 则第一轮后共有(1)x +台被感染, 第二轮后共有(1)(1)x x x +++即2(1)x +台被感染, 利用方程即可求出x 的值, 并且 3 轮后共有3(1)x +台被感染, 比较该数同 700 的大小, 即可作出判断 .【解答】解: 设每轮感染中平均每一台电脑会感染x 台电脑, 依题意得:1(1)81x x x +++=,整理得2(1)81x +=,则19x +=或19x +=-,解得18x =,210x =-(舍 去) ,2233(1)(1)(1)(18)729700x x x x ∴+++=+=+=>.答: 每轮感染中平均每一台电脑会感染 8 台电脑, 3 轮感染后, 被感染的电脑会超过 700 台 .【点评】本题只需仔细分析题意, 利用方程即可解决问题 . 找到关键描述语,找到等量关系准确的列出方程是解决问题的关键 .17.(7分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.【考点】VD :折线统计图;6V :频数与频率;VB :扇形统计图【专题】27:图表型【分析】(1)读图可知喜欢乒乓球的有20人,占20%.所以一共调查了2020%100÷=(人);(2)喜欢足球的30人,应占30100%30%100⨯=,喜欢排球的人数所占的比例为120%40%30%10%---=,所占的圆心角为36010%36︒⨯=︒;(3)进一步计算出喜欢篮球的人数:40%10040⨯=(人),喜欢排球的人数:10%10010⨯=(人).可作出折线图.【解答】解:(1)2020%100÷=(人),答:一共调查了100名学生;(2)喜欢足球的占30100%30%100⨯=, 所以喜欢排球的占120%40%30%10%---=,36010%36︒⨯=︒.答:喜欢排球的人数在扇形统计图中所占的圆心角是36度;(3)喜欢篮球的人数:40%10040⨯=(人),喜欢排球的人数:10%10010⨯=(人).【点评】本题考查学生的读图能力以及频率、频数的计算.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(7分)在菱形ABCD 中, 对角线AC 与BD 相交于点O ,5AB =,6AC =. 过D 点作//DE AC 交BC 的延长线于点E .(1) 求BDE ∆的周长;(2) 点P 为线段BC 上的点, 连接PO 并延长交AD 于点Q . 求证:BP DQ =.【考点】KD :全等三角形的判定与性质;7L :平行四边形的判定与性质;8L :菱形的性质【专题】11 :计算题; 14 :证明题【分析】(1) 因为菱形的对角线互相垂直及互相平分就可以在Rt AOB ∆中利用勾股定理求出OB ,然后利用平行四边形的判定及性质就可以求出BDE ∆的周长;(2) 容易证明DOQ BOP ∆≅∆,再利用它们对应边相等就可以了 .【解答】(1) 解:四边形ABCD 是菱形,5AB BC CD AD ∴====,AC BD ⊥,OB OD =,3OA OC ==4OB ∴==,28BD OB ==,//AD CE ,//AC DE ,∴四边形ACED 是平行四边形,5CE AD BC ∴===,6DE AC ==,BDE ∴∆的周长是:810624BD BC CE DE +++=++=.(2) 证明:四边形ABCD 是菱形,//AD BC ∴,QDO PBO ∴∠=∠,在DOQ ∆和BOP ∆中QDO PBO OB ODQOD POB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOQ BOP ASA ∴∆≅∆,BP DQ ∴=.【点评】本题主要利用菱形的对角线互相垂直平分及勾股定理来解决, 也考查了全等三角形的判定及性质 .19.(7分)如图所示,在矩形ABCD 中,12AB =,20AC =,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ;再以11A B 、1AC 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ⋯依此类推.(1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C ,第2个平行四边形和第6个平行四边形的面积.【考点】KQ :勾股定理;6L :平行四边形的判定;8L :菱形的性质;LB :矩形的性质【专题】2A :规律型【分析】(1)直角三角形ABC 中,有斜边的长,有直角边AB 的长,BC 的值可以通过勾股定理求得,有了矩形的长和宽,面积就能求出了.(2)不难得出1OCB B 是个菱形.那么它的对角线垂直,它的面积=对角线积的一半,我们发现第一个平行四边形的对角线正好是原矩形的长和宽,那么第一个平行四边形的面积是原矩形的一半,依此类推第n 个平行四边形的面积就应该是12n ⨯原矩形的面积.由此可得出第2个和第6个平行四边形的面积. 【解答】解:(1)四边形ABCD 是矩形,20AC =,12AB =90ABC ∴∠=︒,16BC ===1216192ABCD S AB BC ∴=⋅=⨯=矩形.(2)1//OB B C ,1//OC BB ,∴四边形1OBB C 是平行四边形.四边形ABCD 是矩形,OB OC ∴=,∴四边形1OBB C 是菱形.1OB BC ∴⊥,1182A B BC ==,11162OA OB ===; 11212OB OA ∴==,111116129622OBB C S BC OB ∴=⋅=⨯⨯=菱形; 同理:四边形111A B C C 是矩形,11111116848A B C C S A B B C ∴=⋅=⨯=矩形;⋯⋯第n 个平行四边形的面积是:1922n nS = 6619232S ∴==. 【点评】本题综合考查了平行四边形的性质,菱形的性质和勾股定理等知识点的综合运用,本题中找四边形的面积规律是个难点.20.(9分)(1)如图1,圆内接ABC ∆中,AB BC CA ==,OD 、OE 为O 的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC ∆的面积的13.(2)如图2,若DOE ∠保持120︒角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC ∆的两条边围成的图形(图中阴影部分)面积始终是ABC ∆的面积的13.【考点】KB :全等三角形的判定;KK :等边三角形的性质;MA :三角形的外接圆与外心【专题】152:几何综合题;16:压轴题【分析】(1)本题要依靠辅助线的帮助.连接OA ,OC ,证明R t O F C R t O G C R t ∆≅∆≅∆后求得13OAC ABC S S ∆∆=,易证13OFCG ABC S S ∆=.(2)本题有多种解法.连接OA ,OB 和OC ,证明AOC COB BOA ∆≅∆≅∆,求出AOC ∠以及DOE ∠之间的关系即可. 【解答】证明:(1)如图1,连接OA ,OC ;ABC ∆是等边三角形, AC BC ∴=,点O 是等边三角形ABC 的外心,12CF CG AC ∴==,90OFC OGC ∠=∠=︒, ∴在Rt OFC ∆和Rt OGC ∆中,CF CGOC OC =⎧⎨=⎩, Rt OFC Rt OGC ∴∆≅∆.同理:Rt OGC Rt OGA ∆≅∆.Rt OFC Rt OGC Rt OGA ∴∆≅∆≅∆,2OFC OAC OFCG S S S ∆∆==四边形,13OAC ABC S S ∆∆∴=,13ABC OFCG S S ∆∴=四边形.(2)证法一:连接OA ,OB 和OC ,则AOC COB BOA ∆≅∆≅∆,12∠=∠;设OD 交BC 于点F ,OE 交AC 于点G ,34120AOC ∠=∠+∠=︒,54120DOE ∠=∠+∠=︒, 35∴∠=∠;在OAG ∆和OCF ∆中2135OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩, OAG OCF ∴∆≅∆,OAG OCF S S ∆∆∴=,OAG OGC OCF OGC S S S S ∆∆∆∆∴+=+,即13OAC ABC OFCG S S S ∆∆==四边形;证法二:设OD 交BC 于点F ,OE 交AC 于点G ; 作OH BC ⊥,OK AC ⊥,垂足分别为H 、K ;在四边形HOKC 中,90OHC OKC ∠=∠=︒,60C ∠=︒,360909060120HOK ∴∠=︒-︒-︒-︒=︒,即12120∠+∠=度;又23120GOF ∠=∠+∠=︒,13∴∠=∠, AC BC =, OH OK ∴=, OGK OFH ∴∆≅∆,13ABC OFCG OHCK S S S ∆∴==四边形四边形.【点评】本题涉及三角形的外接圆知识及全等三角形的判定,难度偏难. 21.(9分)小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.【考点】9A :换元法解一元二次方程;AG :无理方程【分析】此方程可用换元法解方程.(1)t =,则原方程可化为2230t t +-=; (2t =,则原方程可化为20t t +=. 【解答】解:填表如下:【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.22.(9分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt ABM Rt MCN ∆∆∽;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt ABM Rt AMN ∆∆∽,求此时x 的值.【考点】HF :二次函数综合题 【专题】16:压轴题【分析】(1)要证ABM ∆和MCN ∆相似,就需找出两组对应相等的角,已知了这两个三角形中一组对应角为直角,而BAM ∠和NMC ∠都是AMB ∠的余角,因此这两个角也相等,据此可得出两三角形相似.(2)根据(1)的相似三角形,可得出AB ,BM ,MC ,NC 的比例关系式,已知了4AB =,BM x =,可用BC 和BM 的长表示出CM ,然后根据比例关系式求出CN 的表达式.这样直角梯形的上下底和高都已得出,可根据梯形的面积公式得出关于y ,x 的函数关系式.然后可根据函数的性质得出y 的最大值即四边形ABCN 的面积的最大值,以及此时对应的x 的值,也就可得出BM 的长.(3)已知了这两个三角形中相等的对应角是ABM ∠和AMN ∠,如果要想使Rt ABM Rt AMN ∆∆∽,那么两组直角边就应该对应成比例,即AM ABMN BM=,根据(1)的相似三角形可得出AM ABMN MC=,因此BM MC =,M 是BC 的中点.即2x =.【解答】(1)证明:在正方形ABCD 中,4AB BC CD ===,90B C ∠=∠=︒,AM MN ⊥, 90AMN ∴∠=︒,90CMN AMB ∴∠+∠=︒.在Rt ABM ∆中,90MAB AMB ∠+∠=︒,CMN MAB ∴∠=∠, Rt ABM Rt MCN ∴∆∆∽.(2)解:Rt ABM Rt MCN ∆∆∽,AB BM MC CN ∴=,即44xx CN=-, 244x x CN -+∴=,2144424ABCNx xy S ⎛⎫-+∴==+⋅ ⎪⎝⎭梯形 21282x x =-++21(2)102x =--+,∴当点M 运动到离B 点的长度为2时,y 取最大值,最大值为10.(3)解:90B AMN ∠=∠=︒,∴要使ABM AMN ∆∆∽,必须有AB BMAM MN=, 由(1)知AM ABMN MC=, AB AB BM MC∴=, BM MC ∴=,∴当点M 运动到BC 的中点时,ABM AMN ∆∆∽,此时2x =.【点评】本题主要考查了相似三角形的判定和性质以及二次函数的综合应用,根据相似三角形得出与所求的条件相关的线段成比例是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年深圳市初中毕业生学业考试数学试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

2.考生必须在答题卡上按规定作答;答题卡必须保持清洁,不能折叠。

3.答题前,请将姓名、考生号、考场等用规定的笔填涂在答题卡指定的位置上。

4.本卷选择题1—10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑;非选择题11—22,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内相应位置上,写在本卷或其他地方无效。

第一部分 选择题一、选择题(本题有10小题,每题3分,共30分)1.如果a 的倒数是-1,那么a 2009等于( )A .1B .-1C .2009D .-20092.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( ) A .3 B .4 C .5 D .6主视图 左视图 俯视图 3.用配方法将代数式a 2+4a -5变形,结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-94.横跨深圳及香港之间的深圳湾大桥(Shenzhen Bay Bridge )是中国唯一倾斜的独塔单索面桥,大桥全长4770米,这个数字用科学计数法表示为(保留两个有效数字)( ) A .24710⨯ B .34.710⨯ C .34.810⨯ D .35.010⨯5.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .A OBCxy6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A .13B .12C .34D .237.如图,反比例函数4y x =-的图象与直线13y x =-的交点 为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平 行线相交于点C ,则ABC △的面积为( ) A .8 B .6 C .4 D .28.如图,数轴上与1,2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则22x x-+=( ) A .2 B .22C .32D .29.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ) A .80元 B .100元 C .120元 D .160元 10.如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分BCD ∠,120ADC =∠,四边形ABCD 的周长为10cm .图中阴影部分的面积为( ) A .32B . 3C . 23D . 43A DCBOx 21第二部分(非选择题,共70分)二、填空题(本题有6小题,每题3分,共18分)11.小明在7次百米跑练习中成绩如下:则这7次成绩的中位数是 秒 12.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差21S 与小兵5次成绩的方差22S 之间的大小关系为21S 22S .(填“>”、“<”、“=”)13.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.14.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a = .15.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到 32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m = .三、解答题(本大题有7题,共52分)17.(6分)计算:2202(3)( 3.14)8sin 45π----+--︒.次数 第一次 第二次 第三次 第四次 第五次 第六次 第七次 成绩/秒 12.8 12.9 13.0 12.7 13.2 13.1 12.8A D A CB A E AC AB A F A D AC D B E AFC G B AA E AF CB A图a 图b 图c1 2 3 4 5小明小兵18.(6分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >,解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-,即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集.19.(6分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米. 试求旗杆BC 的高度.20.(7分)深圳大学青年志愿者协会对报名参加2011年深圳大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)小亮班共有 名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有 人将参加下轮测试;(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试。

ABCD21.(8分)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?22.(9分)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.23.如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P . (1)连结P A ,若P A =PB ,试判断⊙P 与x 轴的位置关系,并说明理由; (2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?B A O y x参考答案:一、选择题1. B;2.B;3. D;4. C;5. C;6. C;7.A;8.C;9. C;10. B;二、填空题11.12.9;12.<;13.14.1009999;15. 120°;16. 3或-1;三、解答题17.174 -.18. 解:由有理数的除法法则“两数相除,同号得正”,有(1)510230xx+>⎧⎨-<⎩(2)510230xx+<⎧⎨->⎩解不等式组(1),得135x-<<,解不等式组(2),得无解,故分式不等式5123xx+<-的解集为135x-<<.19.解:延长BC交AD于E点,则CE⊥AD.在Rt△AEC中,AC=10,由坡比为1CAE=30°,∴CE=AC·sin30°=10×12=5,AE=AC·cos30°=10=.在Rt△ABE中,BE=11.∵BE=BC+CE,∴BC=BE-CE=11-5=6(米).答:旗杆的高度为6米.20. 解:(1)略;(2)40,20;(3)600.21.解:设搭配A种造型x个,则B种造型为(50)x-个,依题意,得:8050(50)34904090(50)2950x xx x+-⎧⎨+-⎩≤≤解得:3331xx⎧⎨⎩≤≥,∴3133x≤≤∵x是整数,x可取31、32、33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720(元)方法二:方案①需成本:31×800+19×960=43040(元);方案②需成本:32×800+18×960=42880(元);方案③需成本:33×800+17×960=42720(元);∴应选择方案③,成本最低,最低成本为42720元.ABCD E22. 解:(1)B (13(2)设抛物线的解析式为y =ax (x+a ),代入点B (1,3,得3a =, 因此2323y x =(3)如图,抛物线的对称轴是直线x =—1,当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小. 设直线AB 为y =kx +b .所以33,320.233k k b k b b ⎧⎪⎧+=⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得, 因此直线AB 为323y , 当x =-1时,3y =, 因此点C 的坐标为(-13.(4)如图,过P 作y 轴的平行线交AB 于D .当x =-12时,△P AB 的面积的最大值为938,此时2221()()213233233233331932PAB PAD PBD D P B A S S S y y x x x x x ∆∆∆=+=--⎡⎤⎫=+-⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=⎫=+⎪⎝⎭13,2P ⎛- ⎝⎭. 23. 解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.CBAOyxDBAOy xP(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD 于E.∵△PCD为正三角形,∴DE=12CD=32,PD=3,∴PE 33.∵∠AOB=∠PEB=90°,∠ABO=∠PBE,∴△AOB∽△PEB,∴332,45AO PEAB PB PB=即,∴315 PB=∴3158PO BO PB=-=∴3158)P-,∴3158 k=-.当圆心P在线段OB延长线上时,同理可得P(0,315-8),∴k=315-8,∴当k 315-8或k=315-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.。

相关文档
最新文档