Modbus通讯协议

合集下载

Modbus通讯协议详解

Modbus通讯协议详解

Modbus通讯协议详解一、引言Modbus通讯协议是一种常用的串行通信协议,广泛应用于工业自动化领域。

本文将详细解析Modbus通讯协议的基本原理、数据格式、通信流程以及常见问题。

二、基本原理1. Modbus通讯协议采用主从结构,主要包括一个主站和多个从站。

主站负责发起通信请求,从站负责响应请求并返回数据。

2. Modbus通讯协议基于传统的串行通信方式,支持RS-232、RS-485等物理层接口。

3. Modbus通讯协议采用简单的请求/响应模式,主站发送请求帧,从站响应并返回数据帧。

三、数据格式1. Modbus通讯协议的数据单元被称为“寄存器”,分为输入寄存器(Input Register)、保持寄存器(Holding Register)、线圈(Coil)和离散输入(Discrete Input)四种类型。

2. 输入寄存器用于从站向主站传输只读数据,保持寄存器用于双向传输读写数据,线圈用于从站向主站传输开关量数据,离散输入用于主站向从站传输只读开关量数据。

3. Modbus通讯协议采用16位的数据单元标识符,用于标识寄存器的类型和地址。

4. 数据帧包括起始符、设备地址、功能码、数据区、错误校验等字段。

四、通信流程1. 主站向从站发送请求帧,请求帧包括设备地址、功能码、数据区等字段。

2. 从站接收到请求帧后,根据功能码执行相应的操作,并将结果存储在数据区中。

3. 从站发送响应帧,响应帧包括设备地址、功能码、数据区等字段。

4. 主站接收到响应帧后,解析数据区中的结果,并进行相应的处理。

五、常见问题1. Modbus通讯协议的数据传输是基于字节的,因此在不同字节序的系统中需要进行字节序转换。

2. Modbus通讯协议的速率、数据位、停止位和校验位等参数需要保持一致,否则通信将无法建立。

3. Modbus通讯协议的设备地址是唯一的,主站通过设备地址来区分不同的从站。

4. Modbus通讯协议的功能码定义了不同的操作类型,主站通过功能码来指定所需的操作。

Modbus通讯协议

Modbus通讯协议

Modbus通讯协议Modbus是一种常用的通讯协议,用于在工业自动化系统中传输数据。

它被广泛应用于监控、控制和数据采集等领域。

本文将介绍Modbus通讯协议的基本原理和应用。

Modbus通讯协议是一种主从式通讯协议,通常由一个主站和多个从站组成。

主站负责控制和管理通信过程,从站则负责传输和响应数据。

主站和从站之间通过串口、以太网或其他通讯方式进行数据的传输。

Modbus通讯协议基于简单高效的ASCII或RTU格式,可以在多种不同通讯介质上使用。

其中,ASCII格式使用7位或8位ASCII码传输数据,而RTU格式使用二进制码传输数据。

这两种格式都具有灵活性和可靠性,且易于实现和维护。

主站和从站之间的通讯过程通常分为寻址、请求和响应三个步骤。

首先,主站通过地址指定所需通讯的从站。

然后,主站发送请求命令给指定的从站。

从站接收到请求命令后,进行数据处理并返回响应给主站。

最后,主站接收到响应后进行相应的处理。

Modbus通讯协议支持多种数据类型,包括线圈、寄存器、输入线圈和输入寄存器。

线圈用于表示开关状态,寄存器用于存储数据。

这些数据类型可以通过Modbus协议进行读写操作,以满足数据采集和控制的需求。

Modbus通讯协议具有许多优点。

首先,它是一种开放的通讯协议,被广泛应用于不同的设备和系统中。

其次,Modbus通讯协议简单易用,具有较低的开发和维护成本。

另外,Modbus通讯协议支持大量并发连接,可以在多个从站之间同时传输数据。

Modbus通讯协议被广泛应用于工业自动化系统中。

例如,它可以用于工业控制器和人机界面之间的通讯,实现远程监控和控制。

此外,Modbus通讯协议也被用于能源管理系统、楼宇自动化系统和物流管理系统等领域。

尽管Modbus通讯协议在工业自动化领域具有许多优点,但也存在一些缺点。

例如,Modbus通讯协议的传输速率相对较低,无法满足高速数据传输的需求。

另外,Modbus通讯协议的安全性相对较低,容易受到恶意攻击。

ModBusRTU通讯协议

ModBusRTU通讯协议

ModBusRTU通讯协议协议名称:ModBusRTU通讯协议一、协议概述ModBusRTU通讯协议是一种串行通信协议,用于在工业自动化领域中实现设备之间的数据交换。

本协议规定了通信的物理层、数据帧格式、功能码及其对应的数据格式,以及通信过程中的错误处理等。

二、物理层1. 通信接口:本协议使用RS485接口进行通信,支持多主机和多从机的通信方式。

2. 通信波特率:支持的通信波特率范围为9600bps至115200bps,可根据实际需求进行设置。

3. 数据位:通信数据位为8位。

4. 停止位:通信停止位为1位。

5. 校验位:通信校验位可选择为无校验、奇校验或偶校验。

三、数据帧格式1. 帧起始符:每个数据帧以一个起始符开始,起始符为一个字节,固定为0xFF。

2. 从机地址:紧随起始符之后的一个字节为从机地址,用于标识通信中的从机设备。

3. 功能码:从机地址之后的一个字节为功能码,用于指示从机设备执行的操作类型。

4. 数据域:功能码之后的数据域长度可变,根据功能码的不同而不同。

5. CRC校验码:数据域之后为两个字节的CRC校验码,用于检测数据传输过程中是否出现错误。

6. 帧结束符:每个数据帧以一个结束符结束,结束符为一个字节,固定为0x00。

四、功能码及数据格式1. 读取线圈状态(功能码:0x01)请求帧格式:[起始符][从机地址][功能码][起始地址高字节][起始地址低字节][读取数量高字节][读取数量低字节][CRC校验码][结束符]响应帧格式:[起始符][从机地址][功能码][字节数][线圈状态][CRC校验码][结束符]数据格式:线圈状态为一个字节,每个位表示一个线圈的状态(0表示OFF,1表示ON)。

2. 读取离散输入状态(功能码:0x02)请求帧格式:[起始符][从机地址][功能码][起始地址高字节][起始地址低字节][读取数量高字节][读取数量低字节][CRC校验码][结束符]响应帧格式:[起始符][从机地址][功能码][字节数][离散输入状态][CRC校验码][结束符]数据格式:离散输入状态为一个字节,每个位表示一个输入的状态(0表示OFF,1表示ON)。

Modbus通讯协议详解

Modbus通讯协议详解

Modbus通讯协议详解一、概述Modbus通讯协议是一种用于工业自动化领域的通讯协议,它允许不同的设备之间进行数据交换。

本文将详细介绍Modbus通讯协议的基本原理、通讯方式、数据帧格式以及常用功能码等内容。

二、基本原理Modbus通讯协议采用主从结构,其中主机负责发起通讯请求,从机负责响应请求并返回数据。

通讯过程中,主机通过发送请求帧来读取或写入从机的数据。

从机收到请求后进行相应的处理,并将结果返回给主机。

三、通讯方式Modbus通讯协议支持串行通讯和以太网通讯两种方式。

1. 串行通讯串行通讯采用RS-232或RS-485等物理层接口,通讯速率可根据实际需求进行设置。

在串行通讯中,主机通过发送特定的数据帧来与从机进行通讯。

2. 以太网通讯以太网通讯采用TCP/IP协议栈,通讯速率较高。

主机通过发送TCP报文与从机进行通讯,其中Modbus协议位于应用层。

四、数据帧格式Modbus通讯协议中的数据帧由起始符、地址、功能码、数据、校验等字段组成。

1. 起始符起始符用于标识数据帧的开始,通常为一个字节的0xFF。

2. 地址地址字段用于指定从机的地址,主机通过地址来选择与哪个从机进行通讯。

地址长度为一个字节,取值范围为1-247。

3. 功能码功能码用于指定通讯请求的类型,不同的功能码对应不同的操作。

常用的功能码包括读取线圈状态、读取输入状态、读取保持寄存器、写单个寄存器等。

4. 数据数据字段用于存储通讯请求或响应的数据。

数据的长度和格式取决于具体的功能码和操作类型。

5. 校验校验字段用于检测数据的完整性,常用的校验算法包括CRC校验和LRC校验。

五、常用功能码Modbus通讯协议定义了一系列功能码,用于实现不同的通讯操作。

1. 读取线圈状态(功能码:0x01)该功能码用于读取从机中的线圈状态,线圈状态为开(1)或闭(0)。

2. 读取输入状态(功能码:0x02)该功能码用于读取从机中的输入状态,输入状态为开(1)或闭(0)。

modbus通讯协议与485

modbus通讯协议与485

Modbus通讯协议与4851. 什么是Modbus通讯协议?Modbus通讯协议是一种用于串行通信的协议,常用于工业自动化领域中的设备间通讯。

该协议设计简单、易于实现,因此被广泛应用于工业现场中。

Modbus协议支持多种物理介质,包括串口(如RS-232、RS-485)和以太网(如TCP/IP),其中,Modbus-RTU和Modbus-TCP是较为常见的两种实现方式。

2. 485总线介绍485总线是一种串行通信标准,广泛用于远距离数据传输。

它能实现多个设备通过同一条总线进行通信,且可实现传输距离高达1200米,通信速率可达到10 Mb/s。

相较于RS-232,RS-485是一个全双工的通信接口,并且支持多主设备,能够同时连接多个设备,使多个设备能够实现互相通信。

3. Modbus-RTU协议Modbus-RTU是一种基于二进制的Modbus协议实现方式,主要用于串口通信。

以下是Modbus-RTU常用的帧格式:起始符地址功能码数据区 CRC校验其中,起始符为11位的低电平信号,用于起始帧的标识,地址为设备的唯一标识符,功能码表示操作的具体功能,数据区包含要发送或接收的数据,CRC校验用于验证数据的完整性。

Modbus-RTU支持多种功能码,包括读取单个寄存器、读取多个寄存器、写单个寄存器等。

其通信速率可根据设备需要进行设置。

4. Modbus-TCP协议Modbus-TCP是Modbus协议的一种基于以太网的实现方式。

它使用常用的TCP/IP网络进行通信,能够实现高速、可靠的数据传输。

Modbus-TCP与Modbus-RTU相比,最明显的区别是使用了不同的物理介质和通信协议。

Modbus-TCP通过以太网进行数据传输,其帧格式与Modbus-RTU有所不同。

Modbus-TCP协议使用了标准的TCP/IP协议作为传输层协议,因此具有较高的灵活性和互操作性。

它可以与现有的以太网基础设施无缝集成,并且支持在局域网或广域网上进行远程数据传输。

Modbus通讯协议详解

Modbus通讯协议详解

Modbus通讯协议详解一、引言Modbus通讯协议是一种在工业自动化领域广泛使用的通信协议,用于实现设备之间的数据交换。

本文将详细介绍Modbus通讯协议的基本原理、通信方式、数据格式等方面的内容。

二、协议概述1. Modbus协议是一种客户-服务器通信协议,基于主从结构。

通常情况下,主设备(也称为主站)负责发起通信请求,而从设备(也称为从站)则负责响应请求并提供数据。

2. Modbus协议支持多种物理层和传输层,包括串行通信和以太网通信。

常用的物理层包括RS-232、RS-485和以太网,传输层则包括ASCII和RTU两种格式。

3. Modbus协议使用简单的请求/响应模式进行通信。

主设备通过发送请求帧来获取或设置从设备的数据,从设备则通过发送响应帧来回应主设备的请求。

三、通信方式1. 串行通信Modbus协议支持使用串行通信方式进行数据传输。

在串行通信中,主设备和从设备之间通过一对串行线路进行数据交换。

常用的串行通信物理层包括RS-232和RS-485。

2. 以太网通信Modbus协议也可以通过以太网进行数据传输。

在以太网通信中,主设备和从设备通过TCP/IP协议栈进行数据交换。

以太网通信具有较高的传输速率和较大的通信距离。

四、数据格式1. 帧格式Modbus协议使用帧格式进行数据传输。

每个帧由起始字符、从设备地址、功能码、数据域和校验字段组成。

2. 功能码功能码用于标识请求的类型。

常用的功能码包括读取线圈状态、读取输入状态、读取保持寄存器、读取输入寄存器、写单个线圈、写单个保持寄存器等。

3. 数据域数据域用于存储请求或响应的数据。

数据域的长度取决于功能码的类型。

4. 校验字段为了确保数据的准确性,Modbus协议使用校验字段进行数据校验。

常用的校验方式包括CRC校验和LRC校验。

五、通信流程1. 主设备发送请求帧主设备通过串行线路或以太网发送请求帧给从设备。

请求帧包括从设备地址、功能码和数据域。

modbus通讯协议

modbus通讯协议

modbus通讯协议协议名称:Modbus通讯协议1. 介绍Modbus通讯协议是一种用于工业自动化领域的通信协议,旨在实现不同设备之间的数据交换。

该协议简单、易于实现,并且被广泛应用于监控、控制和数据采集系统中。

2. 目标本协议的目标是定义一种标准的通信方式,使得不同厂商的设备能够互相通信,并实现数据的读取和写入功能。

通过该协议,用户可以轻松地访问和控制各种设备,提高生产效率和系统可靠性。

3. 协议规范3.1 物理层Modbus通讯协议可以在串行通信和以太网通信两种物理层上实现。

串行通信使用RS-232或RS-485接口,以太网通信使用TCP/IP协议。

3.2 数据传输Modbus协议使用请求/响应模式进行数据传输。

请求消息由主站发送给从站,从站接收请求并返回响应消息。

每个消息由功能码、数据字段和错误检测字段组成。

3.3 功能码Modbus协议定义了一系列功能码,用于标识不同的操作类型。

常用的功能码包括读取线圈状态、读取输入状态、读取保持寄存器、读取输入寄存器、写单个线圈、写单个寄存器等。

3.4 寄存器地址Modbus协议使用地址来标识不同的寄存器。

线圈和离散输入的地址范围为0~65535,保持寄存器和输入寄存器的地址范围为0~65535。

3.5 数据格式Modbus协议支持多种数据格式,包括二进制、十进制、十六进制等。

具体的数据格式由设备厂商自行定义。

4. 协议流程4.1 建立连接在使用Modbus协议进行通信之前,主站需要先与从站建立连接。

建立连接的方式取决于物理层的选择,可以是串行通信或以太网通信。

4.2 发送请求主站发送请求消息给从站,请求消息包括功能码、数据字段和错误检测字段。

从站接收请求消息并进行处理。

4.3 响应消息从站接收到请求消息后,根据功能码进行相应的操作,并生成响应消息。

响应消息包括功能码、数据字段和错误检测字段,从站将响应消息发送给主站。

4.4 数据解析主站接收到从站发送的响应消息后,对响应消息进行解析,提取所需的数据。

Modbus通讯协议

Modbus通讯协议

Modbus通讯协议一、什么是Modbus?Modbus是一种常用的通信协议,用于与PLC、仪表等工业设备进行数据通信。

它最初由Modicon(现在是施耐德电气的一部分)于1979年开发,用于连接PLC和其他可编程逻辑控制器。

该协议基于简单的客户机/服务器架构,可用于Ethernet、RS-232以及其他通信介质。

Modbus协议具有简单、灵活、开放且易于实现的特点。

它广泛应用于各种设备之间的通信,包括控制器、传感器、计量仪表、数据采集器等。

Modbus还被广泛应用于智能家居、自动化控制系统以及工业自动化领域,成为设备之间通信的标准。

二、Modbus通信协议的架构Modbus协议的通信架构大致可以分为三层:物理层、数据链路层和应用层。

1、物理层:控制不同设备之间的数据传输,包括物理连接方式、传输率、编码格式等参数。

2、数据链路层:主要负责数据的完整性检查,包括错误校验等。

3、应用层:最上层的协议层,也是最为重要的部分。

其中包含了各种不同的命令,用于设备之间的通信。

Modbus协议支持不同的物理连接方式和通信协议,包括RS-232、RS-485、以太网等。

此外,Modbus还支持多种数据格式,包括二进制、ASCII和RTU等。

三、Modbus通信协议的主从模式在Modbus协议中,设备可以分为两种类型:主设备(Master)和从设备(Slave)。

主设备负责发起请求并接收响应,而从设备则负责响应请求并返回数据。

在主从模式下,每个从设备都会分配一个唯一的地址。

主设备使用从设备的地址进行通信。

主从模式通讯过程如下:1、主设备发送一条特定的Modbus帧,包含了要读取或写入的寄存器地址,及操作码等信息。

2、从设备收到Modbus帧后,根据地址和操作码进行相应的操作,并生成响应帧。

3、响应帧包含了读取或写入操作的结果,主设备接收响应帧并解析其中的数据。

4、系统将以前获取的数据发送给主设备。

四、Modbus协议的寄存器类型Modbus协议有许多不同类型的寄存器,包括输入寄存器(Input Register)、保持寄存器(Holding Register)、线圈寄存器(Coil Register)和离散输入寄存器(Discrete Input Register)等。

modbus通讯协议

modbus通讯协议

modbus通讯协议协议名称:Modbus通讯协议1. 引言Modbus通讯协议是一种用于工业自动化领域的通信协议,常用于连接不同厂商的设备,实现设备之间的数据交换和控制操作。

本协议旨在规范Modbus通信的数据格式、传输方式和通信规则,以确保设备之间的互操作性和数据的准确传输。

2. 范围本协议适用于Modbus通信协议的各个版本,包括Modbus RTU、Modbus ASCII和Modbus TCP/IP等。

同时,本协议还适用于Modbus通信协议的各种设备类型,包括主站(Master)和从站(Slave)。

3. 术语和定义在本协议中,以下术语和定义适用:- 主站(Master):发起Modbus通信请求的设备。

- 从站(Slave):响应主站请求的设备。

- 寄存器(Register):存储设备中的数据的内存单元。

- 线圈(Coil):控制设备中的开关状态的内存单元。

- 功能码(Function Code):用于标识Modbus通信请求的操作类型。

4. 数据格式4.1 Modbus RTUModbus RTU使用二进制编码,数据帧包括起始位、设备地址、功能码、数据域、校验位和停止位。

具体格式如下:- 起始位:一个起始位,用于标识数据帧的开始。

- 设备地址:一个字节,用于标识主站要发送请求的从站地址。

- 功能码:一个字节,用于标识主站请求的操作类型。

- 数据域:根据功能码的不同,数据域的长度可变。

- 校验位:两个字节,用于校验数据域的正确性。

- 停止位:一个停止位,用于标识数据帧的结束。

4.2 Modbus ASCIIModbus ASCII使用ASCII编码,数据帧包括起始符、设备地址、功能码、数据域、LRC校验和和结束符。

具体格式如下:- 起始符:一个冒号(:),用于标识数据帧的开始。

- 设备地址:两个ASCII字符,用于标识主站要发送请求的从站地址。

- 功能码:两个ASCII字符,用于标识主站请求的操作类型。

Modbus通讯协议详解

Modbus通讯协议详解

Modbus通讯协议详解Modbus通讯协议是一种用于工业自动化领域的通信协议,广泛应用于监控、控制和数据采集等领域。

本文将详细介绍Modbus通讯协议的基本原理、通信方式、数据结构和应用场景。

一、Modbus通讯协议的基本原理Modbus通讯协议是基于主从结构的通信协议,其中主机负责发送请求并接收响应,从机负责接收请求并发送响应。

通信使用串行通信或以太网通信方式,支持不同的物理层接口。

Modbus通讯协议采用简单、轻量级的数据传输格式,以字节为基本单位进行数据传输。

通信过程中,主机通过发送请求帧来获取从机的数据或控制从机的操作。

从机接收到请求后,根据请求的功能码进行相应的操作,并将结果通过响应帧返回给主机。

二、Modbus通讯协议的通信方式Modbus通讯协议支持两种主要的通信方式:串行通信和以太网通信。

1. 串行通信串行通信是Modbus通讯协议最早采用的通信方式,适用于较短距离的通信。

常用的串行通信接口有RS-232、RS-485等。

在串行通信中,数据通过串行线路以二进制形式传输。

2. 以太网通信以太网通信是现代工业自动化领域中常用的通信方式,适用于长距离通信和大规模系统。

以太网通信使用TCP/IP协议栈,数据通过以太网以数据包的形式传输。

三、Modbus通讯协议的数据结构Modbus通讯协议的数据结构包括功能码、数据地址、数据长度和数据内容。

1. 功能码功能码用于定义请求或响应的类型,常用的功能码有读取线圈状态、读取输入状态、读取保持寄存器、读取输入寄存器、写单个线圈、写单个寄存器等。

不同的功能码对应不同的操作。

2. 数据地址数据地址用于指定要读取或写入的数据的位置。

对于线圈和输入状态,数据地址从0开始计数;对于保持寄存器和输入寄存器,数据地址从1开始计数。

3. 数据长度数据长度用于指定要读取或写入的数据的长度。

对于线圈和输入状态,数据长度表示连续的位数;对于保持寄存器和输入寄存器,数据长度表示连续的字节个数。

Modbus通讯协议详解

Modbus通讯协议详解

Modbus通讯协议详解协议名称:Modbus通讯协议详解一、引言Modbus通讯协议是一种用于工业自动化领域的通信协议,广泛应用于各种设备之间的数据传输。

本协议详细介绍了Modbus通讯协议的结构、功能、通信方式以及相关的技术细节。

二、协议结构Modbus通讯协议由两个主要部分组成:应用层和传输层。

应用层定义了Modbus数据帧的格式和功能码,传输层负责实现数据的传输和错误检测。

1. 应用层应用层定义了Modbus数据帧的格式,包括起始字符、地址、功能码、数据区和校验等。

其中,起始字符是一个字节,用于标识数据帧的开始;地址字段指定了通信的设备地址;功能码表示了数据帧的功能类型;数据区包含了具体的数据内容;校验字段用于检测数据传输的正确性。

2. 传输层传输层负责实现数据的传输和错误检测。

Modbus通讯协议支持两种传输方式:串行传输和以太网传输。

串行传输使用RS-232或RS-485接口,以点对点或多点方式进行通信;以太网传输使用TCP/IP协议,支持多点通信。

三、功能码Modbus通讯协议定义了一系列功能码,用于实现不同的功能和操作。

常用的功能码包括读取线圈状态、读取输入状态、读取保持寄存器、读取输入寄存器、写单个线圈、写单个寄存器等。

通过不同的功能码,可以实现对设备的读取、写入和控制操作。

四、通信方式Modbus通讯协议支持两种通信方式:主从模式和从从模式。

在主从模式下,一个主设备(主机)控制多个从设备(从机)进行通信;在从从模式下,多个从设备之间可以直接进行通信。

1. 主从模式主从模式下,主设备负责发起通信请求,从设备接收并响应请求。

主设备通过发送Modbus数据帧来实现与从设备的通信。

主设备发送的数据帧包含了目标从设备的地址和功能码,从设备根据这些信息进行相应的处理,并返回响应数据。

2. 从从模式从从模式下,多个从设备之间可以直接进行通信,不需要主设备的介入。

从设备之间通过发送Modbus数据帧来实现通信。

modbus标准通讯协议

modbus标准通讯协议

modbus标准通讯协议Modbus标准通讯协议。

Modbus通讯协议是一种用于工业自动化领域的通讯协议,它是一种串行通讯协议,常用于连接工业控制设备,如PLC、传感器、仪表等。

Modbus通讯协议简单易懂,易于实现和维护,因此在工业领域得到了广泛的应用。

Modbus通讯协议主要分为Modbus RTU和Modbus TCP两种形式。

Modbus RTU是基于串行通讯的协议,采用二进制方式进行数据传输,而Modbus TCP则是基于以太网的协议,采用TCP/IP协议进行数据传输。

两者在通讯方式和数据传输速率上有所不同,但其基本的通讯规则和数据格式是一致的。

在Modbus通讯协议中,数据的传输是通过主从方式进行的。

主设备负责发起通讯请求,而从设备则被动响应主设备的请求。

主从设备之间的通讯通过读写寄存器、读写线圈等方式进行,通讯过程中会涉及到数据的读取、写入、确认等操作。

Modbus通讯协议的数据帧结构是由地址域、功能码、数据域、校验码等部分组成。

其中地址域用于标识设备的地址,功能码用于标识通讯操作的类型,数据域用于存储通讯数据,校验码用于验证数据的完整性。

通过这些部分的组合,实现了Modbus通讯协议的数据传输。

在实际应用中,Modbus通讯协议可以实现不同设备之间的数据交换和控制操作。

例如,可以通过Modbus通讯协议实现PLC与传感器之间的数据采集和控制指令的传输,也可以实现不同PLC之间的数据交换和协同控制。

因此,Modbus通讯协议在工业自动化领域扮演着重要的角色。

总的来说,Modbus通讯协议作为一种通用的工业通讯协议,具有简单易懂、易于实现和维护的特点,适用于各种工业控制设备之间的通讯和数据交换。

通过对Modbus通讯协议的深入了解和应用,可以更好地实现工业自动化系统的控制和监测,提高生产效率和产品质量,为工业生产带来更大的便利和效益。

ModbusTCP通讯协议

ModbusTCP通讯协议

ModbusTCP通讯协议协议名称:ModbusTCP通讯协议一、引言ModbusTCP通讯协议是一种基于TCP/IP协议的通讯协议,用于在工业自动化系统中实现设备之间的数据交换。

本协议旨在规范ModbusTCP通讯协议的数据格式、通讯方式和通讯过程,以确保设备之间的可靠通讯和数据传输。

二、术语和定义1. ModbusTCP:基于TCP/IP协议的Modbus通讯协议。

2. 客户端:使用ModbusTCP协议向服务器发送请求的设备。

3. 服务器:响应客户端请求并提供数据或执行相应操作的设备。

4. 寄存器:ModbusTCP协议中用于存储数据的内存单元。

5. 线圈:ModbusTCP协议中用于存储开关状态的内存单元。

三、通讯方式1. ModbusTCP协议采用客户端-服务器模型进行通讯。

2. 客户端通过建立TCP连接向服务器发送请求,服务器响应请求并返回数据。

3. 通讯过程中,客户端发送请求的格式为ModbusTCP请求报文,服务器响应的格式为ModbusTCP响应报文。

四、数据格式1. ModbusTCP请求报文格式:- 事务标识符(2字节):用于标识请求和响应的对应关系。

- 协议标识符(2字节):固定为0x0000。

- 长度字段(2字节):报文长度,包括后续字段的长度。

- 单元标识符(1字节):用于标识服务器设备。

- 功能码(1字节):请求的功能码,用于指定请求的操作类型。

- 数据域:根据功能码的不同,包含不同的数据信息。

2. ModbusTCP响应报文格式:- 事务标识符(2字节):与请求报文中的事务标识符相同。

- 协议标识符(2字节):与请求报文中的协议标识符相同。

- 长度字段(2字节):报文长度,包括后续字段的长度。

- 单元标识符(1字节):与请求报文中的单元标识符相同。

- 功能码(1字节):与请求报文中的功能码相同。

- 数据域:根据功能码的不同,包含不同的数据信息。

五、功能码ModbusTCP协议定义了多种功能码,用于指定请求的操作类型。

Modbus通讯协议

Modbus通讯协议

Modbus通讯协议Modbus通讯协议是一种常用的工业控制领域的通讯协议,它是一种串行通讯协议,用于工业自动化领域的设备之间的数据传输。

Modbus通讯协议广泛应用于工业控制系统中,包括PLC、传感器、仪器仪表等设备之间的通讯。

本文将介绍Modbus通讯协议的基本原理、通讯格式、常见应用场景等内容,希望能够帮助大家更好地理解和应用Modbus通讯协议。

Modbus通讯协议基本原理。

Modbus通讯协议采用主从结构,通常由一个主站和多个从站组成。

主站负责发起通讯请求,而从站则响应主站的请求,并返回相应的数据。

在Modbus通讯中,主站和从站之间通过串行通讯或者以太网通讯进行数据交换。

Modbus通讯协议的通讯格式。

Modbus通讯协议采用简单的报文格式进行通讯,包括功能码、数据地址、数据内容等部分。

在Modbus通讯中,主站向从站发送请求报文,从站接收到请求后进行处理,并返回响应报文。

通讯中使用的功能码包括读取线圈状态、读取输入状态、读取保持寄存器、读取输入寄存器等,不同的功能码对应不同的数据读取方式。

Modbus通讯协议的常见应用场景。

Modbus通讯协议广泛应用于工业控制系统中,常见的应用场景包括工业自动化控制、数据采集、远程监控等。

在工业自动化控制中,PLC与传感器、执行器之间的通讯通常采用Modbus通讯协议,实现对生产过程的监控和控制。

此外,Modbus通讯协议还被应用于楼宇自动化系统、智能电网、智能家居等领域。

总结。

Modbus通讯协议作为一种常用的工业控制通讯协议,具有通讯简单、易于实现、稳定可靠等特点,因此在工业控制领域得到了广泛的应用。

通过本文的介绍,相信大家对Modbus通讯协议有了更深入的了解,希望能够帮助大家更好地应用和实践Modbus通讯协议,为工业控制系统的建设和应用提供帮助。

modbus通讯协议格式

modbus通讯协议格式

modbus通讯协议格式Modbus通讯协议格式。

Modbus通讯协议是一种用于工业控制领域的串行通信协议,它被广泛应用于自动化控制系统中。

本文将对Modbus通讯协议的格式进行详细介绍,以便读者更好地理解和应用该协议。

1. Modbus通讯协议的基本概念。

Modbus通讯协议是一种主从式通讯协议,它包括一个主站和多个从站。

主站负责发起通讯请求,而从站则负责响应主站的请求并执行相应的操作。

在Modbus通讯协议中,主站和从站之间通过串行通信进行数据交换,通常采用RS-232、RS-485或者Ethernet等通讯方式。

2. Modbus通讯协议的数据格式。

Modbus通讯协议的数据格式包括了功能码、数据地址、数据值等信息。

其中,功能码用于指示从站应执行的操作,比如读取数据、写入数据等;数据地址用于指定要读取或写入的数据的地址;数据值则是要读取或写入的实际数值。

在Modbus通讯中,数据格式通常采用16位或32位的寄存器来进行数据交换。

3. Modbus通讯协议的报文结构。

在Modbus通讯协议中,通讯的数据是通过报文进行传输的。

Modbus报文包括了地址域、功能码、数据域和校验码等部分。

地址域用于指定从站的地址,功能码用于指示要执行的操作,数据域则包含了要读取或写入的数据,校验码用于对报文的完整性进行校验。

通过对报文结构的解析,主站和从站可以进行有效的数据交换。

4. Modbus通讯协议的应用场景。

Modbus通讯协议广泛应用于工业控制领域,比如工业自动化、楼宇自动化、能源管理系统等。

在这些应用场景中,Modbus通讯协议可以实现不同设备之间的数据交换和控制,从而实现系统的集成和优化。

此外,Modbus通讯协议还可以通过网关设备与其他通讯协议进行互联,实现不同系统之间的数据共享和协同控制。

5. Modbus通讯协议的发展趋势。

随着工业互联网的发展,Modbus通讯协议也在不断演进和完善。

新的Modbus 通讯协议版本不断推出,以满足工业控制系统对于高效、安全、可靠通讯的需求。

Modbus通讯协议详解

Modbus通讯协议详解

Modbus通讯协议详解协议名称:Modbus通讯协议协议版本:1.0最后更新日期:2022年10月1日1. 引言Modbus通讯协议是一种常用的串行通信协议,用于在自动化领域中实现设备之间的通信。

本文将详细介绍Modbus通讯协议的结构、功能和应用场景。

2. 协议结构Modbus通讯协议采用主从结构,包括一个主站和多个从站。

主站负责发起通信请求,从站则根据主站的请求进行响应。

通信可以通过串口、以太网等物理介质进行。

3. 功能Modbus通讯协议支持以下功能:- 读取和写入数据寄存器:主站可以向从站发送读取和写入数据寄存器的请求,以获取或修改数据。

- 读取和写入线圈:主站可以向从站发送读取和写入线圈的请求,以获取或修改开关状态。

- 读取和写入输入寄存器:主站可以向从站发送读取和写入输入寄存器的请求,以获取或修改输入信号。

- 读取和写入离散输入:主站可以向从站发送读取和写入离散输入的请求,以获取或修改开关输入状态。

4. 数据格式Modbus通讯协议使用二进制格式进行数据传输。

每个数据帧包括起始符、地址、功能码、数据和校验等字段。

起始符用于同步通信,地址用于标识从站,功能码用于指定请求的功能,数据字段用于传输数据,校验字段用于验证数据的完整性。

5. 通信流程Modbus通讯协议的通信流程如下:- 主站向从站发送请求帧。

- 从站接收请求帧,并根据功能码执行相应的操作。

- 从站将执行结果封装为响应帧,并发送给主站。

- 主站接收响应帧,并解析其中的数据。

6. 应用场景Modbus通讯协议广泛应用于自动化控制系统中,特别是工业领域。

以下是一些常见的应用场景:- 监控系统:Modbus协议可以用于监控系统中的数据采集和控制设备之间的通信。

- 工业自动化:Modbus协议可用于控制系统中的PLC、HMI、传感器等设备之间的通信。

- 智能家居:Modbus协议可用于智能家居系统中的设备之间的通信,如灯光控制、温度调节等。

modbus通讯协议

modbus通讯协议

modbus通讯协议协议名称:Modbus通讯协议一、引言Modbus通讯协议是一种基于串行通信的通信协议,用于在自动化控制系统中实现设备之间的数据交换。

本协议旨在规范Modbus通讯协议的格式、数据帧结构、功能码以及错误处理等方面的内容,以确保通信的可靠性和稳定性。

二、术语定义1. Modbus主机:发起通信请求的设备。

2. Modbus从机:响应通信请求的设备。

3. 寄存器:用于存储和传输数据的内存单元。

4. 线圈:用于存储和传输布尔数据的内存单元。

三、通信格式1. 物理层Modbus通讯协议支持多种物理层,包括串行通信(如RS-232、RS-485)和以太网通信(如TCP/IP)。

具体的物理层协议需根据实际应用场景进行选择。

2. 数据帧结构Modbus通讯协议使用二进制格式进行数据传输。

每个数据帧由以下几部分组成:- 地址码:用于标识通信的主机或从机。

- 功能码:用于指定通信的操作类型。

- 数据域:包含具体的数据内容。

- 校验码:用于校验数据的完整性。

3. 功能码Modbus通讯协议定义了一系列功能码,用于指定不同的通信操作。

常用的功能码包括:- 读取线圈状态(功能码01)- 读取输入状态(功能码02)- 读取保持寄存器(功能码03)- 读取输入寄存器(功能码04)- 写单个线圈(功能码05)- 写单个寄存器(功能码06)- 写多个线圈(功能码15)- 写多个寄存器(功能码16)四、通信流程1. 主机发送请求Modbus主机向从机发送请求数据帧,包括地址码、功能码以及相关的参数。

2. 从机响应请求Modbus从机接收到主机的请求后,根据功能码执行相应的操作,并将执行结果封装在响应数据帧中发送给主机。

3. 错误处理如果从机无法正确执行主机的请求,将在响应数据帧中返回错误码,主机根据错误码进行相应的处理。

五、数据格式1. 线圈状态线圈状态用于存储布尔数据,每个线圈占用一个位。

线圈状态的读取和写入通过对应的功能码进行操作。

modbus通讯协议

modbus通讯协议

modbus通讯协议协议名称:Modbus通讯协议一、引言Modbus通讯协议是一种常用的工业通信协议,用于在自动化系统中实现设备之间的数据通信。

本协议旨在规范Modbus通讯的数据格式、通信方式和协议规则,以确保设备之间的可靠通信和数据交换。

二、范围本协议适用于使用Modbus通讯协议的设备和系统,包括但不限于工业自动化控制系统、能源管理系统、楼宇自动化系统等。

本协议规定了Modbus通讯的基本要求和规则,供设备制造商、系统集成商和用户参考。

三、术语和定义3.1 Modbus主站:指发起通讯请求的设备或系统。

3.2 Modbus从站:指接收通讯请求并响应的设备或系统。

3.3 寄存器:指Modbus通讯中用于存储数据的内存单元。

3.4 线圈:指Modbus通讯中用于存储开关状态的内存单元。

四、通讯方式4.1 物理层Modbus通讯可以使用不同的物理层,包括串行通讯和以太网通讯。

串行通讯可以使用RS-232、RS-485等接口,以太网通讯可以使用TCP/IP协议。

4.2 数据帧格式Modbus通讯使用二进制数据帧进行传输。

数据帧包括起始符、从站地址、功能码、数据域、校验码和结束符等字段。

4.3 通讯速率通讯速率是指Modbus通讯中数据传输的速度,可以根据具体需求进行设置,常见的通讯速率有9600bps、19200bps、38400bps等。

五、功能码Modbus通讯使用功能码来标识通讯请求的类型和从站的响应。

常见的功能码包括读取线圈状态、读取输入状态、读取保持寄存器、写入单个线圈等。

六、数据格式6.1 线圈和离散输入线圈和离散输入用于存储开关状态,每个线圈或离散输入占用一个位。

线圈和离散输入的数据格式为布尔型。

6.2 保持寄存器和输入寄存器保持寄存器和输入寄存器用于存储数值数据,每个寄存器占用16位。

保持寄存器的数据格式为有符号整型或无符号整型,输入寄存器的数据格式为无符号整型。

七、通讯规则7.1 请求和响应Modbus通讯是基于请求和响应的方式进行的。

modbus通讯协议

modbus通讯协议

modbus通讯协议协议名称:Modbus通讯协议一、引言Modbus通讯协议是一种用于工业自动化领域的通信协议,它允许不同设备之间进行数据交换。

本协议旨在规范Modbus通讯协议的格式和规则,确保各设备之间能够正确地进行数据通信。

二、协议概述Modbus通讯协议采用主从结构,其中主机负责发送请求,从机负责响应请求。

协议支持多种数据类型和功能码,包括读取和写入寄存器、读取和写入线圈等。

通信方式可以是串行或以太网。

三、协议格式1. 物理层Modbus通讯协议可以在串行通信和以太网通信中使用。

- 串行通信:使用RS-232、RS-485等串行接口,通信速率可根据实际需求进行配置。

- 以太网通信:使用TCP/IP协议栈,通信速率可根据网络带宽进行配置。

2. 数据帧格式Modbus通讯协议采用二进制数据帧格式,每个数据帧由多个字节组成。

- 串行通信数据帧:起始位(1位) + 数据位(8位) + 奇偶校验位(1位) + 停止位(1位)- 以太网通信数据帧:TCP/IP数据报文格式3. 寄存器地址Modbus通讯协议中的寄存器地址用于标识设备中的不同数据寄存器或线圈。

- 线圈地址:0x0000 - 0xFFFF- 输入寄存器地址:0x0000 - 0xFFFF- 保持寄存器地址:0x0000 - 0xFFFF- 输入状态地址:0x0000 - 0xFFFF4. 功能码Modbus通讯协议定义了多种功能码,用于不同的操作类型。

- 读取线圈状态:功能码0x01- 读取输入状态:功能码0x02- 读取保持寄存器:功能码0x03- 读取输入寄存器:功能码0x04- 写单个线圈:功能码0x05- 写单个保持寄存器:功能码0x06- 写多个线圈:功能码0x0F- 写多个保持寄存器:功能码0x10四、协议规则1. 请求与响应- 请求帧:主机发送请求帧给从机,包含功能码、起始地址和数据长度等信息。

- 响应帧:从机接收请求帧后,根据功能码执行相应操作,并将结果封装到响应帧中发送给主机。

modbus通讯协议

modbus通讯协议

modbus通讯协议协议名称:Modbus通讯协议1. 引言Modbus通讯协议是一种用于工业自动化系统中的通信协议,它定义了一种用于在不同设备之间传输数据的标准通信方式。

本协议旨在确保设备之间的数据传输准确、可靠、高效,并提供了一套规范的通信指令。

2. 术语和定义在本协议中,以下术语和定义适用:- 主站(Master):具有控制和管理能力的设备,负责发起通信请求。

- 从站(Slave):响应主站请求的设备,负责执行指令并返回数据。

- 寄存器(Register):用于存储数据的内存单元。

- 线圈(Coil):用于表示开关状态的单元。

3. 协议结构Modbus通讯协议采用了客户端-服务器模型,主站作为客户端发起请求,从站作为服务器响应请求。

协议的数据传输格式如下:- 通信方式:基于串行通信或以太网通信。

- 帧结构:包括起始符、从站地址、功能码、数据区和校验码。

- 功能码:用于标识请求的类型,如读取寄存器、写入寄存器等。

- 数据区:用于存储请求的数据或返回的数据。

- 校验码:用于验证数据的完整性。

4. 功能码和指令Modbus通讯协议定义了一系列功能码和指令,用于实现不同的操作和数据传输。

以下是常用的功能码和指令:- 读取寄存器(Read Holding Registers):主站向从站请求读取指定寄存器中的数据。

- 写入寄存器(Write Single Register):主站向从站发送指令,将数据写入指定的寄存器。

- 批量写入寄存器(Write Multiple Registers):主站向从站发送指令,批量写入数据到连续的寄存器中。

- 读取线圈(Read Coils):主站向从站请求读取指定线圈的状态。

- 写入线圈(Write Single Coil):主站向从站发送指令,设置指定线圈的状态。

5. 数据格式Modbus通讯协议支持多种数据格式,包括二进制、十进制、十六进制等。

数据格式的选择取决于具体应用场景和设备要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Modbus通讯协议一、 Modbus 协议简介Modbus 协议是应用于电子控制器上的一种通用语言。

通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。

它已经成为一通用工业标准。

有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。

此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。

它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。

它制定了消息域格局和内容的公共格式。

当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。

如果需要回应,控制器将生成反馈信息并用Modbus协议发出。

在其它网络上,包含了Modbus 协议的消息转换为在此网络上使用的帧或包结构。

这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。

1、在Modbus网络上转输标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。

控制器能直接或经由Modem 组网。

控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。

其它设备(从设备)根据主设备查询提供的数据作出相应反应。

典型的主设备:主机和可编程仪表。

典型的从设备:可编程控制器。

主设备可单独和从设备通信,也能以广播方式和所有从设备通信。

如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。

Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。

从设备回应消息也由Modbus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。

如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。

2、在其它类型网络上转输在其它网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。

这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。

提供的多个内部通道可允许同时发生的传输进程。

在消息位,Modbus协议仍提供了主—从原则,尽管网络通信方法是“对等”。

如果一控制器发送一消息,它只是作为主设备,并期望从从设备得到回应。

同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。

3、查询—回应周期(1)查询查询消息中的功能代码告之被选中的从设备要执行何种功能。

数据段包含了从设备要执行功能的任何附加信息。

例如功能代码03是要求从设备读保持寄存器并返回它们的内容。

数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。

错误检测域为从设备提供了一种验证消息内容是否正确的方法。

(2)回应如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。

数据段包括了从设备收集的数据:象寄存器值或状态。

如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。

错误检测域允许主设备确认消息内容是否可用。

二、两种传输方式控制器能设置为两种传输模式(ASCII或RTU)中的任何一种在标准的Modbus网络通信。

用户选择想要的模式,包括串口通信参数(波特率、校验方式等),在配置每个控制器的时候,在一个Modbus网络上的所有设备都必须选择相同的传输模式和串口参数。

所选的ASCII或RTU方式仅适用于标准的Modbus网络,它定义了在这些网络上连续传输的消息段的每一位,以及决定怎样将信息打包成消息域和如何解码。

在其它网络上(象MAP和Modbus Plus)Modbus消息被转成与串行传输无关的帧。

1、ASCII模式当控制器设为在Modbus网络上以ASCII(美国标准信息交换代码)模式通信,在消息中的每个8Bit字节都作为两个ASCII字符发送。

这种方式的主要优点是字符发送的时间间隔可达到1秒而不产生错误。

代码系统· 十六进制,ASCII字符0...9,A...F· 消息中的每个ASCII字符都是一个十六进制字符组成每个字节的位· 1个起始位· 7个数据位,最小的有效位先发送· 1个奇偶校验位,无校验则无CRC域是两个字节,包含一16位的二进制值。

它由传输设备计算后加入到消息中。

接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。

CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。

仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。

CRC产生过程中,每个8位字符都单独和寄存器内容相或(OR),结果向最低有效位方向移动,最高有效位以0填充。

LSB被提取出来检测,如果LSB 为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。

整个过程要重复8次。

在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。

最终寄存器中的值,是消息中所有的字节都执行之后的CRC 值。

CRC添加到消息中时,低字节先加入,然后高字节。

CRC简单函数如下:unsigned short CRC16(puchMsg, usDataLen)unsigned char *puchMsg ; /* 要进行CRC校验的消息 */unsigned short usDataLen ; /* 消息中字节数 */{unsigned char uchCRCHi = 0xFF ; /* 高CRC字节初始化 */unsigned char uchCRCLo = 0xFF ; /* 低CRC 字节初始化 */unsigned uIndex ; /* CRC循环中的索引 */while (usDataLen--) /* 传输消息缓冲区 */{uIndex = uchCRCHi ^ *puchMsgg++ ; /* 计算CRC */uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ;uchCRCLo = auchCRCLo[uIndex] ;}return (uchCRCHi << 8 uchCRCLo) ;}/* CRC 高位字节值表 */static unsigned char auchCRCHi[] = {0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40} ;/* CRC低位字节值表*/static char auchCRCLo[] = {0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40} ;ModBus网络是一个工业通信系统,由带智能终端的可编程序控制器和计算机通过公用线路或局部专用线路连接而成。

相关文档
最新文档