浙教版七年级数学下册第二章测试题及答案.doc

合集下载

浙教版七年级数学下册第二章一元二次方程测试卷(Word版含答案)

浙教版七年级数学下册第二章一元二次方程测试卷(Word版含答案)

浙教版七下第二章 一元二次方程测试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x -=+是二元一次方程,a 必须满足( ) A .0a ≠B .3a ≠-C .3a ≠D .2a ≠2.(3分)关于二元一次方程48x y +=的解,下列说法正确的是( ) A .任意一对有理数都是它的解 B .有无数个解 C .只有一个解D .只有两个解3.(3分)下列方程组中属于二元一次方程组的有( )(1)211x y y z -=⎧⎨=+⎩(2)03x y =⎧⎨=⎩(3)0235x y x y -=⎧⎨+=⎩(4)212 1.x y x y ⎧+=⎨+=-⎩.A .1个B .2个C .3个D .4个4.(3分)解方程组①216511y x x y =+⎧⎨+=-⎩;②2310236x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-6.(3分)由方程组43x m y m +=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .108.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x ,y ,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是.12.(3分)试写出一个关于x、y的的二元一次方程,使它的一个解为12xy=⎧⎨=⎩,这个方程为.13.(3分)已知x、y满足方程组52723x yx y+=⎧⎨-=⎩,则x y+的值为.14.(3分)若22(24)()|4|0x x y z y-+++-=,则x y z++等于.15.(3分)若21xy=⎧⎨=⎩是方程组75ax bybx cy+=⎧⎨+=⎩的解,则a与c的关系是.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A、B、C三种套餐的促销活动.已知A种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A种套餐需35元,那么小明同学要买2个A种套餐、1个B种套餐和2个C种套餐共需费用元.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价(元)超过1千克的部分(元/千克)上海7b北京104b+目的地质量(千克)费用(元)上海26a-北京37a+23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?浙教版七下第二章一元二次方程测试卷(含解析)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x-=+是二元一次方程,a必须满足() A.0a≠B.3a≠-C.3a≠D.2a≠【解答】解:方程236ax y x-=+变形为(3)260a x y---=,根据二元一次方程的定义,得30a-≠,解得3a≠.故选:C.2.(3分)关于二元一次方程48x y+=的解,下列说法正确的是() A.任意一对有理数都是它的解B.有无数个解C.只有一个解D.只有两个解【解答】解:对于二元一次方程48x y+=,有无数个解,故选:B.3.(3分)下列方程组中属于二元一次方程组的有()(1)211x yy z-=⎧⎨=+⎩(2)3xy=⎧⎨=⎩(3)235x yx y-=⎧⎨+=⎩(4)212 1.x yx y⎧+=⎨+=-⎩.A.1个B.2个C.3个D.4个【解答】解:(1)本方程组中含有3个未知数;故本选项错误;(2)有两个未知数,方程的次数是1次,所以是二元一次方程组;(3)有两个未知数,方程的次数是1次,所以是二元一次方程组;(4)第一个方程未知项2x的次数为2,故不是二元一次方程组.共2个属于二元一次方程组.故选:B.4.(3分)解方程组①216511y xx y=+⎧⎨+=-⎩;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法是()A.均用代入法B.均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【解答】解:解方程组①216511y xx y=+⎧⎨+=-⎩比较简便的方法为代入法;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法加减法,故选:C.5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-【解答】解:2x y m =-⎧⎨=⎩是方程64nx y +=的一个解, ∴代入得:264n m -+=,32m n ∴-=, 31213m n ∴-+=+=,故选:A .6.(3分)由方程组43x m y m+=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【解答】解:原方程可化为43x m y m +=⎧⎨-=⎩①②,①+②得,7x y +=. 故选:C .7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .10【解答】解:根据题意得:322222a b a b -=⎧⎨-+=⎩,解得:45a b =⎧⎨=⎩,将3x =,2y =-代入得:3148c +=, 解得:2c =-,则4527a b c ++=+-=. 故选:A .8.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-【解答】解:36x m y m +=⎧⎨-=⎩①②,把②代入①得,63x y +-=,整理得,9x y+=,故选:C.9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩【解答】解:设甲需持钱x,乙持钱y,根据题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:B.10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天【解答】解:设每支牙刷x元,每盒牙膏y元.第1天:137132x y+=;第2天:2614264x y+=;第3天:3921393x y+=;第4天:5228528x y+=.假设第1天的记录正确,则第2天、第4天的记录也正确;假设第1天的记录错误,则第2天、第4天的记录也错误.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是3.5y =⎩移项得:5318a -=-, 合并得:515a -=-, 解得:3a =. 故答案为:3.12.(3分)试写出一个关于x 、y 的的二元一次方程,使它的一个解为12x y =⎧⎨=⎩,这个方程为3x y +=(答案不唯一) .【解答】解:根据题意:3x y +=(答案不唯一), 故答案为:3x y +=(答案不唯一)13.(3分)已知x 、y 满足方程组52723x y x y +=⎧⎨-=⎩,则x y +的值为 1 .【解答】解:527(1)23(2)x y x y +=⎧⎨-=⎩,(1)-(2)得:444x y +=, 1x y ∴+=,故答案为:1.14.(3分)若22(24)()|4|0x x y z y -+++-=,则x y z ++等于 12- .【解答】解:22(24)()|4|0x x y z y -+++-=, ∴240040x x y z y -=⎧⎪+=⎨⎪-=⎩, 解得:2212x y z ⎧⎪=⎪=-⎨⎪⎪=-⎩,则112222x y z ++=--=-. 故答案为:12-.15.(3分)若21x y =⎧⎨=⎩是方程组75ax by bx cy +=⎧⎨+=⎩的解,则a 与c 的关系是 49a c -= .1y =⎩5bx cy +=⎩得2725a b b c +=⎧⎨+=⎩①②,①2⨯-②,得49a c -=. 故答案为:49a c -=.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为 355(1)x y x y =+⎧⎨=-⎩.【解答】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为: 355(1)x y x y =+⎧⎨=-⎩. 故答案为:355(1)x y x y =+⎧⎨=-⎩.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两. 【解答】解:设有x 人,银子y 两, 由题意得:7498y x y x =+⎧⎨=-⎩,解得646x y =⎧⎨=⎩,故答案为46.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A 、B 、C 三种套餐的促销活动.已知A 种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B 种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C 种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A 种套餐需35元,那么小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用 210 元.【解答】解:设1盒原味的价格为x 元,1盒果粒味的价格为y 元,1盒大红枣味的结果为z 元, 由题意得:34535x y z ++=,则小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用为: 2352882(546)x y z x y z ⨯++++++ 70121620x y z =+++ 704(345)x y z =+++ 70435=+⨯210=(元),故答案为:210.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.【解答】解:经验算41xy=⎧⎨=⎩是方程1352x y+=的解,再写一个方程,如3x y-=.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩【解答】解:(1)在1(1)24(2)x yx y+=⎧⎨-=-⎩中,(1)+(2)得:33x=-,解得:1x=-,把1x=-代入(1)得:2y=.∴方程组的解为12xy=-⎧⎨=⎩.(2)在1(1)234()5()38(2)x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩中,由(1)得:56x y+=(3),由(2)得:938x y-+=-,938x y∴=+,将938x y=+代入(3)得:46184y=-, 4y∴=-.把4y=-代入938x y=+,得2x=.∴方程组的解为24xy=⎧⎨=-⎩.21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.【解答】解:方程组27431x y x y +=⎧⎨-=-⎩①②, ①3⨯+②得:1020x =,即2x =,把2x =代入①得:3y =,把2x =,3y =代入方程得:63a =+,即3a =,则原式21791715a =-+=-+=.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表: 收费标准: 目的地起步价(元) 超过1千克的部分(元/千克) 上海7 b 北京10 4b + 目的地质量(千克) 费用(元) 上海2 6a - 北京3 7a +【解答】解:依题意得:7(21)610(31)(4)7b a b a +-=-⎧⎨+-+=+⎩, 解得:152a b =⎧⎨=⎩. 答:a 的值为15,b 的值为2.23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?【解答】解:(1)设甲种口罩购进了x 盒,乙种口罩购进了y 盒,依题意得:900202519000x y x y +=⎧⎨+=⎩, 解得:700200x y =⎧⎨=⎩,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)207002520014000500019000⨯+⨯=+=(个),29001018000⨯⨯=(个), 1900018000>,∴购买的口罩数量能满足市教育局的要求.24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【解答】解:(1)设该市一级水费的单价为x元,二级水费的单价为y元,依题意得:103212(1412)51.4xx y=⎧⎨+-=⎩,解得:3.26.5xy=⎧⎨=⎩.答:该市一级水费的单价为3.2元,二级水费的单价为6.5元.(2) 3.21238.4⨯=(元),38.464.4<,∴用水量超过312m.设用水量为a3m,依题意得:38.4 6.5(12)64.4a+-=,解得:16a=.答:当缴纳水费为64.4元时,用水量为316m.。

浙教版七年级下数学第二章二元一次方程组单元试卷附答案

浙教版七年级下数学第二章二元一次方程组单元试卷附答案

浙教版七年级下数学第二章二元一次方程组单元试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y=D.xy=12.方程(m2﹣9)x2+x﹣(m+3)y=0是关于x、y的二元一次方程,则m的值为()A.±3 B.3 C.﹣3 D.93.下列各组数值中,是方程2x﹣y=8的解的是()A.B.C.D.4.如果x,y取0,1,2,…9中的数,且3x﹣2y=11,则10x+y的值可以有()A.1个B.2个C.3个D.4个5.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.46.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.7.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A.B.C.D.8.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出9.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元10.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)11.把方程2x+y=3改写成用含x的式子表示y的形式,得y=.12.已知方程组与的解相同,那么a+b=.13.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.14.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需元.15.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.16.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.评卷人得分三.解答题(共7小题,52分)17.(6分)已知关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.18.(6分)k为何值时,方程组有唯一一组解;无解;无穷多解?19.(6分)解方程组:方程组中的①式实际包含三个等式:=,=,=,只需任取其中两个(另一个通过这两个代换即可得),便可以与②式联立成三元一次方程组,如,然后用一般方法求解.对原方程组也可以用换元的方法来求解.令===k,则有x=2k,y=3k,z=4k③,把③代入②,得4k+3k+4k=22,解得k=2,所以x=4,y=6,z=8,所以原方程组的解为.借鉴上述“换元法”,解方程组.20.(8分)根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为②的解为③的解为(2)以上每个方程组的解中,x值与y值的大小关系为.(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.21.(8分)解方程组:(1)(2)22.(8分)北京2008年奥运会跳水决赛的门票价格如下表:等级A B C票价(元/张)未知未知150小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.(1)若小聪购买1张A等票和7张B等票共需花费多少元?(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为张.(该小题直接写出答案,不必写出过程.)23.(10分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行了测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2号教学大楼,有和1号教学大楼相同的正门和侧门共5道,若这栋大楼的教室里最多有1920名学生,安全检查规定,在紧急情况下,全大楼学生应在4分钟内通过这5道门安全撤离,该栋大楼正门和侧门各有几道?参考答案与试题解析一.选择题(共10小题)1.B2.B3.C4.C5.B6.C7.D8.A9.B10.B二.填空题(共6小题)11.y=3﹣2x.12.1.5 13..14.48 15.120 16.三.解答题(共7小题)17.解:将方程化为a的表达式:(x+y﹣2)a=x﹣2y﹣5,由于x,y的值与a的取值无关,即这个关于a的方程有无穷多个解,所以有,解得.18.解:原方程组可化为,①当,即k≠﹣2时,原方程组有唯一一组解;②当=≠,即k无论取什么值,都不能使原方程组无解;③当==,即k=﹣2时,原方程组有无穷多解.19.解:把解方程组中的,可得:x=2k﹣1,y=3k﹣2,z=4k﹣3,把x=2k﹣1,y=3k﹣2,z=4k﹣3代入2x+3y﹣z=13,可得:4k﹣2+9k﹣6﹣4k+3=13,解得:k=2,可得:x=3,y=4,z=5;所以方程组的解是:.20.解:(1)①的解为;②的解为;③的解为;(2)以上每个方程组的解中,x值与y值的大小关系为x=y;(3),解为,故答案为:(1)①;②;③;(2)x=y21.解:(1)①×3+②,得16x=48解得,x=3,将x=3代入①,得y=2故原方程组的解是;(2)①+②,得2x+4y=﹣2④②×3+③,得3x+11y=﹣8⑤④×3﹣⑤×2,得﹣10y=10解得,y=﹣1,将y=﹣1代入④,得x=1,将x=1,y=﹣1代入①,得z=﹣2故原方程组的解是.22.解:(1)设购买1张A等票需要x元,1张B等票需花费y元,根据题意可得:,解得:,故500+7×300=2600(元),答:小聪购买1张A等票和7张B等票共需花费2600元;(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为8或9或10张.故答案为:8或9或10.23.解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)设该栋大楼正门有m道,侧门有n道,则,解得.故该栋大楼正门有2道,侧门有3道.。

第2章 一元二次方程 浙教版七年级数学下册单元测试卷(含答案)

第2章 一元二次方程 浙教版七年级数学下册单元测试卷(含答案)
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
20.(8分)在长方形ABCD中,AB=6 cm,BC=12 cm,点P从点A出发沿边AB向点B以1 cm/s的速度移动;同时点Q从点B出发沿边BC向点C以2 cm/s的速度移动,设运动时间为t.
(1)问几秒后△PBQ的面积等于8 cm2?
(2)是否存在t,使△PDQ的面积等于26 cm2?
21.(8分)随着阿里巴巴、京东、苏宁电商等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
A.12步B.24步C.36步D.48步
10.设关于x的方程ax2+(a+2)x+9a=0有两个不相等的实数根x1,x2,且x1<1<x2,那么实数a的取值范围是()
A.a<- B.- <a<0 C.a> D. <a<
二、填空题(每小题4分,共24分)
11.方程x2=6x的解是___.
12.已知方程x2-3x+k=0有两个不相等的实数根,则k的范围是____.
16.如图,在矩形ABCD中,AB=6 cm,BC=8 cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1 cm/s的速度沿AB向终点B移动,点Q以2 cm/s的速度沿BC向终点C移动,其中一点到达终点,另一点也随之停止运动.连接PQ,若经过xs后P,Q两点之间的距离为4 cm,那么x的值为____.
三、解答题(共66分)
17.(16分)解下列方程:

浙教版七年级数学下册第2章测试题及答案

浙教版七年级数学下册第2章测试题及答案

浙教版七年级数学下册第2章测试题及答案2.1 二元一次方程一.选择题(共5小题)1.在下列方程中:(1)3x+=8;(2)+2y=4;(3)3x+=1;(4)x2=5y+1;(5)y=x;(6)2(x﹣y)﹣3(x+)=x+y是二元一次方程的有()A.2个B.3个C.4个D.5个2.若x|k|+ky=2+y是关于x、y的二元一次方程,则k的值为()A.1 B.﹣1 C.1或﹣1 D.03.若(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4 B.m=﹣2018,n=±4C.m=±2018,n=﹣4 D.m=﹣2018,n=44.下列方程中,二元一次方程的个数有()①x2+y2=3;②3x+=4;③2x+3y=0;④+=7A.1 B.2 C.3 D.45.在下列方程中:(1)3x+=8;(2)+2y=4;(3)3x﹣3(y+x)=1;(4)x2=5y+1;(5)y=x是二元一次方程的有()A.2个B.3个C.4个D.5个二.填空题(共5小题)6.关于x,y的方程x2m﹣n﹣2+4y m+1=6是二元一次方程,则m+n=.7.已知(m﹣2)x|m﹣1|+y=0是关于x,y的二元一次方程,则m=.8.已知方程x2m﹣n﹣2+4y m+n+1=6是关于x,y的二元一次方程,则m=,n=.9.在方程①2x+3y=4,②+2y=3,③xy+2=0,④x2+3y=0,⑤4y﹣3=2﹣y中,是二元一次方程的是.(填序号)10.已知3x n﹣2﹣y2m+1=0是关于x,y的二元一次方程,则m=,n=.三.解答题(共8小题)11.方程2x m+1+3y2n=5是二元一次方程,求m,n.12.已知关于x,y的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5.(1)当m为何值时,它是一元一次方程?(2)当m为何值时.它是二元一次方程?13.已知方程(m﹣2)x|m|﹣1+(n+3)=6是关于x,y的二元一次方程.(1)求m,n的值;(2)求x=时,y的值.14.已知关于x的方程(2a﹣6)x|b|﹣1+(b+2)=0是二元一次方程,求a、b的值.15.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.参考答案一.1.B 2.B 3.D 4.B 5.B二.6.﹣3 7.0 8.1、﹣1 9.①10.0, 3三.11.解:根据二元一次方程的定义,m+1=1,2n=1,解得m=0,n=.12.解:(1)依题意,得m2﹣4=0且m+2=0,或m2﹣4=0且m+1=0,解得m=﹣2.即当m=﹣2时,它是一元一次方程.(2)依题意,得m2﹣4=0且m+2≠0、m+1≠0,解得m=2.即当m=2时,它是二元一次方程.13.解:(1)因为,已知方程(m﹣2)x|m|﹣1+(n+3)=6是关于x,y的二元一次方程,所以,解这个不等式组,得m=﹣2,n=3即m=﹣2,n=3(2)因为,当m=﹣2,n=3时,二元一次方程可化为:﹣4x+6y=6所以,当x=时,有﹣4×+6y=6y=即求x=时,y的值为14.解:∵(2a﹣6)x|b|﹣1+(b+2)=0是二元一次方程,∴,且2a﹣6≠0,b+2≠0,解得a=﹣3,b=2.15.解:(1)把和代入方程得:,①×2+②,得15n=15,解得n=1,把n=1代入①,得m=2,(2)当时,原方程变为:2x﹣3y=5,解得x=,∵x<﹣2,∴<﹣2,解得y<﹣3.故y的取值范围是y<﹣3.2.2 二元一次方程组一.选择题(共5小题)1.在方程组,,,,中,是二元一次方程组的有()A.2个B.3个C.4个D.5个2.下列不是二元一次方程组的是()A.B.C.D.3.若解得x、y的值互为相反数,则k的值为()A.4 B.﹣2 C.2 D.﹣44.如果方程组的解同时满足3x+y=﹣2,则k的值是()A.﹣4 B.﹣3 C.﹣2 D.﹣15.方程组的解为,则被遮盖的两个数分别为()A.2,1 B.2,3 C.5,1 D.2,4二.填空题(共5小题)6.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是.7.若方程组的解为,则方程组的解是.8.已知关于x,y的方程组.给出下列结论:②当k=时,x,y的值互为相反数;③若方程组的解也是方程x+y=4﹣k的解,则k=1;④若2x•8y=2z,则z=1.其中正确的是.9.方程组的解满足方程x+y+a=0,那么a的值是.10.已知是方程组的解,则代数式a+b的值为.三.解答题(共5小题)11.已知方程组,甲正确地解得,而乙粗心地把C看错了,得,试求出a,b,c 的值.12.已知关于x,y的方程组,给出下列结论:①当t=﹣1时,方程组的解也是方程x+2y=2的解;②当x=y时,t=﹣;③不论t取什么实数,x+2y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.13.已知关于x、y的方程组.(1)若x、y是互为相反数,求a的值;(2)若x﹣y=2,求方程组的解和a的值.14.在解关于x,y的方程组时,老师告诉同学们正确的解是,粗心的小勇由于看错了系数c,因而得到的解为,试求abc的值.15.已知关于x,y的方程组(1)请直接写出方程x+2y﹣6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+5=0总有一个固定的解,请直接写出这个解?(4)若方程组的解中x恰为整数,m也为整数,求m的值.参考答案一.1.A 2.A 3.D 4.B 5.C二.6.x+y=1 7.8.①②④9.1 10.0三.11.解:根据题意,得,解得,把代入方程5x﹣cy=1,得到:10﹣3c=1,解得c=3.故a=3,b=﹣1 c=3.12.解:①把t=﹣1代入方程组得,解得,把代入x+2y=2得:左边=﹣6+2=﹣4≠右边,不符合题意;②由y=x,得到,解得t=﹣,符合题意;③,①+②得2y=2t+16,即y=t+8,①﹣②得2x=﹣4﹣4t,即x=﹣2t﹣2,x+2y=﹣2t﹣2+2t+16=14,符合题意;④z=﹣(t+8)(﹣2t﹣2)=(t+8)(t+1)=t2+9t+8=(t+)2+≥,不符合题意.13.解:(1)由题意,得x+y=0,方程组两方程相加,得3(x+y)=3a﹣3,即x+y=a﹣1,可得a﹣1=0,解得a=1;(2)方程组两方程相减,得x﹣y=﹣a﹣5,代入x﹣y=2得﹣a﹣5=2,解得a=﹣7,方程组为,①×2﹣②,得3y=15,解得y=5,把y=5代入②,得x=﹣8,则方程组的解为.14.解:把和代入ax+by=2中,得,解得,把代入cx﹣7y=8中,得c=﹣2,则abc=﹣40.15.解:(1)方程x+2y﹣6=0,2x+y=6,解得x=6﹣2y,当y=1时,x=4;当y=2时,x=2,方程x+2y﹣6=0的所有正整数解为,;(2)由题意得,解得,把代入x﹣2y+mx+5=0,解得m=﹣;(3)x﹣2y+mx+5=0,(1+m)x﹣2y=﹣5,∴当x=0时,y=2.5,即固定的解为,(4),①+②得2x﹣6+mx+5=0,(2+m)x=1,x=,∵x恰为整数,m也为整数,∴2+m是1的约数,2+m=1或﹣1,m=﹣1或﹣3.2.3 解二元一次方程组一.选择题(共9小题)1.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.22.如果|x﹣2y+1|+|x+y﹣5|=0,那么xy=()A.2 B.3 C.5 D.63.若x,y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.34.已知关于x,y的方程组,甲看错a得到的解为,乙看错了b得到的解为,他们分别把a、b错看成的值为()A.a=5,b=﹣1 B.a=5,b=C.a=﹣l,b=D.a=﹣1,b=﹣15.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.46.若方程组的解x和y相等,则a的值为()A.1 B.2 C.3 D.47.若5x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A.0 B.1 C.2 D.38.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.29.如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A.x=3,y=2 B.x=2,y=3 C.x=0,y=5 D.x=5,y=0二.填空题(共3小题)10.若实数x,y满足,则代数式2x+3y﹣2的值为.11.已知方程组与有相同的解,则m=,n=.12.如果方程组与方程组的解相同,则m=,n=.三.解答题(共13小题)13.已知方程组和有相同的解,求a2﹣2ab+b2的值.14.解下列方程组:(1)(2)15.解下列方程组:(1)用代入法解方程组:(2)用加减法解方程组:16.下列解方程组:(1)(2)17.解下列方程组:(1)(2)参考答案一.1.D 2.D 3.A 4.A 5.B 6.C 7.A 8.A 9.C 二.10.4 11.,12 12.3,2三.13.解:解方程组得,把代入第二个方程组得,解得,则a2﹣2ab+b2=22﹣2×2×1+12=1.14.解:(1),①×2+②,得到5x=20,∴x=4,把x=4代入①得到y=﹣1,∴.(2),①﹣②×2得到19y=﹣38,y=﹣2,把y=﹣2代入②得到:x=3,∴15.解:(1)由①得y=2x﹣5 ③,把③代入②,得3x+4(2x﹣5)=2,解得x=2,把x=2代入③,得y=2×2﹣5=﹣1,∴方程组的解为.(2)把①×3得9x+12y=48 ③,把②×2得10x﹣12y=66 ④,③+④得19x=114解得x=6,把x=6代入①得18+4y=16,解得y=﹣,∴方程组的解为.16.解:(1),①×3﹣②×2,得11x=22,解得x=2,将x=2代入①,得10﹣2y=4,解得y=3,所以方程组的解为;(2),②代入①,得4x﹣3(7﹣5x)=17,解得x=2,将x=2代入②,得y=﹣3,所以方程组的解为.17.解:(1),①×4+②,得11x=22,解得x=2,将x=2代入①,得4﹣y=5,解得y=﹣1,所以方程组的解为;(2),①﹣②,得2y=﹣8,解得y=﹣4,将y=﹣4代入②,得x﹣4=2,解得x=12,所以方程组的解为.2.4 二元一次方程组的应用一.选择题(共5小题)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.2.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=3.甲、乙两人骑自行车比赛,若甲先骑30分钟,则乙出发后50分钟可追上甲,设甲、乙每小时分别骑x 千米、y千米,则可列方程()A.30x=50y B.C.(30+50)x=50y D.4.如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()(第4题图)A.0.6x+0.4y+100=500 B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500 D.0.4x+0.6y﹣100=5005.某市举办花展,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为()(第5题图)A.8 B.13 C.16 D.20二.填空题(共4小题)6.以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺,绳长,井深各几何若设绳长x 尺,井深y尺,则可列方程组为.7.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x,y的系数.因此,根据此图可以列出方程:x+10y=26.请你根据图2列出方程组.(第7题图)8.老王家去年收入x元,支出y元,而今年收入比去年多15%,支出比去年少10%,结果今年结余30000元,根据题意可列出的方程为.9.盒子里有若干个大小相同的白球和红球,从中任意摸出一个球,摸到红球得2分,摸到白球得3分.某人摸到x个红球,y个白球,共得12分.列出关于x、y的二元一次方程:.三.解答题(共2小题)10.下列各个图是由若干个花盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是s.(第10题图)按此规律推断,以s、n为未知数的二元一次方程是.11.某工厂用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图2所示的竖式与横式两种无盖的长方体纸盒.设加工竖式纸盒x个,横式纸盒y个.(第11题图)(1)根据题意,完成以下表格:(2)工人李娟从仓库领来了长方形纸板2012张,正方形纸板1003张,请你帮她计划竖式纸盒、横式纸盒各加工多少个,恰好将领来的纸板全部用完;(3)李娟有一张领取材料的清单,上面写着:长方形纸板a张(碰巧a处的数字看不清了,她只记得不超过142张),正方形纸板90张.并且领来的材料恰好全部用于加工上述两种纸盒,试求出她加工这两种盒子各多少个?参考答案与试题解析一.1.C 2.A 3.D 4.A 5.C二.6.7.8.(1+15%)x﹣(1﹣10%)y=300009.2x+3y=12三.10.解:由图可知:第一图:有花盆3个,每条边有花盆2个,那么s=3×2﹣3;第二图:有花盆6个,每条边有花盆3个,那么s=3×3﹣3;第二图:有花盆9个,每条边有花盆4个,那么s=3×4﹣3;…由此可知以s,n为未知数的二元一次方程为s=3n﹣3.11.解:(1)完成表格如下所示:(2)由题意,得,解得,答:竖式纸盒加工203个,横式纸盒加工400个.(3)由题意,得,解得y=72﹣a,x=90﹣2y,∵a≤142,∴y≥43.6.∵x>0,∴90﹣2y>0,∴y<45,∴43.6≤y<45.∵y为正整数,∴y=44,x=2.答:他做竖式纸盒2个,横式纸盒44个.2.5 三元一次方程组及其解法(选学)一.选择题(共5小题)1.解下面的方程组时,要使解法较为简便,应()A.先消去x B.先消去y C.先消去z D.先消去常数2.三元一次方程组,消去未知数z后,得到的二元一次方程组是()A.B.C.D.3.下列四组数值中,()是方程组的解.A.B.C.D.4.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元5.如图,在正方形ABCD的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB上的数是3,BC上的数是7,CD上的数是12,则AD上的数是()(第5题图)A.2 B.7 C.8 D.15二.填空题(共2小题)6.方程组的解是.7.已知:,则x+y+z=.三.解答题(共4小题)8.解三元一次方程组:.9.解方程组:.10.甲地到乙地全程是142千米,一段上坡、一段平路、一段下坡,如果保持上坡每小时行驶28千米,平路每小时行驶30千米,下坡每小时行驶35千米,从甲地行驶到乙地需4小时30分钟,从乙地行驶到甲地需4小时42分钟,问:从甲地到乙地时,上坡、平路、下坡的路程各是多少?11.吃仙果的趣味问题:三种仙果红紫白,八戒共吃十一对;白果占紫三分一,紫果正是红二倍;三种仙果各多少?看谁算得快又对.(1)小明分析:如果设红果x个,紫果y个,则白果有(22﹣x﹣y)个,根据题意,可列二元一次方程组为;(2)小敏分析,如果设红果x个,紫果y个,白果z个,根据题意,可列三元一次方程组为;(3)请你先填出上述小题中相应的方程组,然后选一种分析思路求解本题.参考答案一.1.C 2.A 3.B 4.C 5.C二.6.7.6三.8.解:①+②,得2y=﹣5﹣1,解得y=﹣3.②+③,得2x=﹣1+15,解得x=7,把x=7,y=﹣3代入①,得﹣3+z﹣7=﹣5,解得z=5,方程组的解为.9.解:①+②,得4x+3z=18④,①+③,得2x﹣2z=2⑤⑤×2﹣④,得﹣7z=﹣14,解得z=2,把z=2代入①,得x=3,把x=3,z=2代入①,得y=1,则方程组的解为.10.解:设从甲地到乙地时,上坡、平路、下坡的路程各是x、y、z千米,4小时30分钟=4.5小时,4小时42分钟=4.7小时,根据已知可得,解得.答:从甲地到乙地时,上坡、平路、下坡的路程各是42、30和70千米.11.解:(1)设红果x个,紫果y个,则白果(22﹣x﹣y)个.根据题意,得,(2)设红果x个,紫果y个,白果z个.依题意得.(3)二元一次方程组:设红果x个,紫果y个,则白果(22﹣x﹣y)个.根据题意,得,解得.则红果6个,紫果12个,白果4个;三元一次方程组:设红果x个,紫果y个,白果z个.依题意,得.解得.则红果6个,紫果12个,白果4个.。

浙教版七年级下数学第二 章二元一次方程组综合测评卷及答案

浙教版七年级下数学第二 章二元一次方程组综合测评卷及答案

浙教版七年级下数学第二章综合测评卷一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是( ).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是( ).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是( ).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( ).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费( ). A.64元 B.65元 C.66元 D.67元6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是( ).A.①②B.③④C.①③D.②④7.若关于x ,y 的二元一次方程组⎩⎨⎧==+k x-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为( ).A. 43B.- 43C. 34D.- 348.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为( ).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为( ). A.19件 B.20件 C.21件 D.22件 10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( ).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y = ;若用含y 的代数式表示x ,结果是 x = .12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= . 三、解答题(共66分) 17.(8分)解方程组:(1) ⎩⎨⎧=+=++.y x x y 83,02125 (2)⎩⎨⎧=+=+.y x ,y x 76543218.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.20.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值.(2)已知方程组⎩⎨⎧=+=+-b y x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.参考答案一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是(D).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是(C).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是(D).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组(A).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费(C). A.64元 B.65元 C.66元 D.67元 6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是(B).A.①②B.③④C.①③D.②④ 7.若关于x ,y 的二元一次方程组⎩⎨⎧==+kx-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为(A).A.43 B.- 43 C. 34 D.- 34 8.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为(B).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为(C). A.19件 B.20件 C.21件 D.22件10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置(C).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y =213-x ;若用含y 的代数式表示x ,结果是 x =312+y . 12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 24 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = 192 .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 1 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 150 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= 4 . 三、解答题(共66分) 17.(8分)解方程组: (1) ⎩⎨⎧=+=++.y x x y 83,02125 (2) ⎩⎨⎧=+=+.y x ,y x 765432【答案】(1) ⎩⎨⎧==.y -x 37,103 【答案】⎩⎨⎧==.y ,-x 2118.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.【答案】∵x =2y ,∴8y +3y =22.∴y =2.∴x =4. ∴4m +(m-3)×2=3.∴m =23.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.【答案】由题意得⎩⎨⎧=⨯+=⨯⨯,a ,-)(-)-b (-152552134解得⎩⎨⎧==.b ,a 10120.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值. (2)已知方程组⎩⎨⎧=+=+-by x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【答案】(1)设该店有客房x 间,房客y 人.∴该店有客房8间,房客63人.(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱; 若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;∴诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?【答案】(1)66×10%+89×40%+86×20%+68×30%=79.8(分).(2)设趣题巧解所占的百分比为x,数学应用所占的百分比为y.∴甲的总分:20+89×0.3+86×0.4=81.1>80.∴甲能获一等奖.23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.【答案】(1)设买“指定日普通票”x张,“夜票”y张.∴“指定日普通票”买6张,“夜票”买4张.(2)能,理由如下:设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.由题意得200x+160y+100(10-x-y)=1600.整理得5x+3y=30,∵x,y均为正整数,且每种至少一张,∴当x=3,y=5,10-x-y=2时,李老师的想法能实现.。

浙教版七年级数学下册第2章二元一次方程组单元综合测试题(Word版含答案)

浙教版七年级数学下册第2章二元一次方程组单元综合测试题(Word版含答案)

2浙教版七年级数学下册《第2章二元一次方程组》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.方程2x﹣3y=7,用含y的代数式表示x为()A.y=(7﹣2x)B.y=(2x﹣7)C.x=(7﹣3y)D.x=(7+3y)2.方程2x+3y=17的正整数解的对数是()A.1对B.2对C.3对D.4对3.已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣44.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=83B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 5.若关于x,y的方程组的解x,y满足x﹣y=1,则k的值为()A.1B.2C.3D.46.若(x﹣y)2+|5x﹣7y﹣2|=0,则x+y的值为()A.﹣2B.0C.﹣1D.17.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为()A.B.C.D.8.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.二.填空题(共8小题,满分40分)9.已知关于x,y的方程组,则x﹣y=.10.若是二元一次方程2x+y=4的一个解,则m的值为.11.已知,则x+y+z的值.12.若方程组,则3(x+y)﹣3x+5y的值是.13.已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为.14.已知关于x、y的二元一次方程组的解是,则关于x,y的方程组的解是.15.若关于x,y的方程组和同解,则a=.16.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.三.解答题(共6小题,满分40分)17.(1)解方程组:;(2)解方程组:.18.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.阅读下列解方程组的方法,然后回答问题.解方程组:.解:①﹣②,得2x+2y=2,即x+y=1.③③×16,得16x+16y=16.④②﹣④,得x=﹣1,从而可得y=2.∴原方程组的解是.(1)请你仿照上面的解法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?并利用方程组的解加以验证.21.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?22.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵2x﹣3y=7,∴2x=7+3y.∴x=.∴用含y的代数式表示x为x=.故选:D.2.解:方程2x+3y=17,解得:y=,当x=1时,y=5;x=4时,y=3;x=7时,y=1,则正整数解的个数是3个,故选:C.3.解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.4.解:,把①代入②,得3x﹣(x﹣5)=8,3x﹣x+5=8,故选:D.5.解:,②×2得:8x﹣2y=10k③,①+③得:9x=12k,解得:x=k,把x=k代入①得:k+2y=2k,解得:y=k,∴原方程组的解为:,把代入x﹣y=1中可得:k﹣k=1,解得:k=1,故选:A.6.解:由题意得方程组,,解得,,∴x+y=﹣1﹣1=﹣2,故选:A.7.解:依题意,得.故选:A.8.解:由题意可得,,即,故选:D.二.填空题(共8小题,满分40分)9.解:,①×5+②得,16x=28,x=,把x=,代入①得y=﹣,∴x﹣y=﹣(﹣)=2,故答案为:2.10.解:把代入二元一次方程2x+y=4,得2+m=4,解得m=2.故答案为:2.11.解:,①+②+③得:3x+3y+3z=6063,则x+y+z=2021.故答案为:2021.12.解:由3x﹣5y=﹣3可得﹣3x+5y=3,∴3(x+y)﹣3x+5y=3×7+3=21+3=24.故答案为:24.13.解:由题意得:x+y=0,∴y=﹣x,把y=﹣x代入原方程组可得:,①+②可得:3a+9=0,解得a=﹣3,故答案为:﹣3.14.解:方程组可变形为:,∵关于x、y的二元一次方程组的解是,∴,解得:,故答案为:.15.解:原方程组可化为:,①+②得7x=14,x=2,把x=2代入②2×2﹣y=3,解得y=1,把x=2,y=1代入ax﹣3y=9,2a﹣3×1=9,解得a=6,故答案为:6.16.解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.三.解答题(共6小题,满分40分)17.解:(1),由②,得x=﹣1+2y③,把③代入①,得2(﹣1+2y)+y=3,解得:y=1,把y=1代入③,得x=﹣1+2×1=1,所以原方程组的解是;(2),②×3,得6x+45y=9③,①×2,得6x﹣4y=﹣40④,③﹣④,得﹣49y=﹣49,解得:y=1,把y=1代入①,得3x﹣2+20=0,解得:x=﹣6,所以原方程组的解是.18.解:(1)将代入方程②得﹣12=﹣b﹣2,解得b=10,将代入方程①得5a+20=15,解得a=﹣1;(2)当a=﹣1,b=10时,原式===3﹣2﹣0.4=0.6.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)①﹣②,得2x+2y=2,即x+y=1③,①﹣③×2 020,得x=﹣1.把x=﹣1代入③,得﹣1+y=1,解得y=2.所以原方程组的解为;(2)猜想:方程组(a≠b)的解为:;检验:把x=﹣1,y=2代入(a+2)x+(a+1)y=a,得左边=a,左边=右边;把x=﹣1,y=2代入(b+2)x+(b+1)y=b,得左边=b,左边=右边.∴是方程组的解.21.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.22.解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。

新浙教版数学七年级(下)单元测验第二章 二元一次方程能力提升测试(含答案)

新浙教版数学七年级(下)单元测验第二章  二元一次方程能力提升测试(含答案)

第二章 第二章 二元一次方程能力提升测试 班级 姓名 学号一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1. 二元一次方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧=-=21y x B 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x 2.已知关于x 、y 的方程组⎩⎨⎧=-=+10230by ax by ax 的解为⎩⎨⎧-==12y x 则a 、b 的值是( )A 、⎩⎨⎧==21b aB 、⎩⎨⎧==12b a C 、⎩⎨⎧-=-=21b a D 、⎩⎨⎧-==12b a 3.若⎩⎨⎧=--=+6)1(4y m x y x 解得x ,y 的值相同,则m 的值为( ) A 、3B 、-3C 、1D 、-14.已知24,328.a b a b +=⎧⎨+=⎩则a b +等于( )A. 3B. 83C. 2D. 1 5.关于x 的方程组⎩⎨⎧=+=n my x mx y -3的解是⎩⎨⎧==11y x ,则|m -n |的值是( )A.5B. 3C. 2D. 16.已知{21x y ==是二元一次方程组{81mx ny nx my +=-=的解,则2m -n 的算术平方根为( )A.2±B.2C.2D.47.如果2x +3y -z =0,且x -2y +z =0,那么xz的值为( ) A .-17 B .-15 C .12D .-38.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4C.3D.2浙教版学业评价试卷 七年级(下)数学9.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( ) A .B .C .D .10.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( )A .14250802900x y x y ⎧+=⎪⎨⎪+=⎩ B .158********x y x y +=+=⎧⎨⎩ C .14802502900x y x y ⎧+=⎪⎨⎪+=⎩ D .152********x y x y +=+=⎧⎨⎩ 二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.将方程2x +y =25写成用含x 的代数式表示y 的形式,则y = .12.在二元一次方程5316x y -=中,若x 、y 互为相反数,则x = ,y = .13.方程组⎩⎨⎧=+=-836032y x y x 的解是 .14. 已知方程组⎩⎨⎧=-=-3y x 25y 3x ,则x +2y 的值是 . 15.若()0212=+++-x y x ,则xy y x -+= .16.根据下图给出的信息,可知每件T 恤和每瓶矿泉水的价格分别为 .三、解答题(共7题,共66分)温馨提示:解答题必须将解答过程清楚地表述出来! 17(本题8分)解下列方程组:()⎩⎨⎧=-=+734858.1x y x y.18.(本题8分)某商店以每支16元的的价格购进一种钢笔,第一个月售出价为每支25元,当月出售了210支;第二个月售出价减到每支20元,当月出售了360支,已知若不考虑其他因素,每支钢笔的售出价x 与每月出售的钢笔支数y 满足y =b -ax ,其中a ,b 为定值. (1)求a ,b 的值.(2)当售出价为每支24元时,每月能售出多少支?并求出此时商店获得的毛利润.19.(本题8分)已知y =x 2+px +q ,当x =1时,y 的值为2;当x =-2时,y 的值为2,求x =-3时y 的值。

浙教版七年级数学下册第二章《二元一次方程组》常考题(解析版)

浙教版七年级数学下册第二章《二元一次方程组》常考题(解析版)

浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。

浙教版七年级下册数学第二章测试题(含参考答案)

浙教版七年级下册数学第二章测试题(含参考答案)

浙教版七年级下册数学第二章测试题姓名:__________班级:__________考号:__________一、单选题(共12题;共36分)1.下列方程组中,不是二元一次方程组的为()(1)(2)(3)(4)(5)A.(1)(2)B.(2)(5)C.(3)(5)D.(2)(4)2.下面三对数值:(1)(2)(3)是方程的解的是()A.(1)B.(2)C.(3)D.(1)和(3)3.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据对话的信息,计算单价为5元的笔记本买了()A. 25本B. 20本C. 15本D. 12本4.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量。

A. 2B. 3C. 4D. 55.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有()A.鸡10,兔14B.鸡11,兔13C.鸡12,兔12D.鸡13,兔116.小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.7.设方程组B.的解是C. D.,那么a,b的值分别为()A.﹣2,3B. 3,﹣2C. 2,﹣3D.﹣3,28.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A. B. C. D.9.方程x+4y=1,x2+y=1,y+z=0,x·y=1,=2y中,二元一次方程共有()A. 1个B. 2个C. 3个D. 4个10.方程■()A.不可能是-1B.不可能是-2C.不可能是1D.不可能是211.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的类似地,图2所示的算筹图我们可以表述为()A. B. C.,其中D.,给出下列结论:①时,方程组的解也是方程是方程12.已知关于,的方程组的解;②当的解;④若时,,的值互为相反数;③当,则.其中正确的是().A.①②B.②③C.②③④D.①③④二、填空题(共8题;共16分)13.方程x﹣3y=1,xy=2,x﹣=1,x﹣2y+3z=0,x2+y=3中是二元一次方程的有________个.14.已知方程组15.如果把方程的解是,则a+b的值为________.写成用含x的代数式表示y的形式,那么y=________的解满足2x+y≤2,则t的取值范围为________.,y=________.16.若关于x,y的二元一次方程组17.已知方程组18.方程组的解是________19.我市某重点中学校团委、学生会发出倡议,在初中各年级捐款购买书籍送给我市贫困地区的学校.初一年级利用捐款买甲、乙两种自然科学书籍若干本,用去5324元;初二年级买了A、B两种文学书籍若干本,用去4840元,其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲、乙两种书的单价之和为121元,则初一和初二两个年级共向贫困地区的学校捐献了________本书.20.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算.已知:2※1=7,(﹣3)※3=3,则※b=________.三、解答题(共3题;共15分)21.列方程或方程组解应用题:小明到学校的小卖部为班级运动会购买奖品,若购买4根荧光笔和8个笔记本需要100元,若购买8根荧光笔和4个笔记本需要80元,请问荧光笔和笔记本的单价各是多少元?22.小萌知道和3都是二元一次方程ax+by+4=0的解,请你帮她求出a b的立方根.23.已知关于x、y的方程解.求a、b、c的值.和都是方程的四、综合题(共3题;共33分)24.列方程(或方程组)解应用题:(1)某服装店到厂家选购甲、乙两种服装,若购进甲种服装9件、乙种服装10件,需1810元;购进甲种服装11件乙种服装8件,需1790元,求甲乙两种服装每件价格相差多少元?(2)某工厂现库存某种原料1200吨,用来生产A、B两种产品,每生产1吨A产品需这种原料2吨、生产费用1000元;每生产1吨B产品需这种原料2.5吨、生产费用900元,如果用来生产这两种产品的资金为53万元,那么A、B两种产品各生产多少吨才能使库存原料和资金恰好用完?25.解方程组(1)26.在解方程组程组中的b,而得解为(2)..乙看错了方时,由于粗心,甲看错了方程组中的a,而得解为.(1)甲把a看成了什么,乙把b看成了什么;(2)求出原方程组的正确解.答案一、单选题1.D2. B3.A4. D5.B6. A7. A8. D9. C10.C11.C12.C二、填空题13. 114. 315.19.16816.t≤017. 1018.20.解:2※1=7,(﹣3)※3=3,∴解得:∴※b=×+×+×=故答案为:三、解答题.21.解:设荧光笔和笔记本的单价分别是x元,y元,根据题意,得解得:,,答:荧光笔和笔记本的单价分别是5元,10元.22.解:把得:23.解:依题可得:和代入二元一次方程ax+by+4=0得:,解得:333,则a b=(﹣3)×1=﹣27,因此,a b的立方根是﹣3.,(1)-(2)得:2b=2,,∴b=1,将b=1代入(1)和(2)得:,(5)-(4)得:8a=8,∴a=1,将a=1,b=1代入(1)得:c=-4,∴原方程组的解为:四、综合题.24.(1)解:设甲服装的价格为x元,乙服装的价格为y元,,根据题意得2x﹣2y=﹣10,所以x﹣y=10.答:甲乙两种服装每件价格相差10元(2)解:解:设A种产品生产x吨、乙种产品生产y吨,才能使库存原料和资金恰好用完,根据题意得,解得.答:A种产品生产350吨、乙种产品生产200吨才能使库存原料和资金恰好用完25.(1)解:,①×3+②得:5x=25,即x=5,把x=5代入②得:y=﹣2,则方程组的解为(2)解:,①×4+②×3得:17m=70,即m=,把m=代入①得:n=,则方程组的解为26.(1)解:将代入原方程组得解得.将代入原方程组得,解得,∴甲把a看成﹣,乙把b看成了(2)解:由(1)可知原方程组中a=﹣1,b=10.故原方程组为,解得。

浙教版数学七年级下册第2章二元一次方程组单元检测(含答案)

浙教版数学七年级下册第2章二元一次方程组单元检测(含答案)

浙教版数学七年级下册第2章单元检测一、选择题1.下列方程中,属于二元一次方程的是( B ) A .x +xy =8 B .y =x -1 C .x +1x =2D .x 2-2x +1=02.方程组⎩⎨⎧3x +2y =19,2x -y =1的解为( A )A.⎩⎨⎧x =3,y =5B.⎩⎨⎧x =5,y =2C.⎩⎨⎧x =3,y =-5D.⎩⎨⎧x =5,y =93.已知⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,则a 的值为( B )A .-3B .-2C .2D .3【解析】 ∵⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,∴2×2-a =6,解得a =-2.4.已知式子12x a -1y 3与-3x -b y 2a +b 是同类项,则a ,b 的值为( A ) A.⎩⎨⎧a =2,b =-1 B.⎩⎨⎧a =2,b =1 C.⎩⎨⎧a =-2,b =-1 D.⎩⎨⎧a =-2,b =1 【解析】 由题意,得⎩⎨⎧a -1=-b ,3=2a +b ,解得⎩⎨⎧a =2,b =-1.5.某文具店一本练习本和一支水笔的价格合计为 3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么下列方程组中,正确的是( B )A.⎩⎨⎧x -y =3,20x +10y =36B.⎩⎨⎧x +y =3,20x +10y =36 C.⎩⎨⎧y -x =3,20x +10y =36 D.⎩⎨⎧x +y =3,10x +20y =36 6.二元一次方程2x +y =11的非负的整数解有( C ) A .2个B .5个C .6个D .无数个【解析】 最小的非负的整数为0,当x =0时,0+y =11,解得y =11; 当x =1时,2+y =11,解得y =9; 当x =2时,4+y =11,解得y =7; 当x =3时,6+y =11,解得y =5; 当x =4时,8+y =11,解得y =3; 当x =5时,10+y =11,解得y =1;当x =6时,12+y =11,解得y =-1(不合题意,舍去),故当x ≥6时,不合题意, 故二元一次方程2x +y =11的非负的整数解有6个.7.如图,在3×3的方格中做填数游戏,要求每行、每列及对角线上三个方格中的数之和都相等,则表格中x ,y 的值为( A )A.⎩⎨⎧x =-1,y =1B.⎩⎨⎧x =1,y =-1C.⎩⎨⎧x =2,y =-1D.⎩⎨⎧x =-2,y =18.若方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,则方程组⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2的解为( C )A.⎩⎨⎧x =4,y =6B.⎩⎨⎧x =5,y =6C.⎩⎨⎧x =5,y =10D.⎩⎨⎧x =10,y =15 【解析】 ∵⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,∴⎩⎨⎧4a 1+6b 1=c 1,4a 2+6b 2=c 2,即⎩⎨⎧20a 1+30b 1=5c 1,20a 2+30b 2=5c 2.又∵⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2,∴⎩⎨⎧4x =20,3y =30,解得⎩⎨⎧x =5,y =10.9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根高出水面的长度是它的13,另一根高出水面的长度是它的15.两根铁棒长度之和为110 cm ,此时木桶中水的深度是( C )第9题图A .60 cmB .50 cmC .40 cmD .30 cm【解析】 设较长的铁棒长度为x (cm),较短的铁棒长度为y (cm).由题意,得⎩⎪⎨⎪⎧x +y =110,⎝⎛⎭⎪⎫1-13x =⎝ ⎛⎭⎪⎫1-15y ,解得⎩⎨⎧x =60,y =50, ∴⎝ ⎛⎭⎪⎫1-13x =40,即木桶中水的深度是40 cm. 10.下列关于x ,y 的方程组⎩⎨⎧x +3y =4-a ,x -5y =3a 的说法中,正确的是( C )①⎩⎨⎧x =5,y =-1是方程组的解;②不论a 取什么实数,x +y 的值始终不变; ③当a =-2时,x 与y 相等. A .①②B .①③C .②③D .①②③【解析】 把⎩⎨⎧x =5,y =-1代入x +3y =4-a ,得5-3=4-a ,解得a =2.把⎩⎨⎧x =5,y =1,代入x -5y =3a ,得5+5=3a ,解得a =103,故①不正确;解方程⎩⎨⎧x +3y =4-a ,x -5y =3a ,得⎩⎪⎨⎪⎧x =a +52,y =1-a 2,∴x +y =3,故无论a 取何值,x +y 的值始终不变,故②正确; 把a =-2代入方程组,得⎩⎨⎧x +3y =6,x -5y =-6,两式相加,得2x -2y =0, ∴x =y ,故③正确.综上所述,正确的是②③.故选C. 二、填空题11.写出一个以⎩⎨⎧x =2,y =-3为解的二元一次方程组:__⎩⎨⎧x +y =-1,x -y =5(答案不唯一)__.12.已知方程组⎩⎨⎧2x +3y =12,3x +2y =18,则x +y =__6__.【解析】 ⎩⎨⎧2x +3y =12,①3x +2y =18.②①+②,得5x +5y =30, ∴5(x +y )=30, ∴x +y =6.13.如果方程组⎩⎨⎧x =3,ax +by =5的解与方程组⎩⎨⎧y =4,bx +ay =2的解相同,那么a =__-1__,b =__2__.14.对于有理数x ,y ,定义新运算“※”:x ※y =ax +by +1(a ,b 为常数).若3※4=9,4※7=5,则7※11=__13__.【解析】 ∵3※4=9,4※7=5,∴根据题中的新定义化简,可得⎩⎨⎧3a +4b =8,①4a +7b =4,②①+②,得7a +11b =12, 则7※11=7a +11b +1=12+1=13.15.《孙子算经》中记载:“今有三人共车,二车空.二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,若每3人乘一辆车,则最终剩余2辆空车;若每2人同乘一辆车,则最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x 辆车,y 个人,则由题意可列方程组为__⎩⎨⎧3(x -2)=y ,2x +9=y__.16.已知关于x ,y 的方程组⎩⎨⎧3x +y =24,4x +ay =18有正整数解,则整数a 的值为__-1__.【解析】 ⎩⎨⎧3x +y =24,①4x +ay =18,②①×4-②×3,得(4-3a )y =42,∴y =424-3a .∵方程组的解为正整数,且a 为整数, ∴a =1或-1.当a =1时,y =42,代入①可得x =-6,不合题意,舍去; 当a =-1时,y =6,代入①可得x =6,符合题意. 故整数a 的值为-1. 三、解答题 17.解下列方程组: (1)⎩⎨⎧3x -4y =24,2x +3y =-1.解:⎩⎨⎧3x -4y =24,①2x +3y =-1,②①×3+②×4,得17x =68,解得x =4. 把x =4代入①,得12-4y =24,解得y =-3. ∴原方程组的解为⎩⎨⎧x =4,y =-3. (2)⎩⎪⎨⎪⎧2(x -1)=3-y ,y -12-x -13=-1.解:方程组整理,得⎩⎨⎧2x +y =5,①2x -3y =5,②①-②,得4y =0,解得y =0. 把y =0代入①,得2x =5, 解得x =52.∴原方程组的解为⎩⎪⎨⎪⎧x =52,y =0.18.若等式(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0中的x ,y 是方程组⎩⎨⎧mx +4y =8,5x +16y =n的解,求m ,n 的值.解:∵(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0,∴2x -4=0且y -12=0, ∴x =2,y =12.把x =2,y =12代入⎩⎨⎧mx +4y =8,5x +16y =n ,得⎩⎨⎧2m +2=8,10+8=n ,解得⎩⎨⎧m =3,n =18.19.解方程组⎩⎨⎧ax +by =2,cx +5y =8时,一马虎的学生把c 写错而得⎩⎨⎧x =-3,y =1,而正确的解为⎩⎨⎧x =3,y =-2.求a +b -c 的值.解:把⎩⎨⎧x =-3,y =1和⎩⎨⎧x =3,y =-2分别代入ax +by =2,得⎩⎨⎧-3a +b =2,①3a -2b =2.②①+②,得-b =4,解得b =-4.把b =-4代入①,得-3a -4=2,解得a =-2. 把⎩⎨⎧x =3,y =-2代入cx +5y =8,得3c -10=8,解得c =6, ∴a +b -c =-2-4-6=-12.20.如图,在大长方形ABCD 中,放入六个相同的小长方形,已知BC =11,DE =7. (1)设每个小长方形的长为x ,宽为y ,求x ,y 的值. (2)求图中阴影部分的面积.第20题图解:(1)由题意,得⎩⎨⎧x +y -2y =7,x +3y =11,解得⎩⎨⎧x =8,y =1.(2)S 阴影=11×(8+1)-6×1×8=51. 答:图中阴影部分的面积为51. 21.阅读理解:善于思考的小聪在解方程组⎩⎨⎧2x -3y =3,①2x -5y =5②时,发现①和②之间存在一定关系,他的解法如下:解:把②变形为2x -3y -2y =5.③ 把①代入③,得3-2y =5, 解得y =-1.把y =-1代入①,得x =0,∴原方程组的解为⎩⎨⎧x =0,y =-1.小聪的这种解法叫“整体换元法”.请用“整体换元法”解下列方程组: (1)⎩⎨⎧2x +5y =3,3x +5y =2.解:解方程组⎩⎨⎧2x +5y =3,①3x +5y =2.②把②变形为x +2x +5y =2.③把①代入③,得x +3=2,解得x =-1. 把x =-1代入①,得y =1, ∴原方程组的解为⎩⎨⎧x =-1,y =1.(2)⎩⎨⎧3x -2y =5,9x -4y =19.解:解方程组⎩⎨⎧3x -2y =5,①9x -4y =19.②把②变形为3(3x -2y )+2y =19.③ 把①代入③,得3×5+2y =19, 解得y =2.把y =2代入①,得x =3, ∴原方程组的解为⎩⎨⎧x =3,y =2.22.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少 2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?解:(1)由题意,得⎩⎨⎧x +y =50,x =y -2,解得⎩⎨⎧x =24,y =26.答:这个班有男生有24人,女生有26人.(2)男生每小时剪筒底的数量为24×120=2 880(个), 女生每小时剪筒身的数量为26×40=1 040(个). ∵一个筒身配两个筒底,2 880∶1 040≠2∶1,∴原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套. 设男生应向女生支援a 人,由题意,得120(24-a )=(26+a )×40×2, 解得a =4.答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套.男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.23.小明为练习书法,去商店购买书法用品,购买发票上有部分信息不慎被墨汁污染导致无法看清,如下表所示.请解答下列问题:(1)小明购买墨水和毛笔各多少?(2)若小明再次购买墨水和字帖两种用品共花费150元,则有哪几种不同的购买方案? 解:(1)设小明购买墨水x 瓶,毛笔y 支. 由题意,得⎩⎨⎧x +y +2=5,15x +40y +90=185,解得⎩⎨⎧x =1,y =2. 答:小明购买墨水1瓶,毛笔2支. (2)字帖的单价为90÷2=45(元). 设再次购买墨水m 瓶,字帖n 本, 由题意,得15m +45n =150,∴m =10-3n . 又∵m ,n 均为正整数, ∴⎩⎨⎧m =1,n =3或⎩⎨⎧m =4,n =2或⎩⎨⎧m =7,n =1, ∴共有3种购买方案:方案一:购买1瓶墨水,3本字帖;方案二:购买4瓶墨水,2本字帖;方案三:购买7瓶墨水,1本字帖.。

浙教版七年级下册数学第二章二元一次方程组测试卷(含答案)

浙教版七年级下册数学第二章二元一次方程组测试卷(含答案)

浙教版七下数学第二单元测试卷(含答案)一、单选题1.在下列方程中,其中二元一次方程的个数是()①4x+5=1;②3x—2y=1;③;④xy+y=14A.1B.2C.3D.42.如果是方程2x+y=0的一个解(m≠0),那么()A.m≠0,n=0B.m,n 异号C.m,n 同号D.m,n可能同号,也可能异号3.已知是方程kx-y=3的一个解,那么k的值是( ).A.2B.-2C.1D.-14.若方程组的解是则m、n表示的数分别是()A.5,1B.1,4C.2,3D.2,45.解以下两个方程组,较为简便方法的是( )①A.①②均用代入法B.①②均用加减法C.用代入法②用加减法D.①用加减法②用代入法6.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人。

某船家有3艘大船与6艘小船,一次可以载游客的人数为( )A.129B.120C.108D.967.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y吨货,则可列方程组()A. B.C. D.8.某单位在一快餐店订了22盒盒饭,共花费183元,盒饭共有甲、乙、丙三种,它们的单价分别为10元、8元、5元.那么可能的不同订餐方案有()A.1个B.2个C.3个D.4个9.已知关于,的方程组,其中,给出下列结论:① 是方程的解;②当时,,的值互为相反数;③当时,方程组的解也是方程的解;④若,则.其中正确的是().A.①②B.②③C.②③④D.①③④10.已知方程组的解满足x+y<0,则m的取值范围是()A.m>﹣1B.m>1C.m<﹣1D.m<1二、填空题11.若是二元一次方程3x+ay=5的一组解,则a=________12.已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=________13.对于x、y定义新运算x*y=ax+by﹣3(其中a、b是常数),已知1*2=9,﹣3*3=6,则3*(﹣4)=________.14.有一道题,已知线段AB=a,在直线AB上取一点C,使BC=b(a>b),点M,N分别是线段AB,BC的中点,求线段MN的长.对这道题,小善同学的答案是7,小昌同学的答案是3.老师说他们的结果都没错,如图,则依次可得到a的值是________.15.已知|x+y﹣5|+(x﹣y+3)2=0,则x________,y=________.16.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小正方形的面积是________.三、解答题17.如果关于x、y的方程2x﹣y+2m﹣1=0有一个解是,请你再写出该方程的一个整数解,使得这个解中的x、y异号.18.已知是方程4x+my=10和mx﹣ny=11的公共解,求m2+2n的值.19.已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算a2012+(b)2013的值.21.为了抓住市文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件,B 种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.求购进A,B两种纪念品每件各需多少元?22.某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.(1)求该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?答案部分第 1 题:【答案】A第 2 题:【答案】B第 3 题:【答案】A第 4 题:【答案】A第 5 题:【答案】C第 6 题:【答案】 D第7 题:【答案】C第8 题:【答案】 D第9 题:【答案】C第10 题:【答案】C第11 题:【答案】2第12 题:【答案】-1【答案】﹣14第14 题:【答案】10第15 题:【答案】1;4第16 题:【答案】60第17 题:【答案】解:由题意将x=2,y=﹣1代入2x﹣y+2m﹣1=0得:4+1+2m﹣1=0,即m=﹣2,将m=﹣2代入得:原方程为2x﹣y=5,由y=2x﹣5,不难看出,若x<0,则y<0,不合要求;令x>0,y=2x﹣5<0,解得:0<x<2.5,其中整数x=1或2,则符合要求的另一个整数解是.第18 题:【答案】解:∵是方程4x+my=10和mx﹣ny=11的公共解,∴,解①得,m=2,把m=2代入②得,6+n=11,解得n=5,所以,m2+2n=22+2×5=4+10=14,即m2+2n的值为14.第19 题:【答案】解:将和代入方程mx+ny=10,得,解得:,则m﹣n=10﹣10=0.【答案】解:∵甲看错了方程①中的a,得到方程组的解为,∴﹣12+b=﹣2,解得:b=10,∵乙看错了方程②中的b,得到方程组的解为,∴5a+20=15,解得:a=﹣1,则a2012+(b)2013==1+(﹣1)=0.第21 题:【答案】解:设A种纪念品每件x元,B种纪念品每件y元,由题意得:,解得:,答:购进A种纪念品每件100元,B种纪念品每件50元第22 题:【答案】解:(1)设商场购进甲x件,乙购进y件.则,解得.答:该商场购进甲、乙两种商品分别是100件、80件;(3)设乙种商品降价z元,则10×100+(15﹣z)×80≥1800,解得z≤5.答:乙种商品最多可以降价5元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档