公务员考试行测牛吃草问题考点精品
四川公务员考试:牛吃草问题考点总结
四川公务员考试:牛吃草问题考点总结华图教育 王保国“牛吃草”问题是行测考试当中一类问题的总称,这一类题目的原型是牛吃草,不是说题目当中就一定要出现牛吃草。
因此我们首先要学会判定一道题是“牛吃草”问题。
1、“牛吃草”问题判定特征:题目当中出现一模一样(只有数据不同)的两句话时,该题即可确定为牛吃草问题。
2、相关公式:()y x =- 牛数时间其中,y 表示原有草量,x 表示单位时间长草量。
3、解题思路: (1)两句一模一样的话分别代入一次公式,即可解出x 与y ,然后问句再代入一次公式即可解出所求量。
(2)“牛吃草”问题个别时候会出现一种特殊的问法——“如果要保证永远用不完,......?”,出现该类问法时,初步解法与一般“牛吃草”问题一致,但计算量更小了,只需将两句一模一样的话分别代入一次公式,然后解出x 就是答案。
【例1】林子里有猴子喜欢吃的野果,23只猴子可以在9周内吃光,21只猴子可以在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)A .2周B .3周C .4周D .5周 【答案】C【解析】题目当中出现“23只猴子可以在9周内吃光,21只猴子可以在12周内吃光”,该两句话除了数据以外一模一样,所以该题是牛吃草问题。
所以将这两句话分别代入一次公式,可以得到: ()()2392112y x y x ì=- ïïíï=- ïî可以解出:1572x y ì=ïïíï=ïî 最后问句再代入一次公式:()72=3315t -可以解出4t =。
因此答案选择C 选项。
【例2】水池装有一个排水管和若干个每小时注水量相同的注水管,注水管注水时,排水管同时排水,若用12个注水管注水,8小时可注满水池,若用9个注水管,24小时可注满水,现在用8个注水管注水,那么可用( )注满水池。
1-9-1-牛吃草问题行测
牛吃草问题行测
1. 牛吃草问题行测,哎呀,这可真是个有趣的挑战呢!就像我们每天要吃饭一样,牛也要吃草呀!比如一群牛在一片草地上,草每天还在匀速生长,那到底多久能吃光草呢?
2. 牛吃草问题行测,这可不是一般的难题呀!你想想看,牛一边吃草,草一边长,这多有意思!就像一场和时间的赛跑,比如有 5 头牛 10 天能吃完,那 10 头牛几天能吃完呢?
3. 牛吃草问题行测,哇塞,这真的很神奇呢!牛和草之间的关系,就如同我们和时间的纠缠!比如知道牛的数量和吃草时间,怎么算出草原来有多少呢?
4. 牛吃草问题行测,嘿,这可太有吸引力了!不就是牛吃草嘛,可没那么简单哟!好比我们解决一个又一个难题,比如草匀速减少,牛又该怎么吃呢?
5. 牛吃草问题行测,哎呀呀,这真的很让人好奇呢!牛吃草的世界里,藏着好多秘密呀!就像一个神秘的宝藏等我们挖掘,比如不同数量的牛吃不同生长速度的草。
6. 牛吃草问题行测,哇哦,这绝对能勾起你的兴趣!你说牛吃草咋就成了行测的题目呢?就像生活中的小惊喜,比如突然改变牛的数量会怎样呢?
7. 牛吃草问题行测,嘿嘿,这可是个值得研究的事儿呢!牛在吃草,草在变化,多像一场奇妙的冒险!比如增加一些条件,这问题就更复杂有趣了呢!
8. 牛吃草问题行测,哟呵,这真不简单呀!这就像解一个复杂的谜题,让人欲罢不能!比如不同的牛有不同的吃草速度呢?
9. 牛吃草问题行测,哎呀,真的很特别呢!牛吃草的情境,是不是让你也想来试试?就像一场智力的较量,比如给定一些特殊条件,你能快速算出答案吗?
10. 牛吃草问题行测,哈哈,这绝对是个好玩的东西!想想看牛儿们欢快吃草的样子,多有意思呀!比如在不同的场景下,牛吃草的情况又会如何变化呢?
我觉得牛吃草问题行测真的很有意思,可以锻炼我们的思维能力和逻辑推理能力呀!。
公考牛吃草问题经典例题
公考牛吃草问题经典例题公考牛吃草问题,听着是不是有点让人头疼?别急,咱们一块儿聊聊,保准让你轻松搞懂。
这类问题其实一点也不复杂,只要你放松点,像在和朋友聊八卦一样,慢慢琢磨,答案就会在脑袋里清晰得像晴天一样。
首先啊,咱们得知道,牛吃草这种问题,归根结底是在考你如何理解“速度”和“时间”的关系。
你可以把它当作一场牛吃草的比赛,看看每头牛用多长时间吃完草,再算算草的总量。
简简单单,关键是得捋清楚每一部分。
想象一下,草地上有一堆草,旁边有一头牛,它慢慢地吃着,吃着,慢慢就能把草吃完。
你可能会问,牛吃草的速度快不快?如果只有一头牛,那它吃完草可能得很长时间,甚至你都能在旁边睡上一觉。
可要是有两头牛呢?它们分工合作,速度就能加快。
更妙的是,若是三头牛,你估计连吃草的机会都没得抢。
这种问题其实就像是大家一起去参加接力赛,每个人负责一段,大家合力完成,时间自然就短了。
别看这个问题简单,实际上一点也不简单。
咱们得有点策略才行。
假设题目给了你牛吃草的时间,告诉你一头牛吃完草需要多长时间。
比如,一头牛吃完草得10天。
那么问题来了,别的牛吃草是不是也能更快呢?答案是肯定的!如果有两头牛,它们的吃草速度肯定是加起来的,所以吃草的总时间就短了。
你可以想象成两个人合作画画,两个小伙伴一起工作,完成任务的时间自然缩短。
牛吃草也是这个道理,合作得好,时间自然就缩短了。
说到这里,你可能会心想:“好啊,那如果我有三头牛呢?”呵呵,三头牛更是能让你眼前一亮。
想象一下,它们三个人同时吃草,肯定是分担了更多的任务。
时间一下子就从10天缩短成了几天,牛吃草的速度比原来快多了。
怎么样,是不是有点像打游戏,团队合作,分工明确,任务就能很轻松完成呢?不过,事情也不是永远都这么简单。
草地的草量可能不固定,草可能吃不完或者有些剩余。
这个时候,你就得注意了,要根据题目提供的草量来计算,别光想着自己有多牛。
有些题目还特别喜欢搞一些小花样,像是草的生长速度、牛的吃草速度不一致等等。
历年国考行测高频考点:牛吃草问题
历年国考行测高频考点:牛吃草问题国考的行测数学运算,是很多同学比较头疼的部分,但是大部分题型只要大家理解了其实是非常简单的,比如接下来中公教育专家将要为大家讲解的“牛吃草”问题。
一、什么是牛吃草问题?英国著名的物理学家牛顿曾编过这样一道题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃多少天?它的题干特征在于:有一草地,且它的初始值是固定的。
有两个量(牛和草)在作用于这片草地。
当然,此类题还有个隐含条件,即每头牛每天的吃草速度和数量必须都是相同的,否则此题应该无解。
二、转化为追击的牛吃草问题当作用于这片草地的两个量的作用是相反的时候,这时候的牛吃草问题可以转化为追击问题。
如上题表现为,牛吃草则使草量变少,草生长则使草量变多,作用相反。
转化为追击的牛吃草问题就存在这样一个基本公式:设每头牛每天吃草的速度为1原有草量=(牛的头数 1-草生长速度) 时间母题1:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃多少天?设原有草量为M,草生长速度为x,时间为t,根据题意我们可以列连等式:M=(10-x) 22=(16-x) 10=(25-x) t解得x=5,M=110,t=5.5天例题1:某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将水位由警戒线将至安全水位;只打开6个泄洪闸时,这个过程为24个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需要多少小时可将水位将至安全水位?设原有水量为M,水入库速度为x,需要的时间为t,根据题意我们可以列连等式:M=(10-x)8=(6-x)24=(8-x)t解得x=4,M=48,t=12天三、牛吃草问题的极值问题当为追击的题型的时候,还可以转化为一种极值问题:牧场上有一片青草,每天都生长得一样快。
公务员考试:牛吃草、抽水问题
二、基本关系式
核心关系式:
牛吃草总量(牛头数×时间)=原有草量+新长出草量(每天长草量×时间)ቤተ መጻሕፍቲ ባይዱ
总量的差/时间差=每天长草量=安排去吃新草的牛的数量
原有草量/安排吃原有草的牛的数量=能吃多少天。
单位:1头牛1天吃草的量
●一片牧草,可供16头牛吃20天,也可以供20头牛吃12天,那么25头牛几天可以吃完?
法3(利用基本关系式)
总量的差/时间差=每天长草量,(16×20-20×12)/(20-12)=10;
原有草量=牛吃草总量-新长出草量,16×20-20×10=120;
25头牛分10头吃每天长出的草,还剩15头吃原有的草,120/15=8天。
●有一个水池,池底有泉水不断涌出。用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。如果14台抽水机需多少小时可以抽完?()
A.25 B.30 C.40 D.45
解析:泉水每小时涌出量为:(8×15-5×20)÷(20-15)=4份水;
原来有水量:8×15-4×15=60份;
用4台抽涌出的水量,10台抽原有的水,需60/10=6小时。
●(不同草场的问题:考虑每单位面积的草量)
有三片牧场,牧场上的草长的一样密,而且长的一样快,他们的面积分别是公顷、10公顷和24公顷。12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草。多少头牛18星期才能吃完第三片牧场的草?()
A.28 B.32 C.36 D.40
解析:每公顷牧场每星期可长草:(21×9÷10-12×4÷)÷(9-4)=0.9;
1公顷原有的草量:12×4÷-0.9×4=10.8;
公务员考试牛吃草问题经典例题
公务员考试牛吃草问题经典例题
一个牧场有100只牛,150株草,牧场周围四周有一堵高墙,无法穿越,除此之外什么都没有,请问:
1、牧场内的牛怎么吃草?
牧场内的牛可以吃牧场里的草,牧场内的牧草被按区块分割成若干小块,每只牛每天可以放牧一块牧草,牛们依次在这些牧草块中吃,每天结束时回到原来的区块。
2、如何避免牧场里的牛吃光牧草?
为了避免牧场里的牛吃光牧草,牧场管理者应该定期检查牧草,如果牧草过少,就应该尽快补充牧草;如果牧草过多,可以考虑把牧草移到其他牧场,或者控制每只牛的放牧时间,以保证牧草的及时补充。
河北公务员考试行测常考问题——牛吃草问题
信息来源唐山人才网:/秦皇岛人事考试网:/河北公务员考试行测常考问题——牛吃草问题对于近几年的各类公务员考试行测部分,考法灵活多变,题目新颖独特。
素有“新云流水,高深莫测”之称。
但细细探寻,不难能够寻找到一定规律的蛛丝马迹——无论是各地的省考联考,还是国考,一些题型一直都是公务员考试当中的…宠儿‟。
其中,牛吃草问题就是当中的一种非常重要的题型。
一.牛吃草问题的原型(母题)在一块匀速生长,草量为M的草场上,假设n1头牛可以吃T1天,n2头牛可以吃T2天,n3头牛可以吃多少天?【中公解析】假设一头牛一天吃一份草,草生长的速度为x,n3头牛可以吃T3天。
则根据牛吃草问题其实是行程问题的本质可以列出下列等式:(n1-x)T1=(n2-x)T2=(n3-x)T3=M,可以求出x,最后求出相应的T3.二.多草场牛吃草问题例:20头牛,吃30亩牧场的草15天克吃尽,15头牛吃同样牧场25亩的草,30天可以吃尽。
请问几头牛吃同样的牧草50亩的草,12天可以吃尽?【中公解析】对于多草场牛吃草问题,将其转换为基本牛吃草问题。
即将草量固定化,首先,找到所有草量的最小公倍数进行统一。
取30,25,50的最小公倍数300.则等价于300亩的草量可以供200头牛吃15天,180头吃30天,问可以让多少头牛吃12天。
特值法,假设每头牛每天吃草量为1,草长的速度为x,300亩可以让n头牛吃12天。
则有如下的等量关系式:(200-x)15=(180-x)30=(n-x)12 x=160,n=210.210÷6=35.即35头牛吃50亩的草可以吃12天。
下面看一下公务员考试当中对于此类问题常见的考点:1.求草生长的速度x——刚好有多少头可以保证草永远都吃不完例:某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。
如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)A.25B.30C.35D.40【答案】:B【中公解析】:此题明显是牛吃草问题,问的就是相当于草长的速度,利用公式:(80-x)*6=(60-x)*10,x=30,所以答案选择B项。
行测牛吃草问题(含例题、答案、讲解)
小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)*(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90)十(6-5)=10份20X 5=100份……原草量-5天的减少量原草量:100+5X 10=150或90+6X 10=150份15X6=90份……原草量-6天的减少量(150-10X 10)- 10=5头[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225) - (9-8 )=15份30X 8=240份……原草量-8天的减少量原草量:240+8X 15=360份或220+9X15=360份25X 9=225份……原草量-9天的减少量360 -(21+15)=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
2021最新国考行测数量关系行程问题之牛吃草问题附带经典例题讲解
2021最新国考行测数量关系行程问题之牛吃草问题行程问题在公考行测中时有出现,每次出现的题型都不是很简单,却又非常讲究技巧。
只要学会了方法,解起题来就会节省时间,正确率也非常高。
今天我就来讨论一个在行程问题的变化模型,通常我们称之为牛吃草问题。
又有人称为牛顿问题,是科学家牛顿先生发明的,根据草原上的现象,草在不断生长且生长速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间,给出牛的数量,求时间。
①标准牛吃草问题同一草场问题是在同一个草场上的不同牛数的几种不同吃法,其中草的总量、每头牛每天吃草量和草每天的生长数量,三个量是不变的。
这种题型相对较为简单,直接套用牛吃草问题公式即可进行解答。
追及——一个量使原有草量变大,一个量使原有草量变小原有草量=(牛每天吃掉的草-每天生长的草)×天数例:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15 头牛吃10天。
问:可供25头牛吃几天?解析:牛在吃草,草在匀速生长,所以是牛吃草问题中的追及问题,原有草量=(牛每天吃掉的草-每天生长的草)×天数,设每头牛每天吃的草量为“1”,每天生长的草量为X,可供25头牛吃T天,所以:(10-X)×20=(15-X)×10=(25-X)×TX=5,T=5。
II.相遇——两个量都使原有草量变小原有草量=(牛每天吃掉的草+其他原因每天减少的草量)×天数例:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?解析:牛在吃草,草在匀速减少,所以是牛吃草问题中的相遇问题,原有草量=(牛每天吃掉的草+每天减少的草)×天数,设每头牛每天吃的草量为“1”,每天减少的草量为X,可供Y头牛吃10天,所以(20+X)×5=(15+X)×6=(Y+X)×10X=10,Y=5。
公务员考试行测技巧:牛吃草问题常见模型
公务员考试行测技巧:牛吃草问题常见模型
牛吃草问题是公务员考试行测中常见的逻辑推理问题之一,下面介绍几种常见的牛吃草问题模型及解题技巧:
1. A、B两头牛吃草问题:
这种问题给出两头牛A和B,草地上的草只能被其中一头牛吃掉,要求求出哪些草被吃掉的可能性。
解题步骤可以分为以下几步:
(1) 找到问题中的限制条件,如A和B必须轮流吃草,A和B不能吃相邻的草等。
(2) 根据限制条件列出方程或者不等式,例如利用奇偶性判断相邻两个草地是否能被同一头牛吃掉。
(3) 利用数学方法解方程或者不等式,得到草被吃掉的可能情况。
2. 分割草地问题:
题目中给出一块长为n的草地,牛每次可以吃掉1、2或3块草,要求判断牛是否能吃掉所有草。
解题步骤如下:
(1) 判断题目中给出的n是否能被1、2、3整除,如果不能则牛无法吃掉所有草。
(2) 利用数学方法将问题转化为数学模型,例如利用数学归纳法可以推导出n为奇数时,牛吃不完所有草地。
(3) 利用递归或者动态规划等方法求解问题,得到结论。
3. 时间和效率问题:
题目给出一个牧场,牛需要在规定的时间内吃完固定数量的草,要求计算最少需要多少头牛才能完成任务。
解题步骤如下:
(1) 计算每头牛吃草的速度,即单位时间内能吃多少草。
(2) 根据题目给定的时间限制和草地数量,计算需要的牛的数量。
(3) 注意考虑边界情况,如牛的数量不能为小数,如果有余数则需要多一头牛。
以上是牛吃草问题的一些常见模型及解题技巧,希望对你有所帮助。
在做题的过程中,建议多进行逻辑推理和数学思维训练,提高解题的能力。
行测理知识点之牛吃草问题
行测理知识点之牛吃草问题在公务员考试的数量关系中,牛吃草问题的题干描述一般会出现类似于排比句的句式并且原始固定量受到两个主体的影响。
牛吃草的基本题型包含以下三类:一、追及型牛吃草问题特征:牧场上有一片匀速生长的草地,放N头牛去吃草且每头牛每天吃的草量相同。
牛吃草使草量减少,草自身生长使草量增加。
(注:牛吃草的速度大于草自身生长的速度)。
假设每头牛每天吃1份草,这片草场草每天的生长速度为x份,t天牛把草吃完。
则:原有草量=(牛每天吃掉的量-草每天生长的量)×天数=(N-x)×t。
二、相遇型牛吃草问题特征:牧场上有一片匀速枯萎的草地,放N头牛去吃草且每头牛每天吃的草量相同。
牛吃草使草量减少,草自身枯萎也使草量减少。
假设每头牛每天吃1份草,这片草场草每天的枯萎速度为x份,t天牛把草吃完。
则:原有草量=(牛每天吃掉的量+草每天枯萎的量)×天数=(N+x)×t。
三、极值型牛吃草问题特征:发生在追及型牛吃草问题中,但问法一般为“为了保持草永远吃不完,那么最多能放多少头牛吃”。
当牛吃草的速度>草生长速度,草一定能吃完。
当牛吃草速度≤草生长速度,草永远吃不完,而现在问最多放多少头牛,故取等号。
即当牛的数量N=草生长速度x时,草永远吃不完。
综上所述,大家在解决牛吃草问题时,关键在于:1、判定追及还是相遇:找出影响原始固定量的两个因素,影响相反(一增一减)为追及,影响相同(两减)为相遇。
2、运用对应牛吃草公式,一般以原有草量不变建立等量关系。
但在考试中,牛吃草问题经常结合超市收银台结账、漏船排水、窗口售票、泄洪、伐木等各种背景出现,所以各位同学需通过“问题以类似排比句句式描述”这一明显特征识别牛吃草问题,再判定具体的考察题型,运用公式解题。
下面结合几道例题来练习一下:【例1】火车站售票窗口一开始有若干乘客排队购票,且之后每分钟增加排队购票的乘客人数相同。
从开始办理购票手续到没有乘客排队,若开放3个窗口,需耗时90分钟,若开放5个窗口,则需耗时45分钟。
公考行测复习牛吃草问题解读
公考行测复习牛吃草问题解读行测考试中,“牛吃草”问题是传统题型,备考时应对这类题型有深入的知道,能够做到举一反三。
下面作者给大家带来关于公考行测复习牛吃草问题解读,期望会对大家的工作与学习有所帮助。
公考行测复习牛吃草问题解读“牛吃草”题型特点:1.有一个初始的量,该量受两个初始量的影响;2.存在排比句式“牛吃草”题型解题方法M=(N-x)t(M为原有草场量,N为牛的头数,x为草长的速度,t为时间)常见考法:1、标准型:同一草场供不同牛数吃不同的天数,利用(N1-x)t1=(N2-x)t2=(N3-x)t3;2、极值型:要草永久吃不完,最多能放多少头牛吃,N≤x;例题:例1.任何资源都是有限的,其增长的速度也是一定的,某个海岛,其岛上的资源可供3千人生活45年,或者供2千人生活90年,为了使岛上的人能够连续地生存下去,则该岛最多能够养活( )人。
A.1000B.950C.900D.850【答案】A。
【解析】设每人每年消耗的资源量为1,则岛上每年再生的资源量是(2000×90-3000×45)÷(90-45)=1000。
要使岛上的人能够连续生存下去,岛上的人每年消耗的资源不能超过岛上每年再生的资源,所以该岛最多能养活1000人。
例2.在春运高峰时,某客运中心售票大厅站满等待买票的旅客,为保证售票大厅的旅客安全,大厅入口处旅客排队以等速度进入大厅按次序等待买票,买好票的旅客及时离开大厅。
依照这种安排,如果开出10个售票窗口,5小时可使大厅内所有旅客买到票;如果开12个售票窗口,3小时可使大厅内所有旅客买到票,假定每个窗口售票速度相同。
由于售票大厅入口处旅客速度增加到原速度的1.5倍,在2小时内使大厅中所有旅客买到票,按这样的安排至少应开售票窗口数为( )A.15B.16C.18D.19【答案】C.【解析】设原有排队旅客人数为M,每小时新增加旅客人数为x,则有M=(10-x)×5=(12-x)×3=(N-1.5x)×2解得,x=7,N=18拓展:公务员行测考试田园诗常识田园诗,它自成流派、一直影响后世诗人创作的发展,陶渊明的诗大部分取材于田园生活,来源于陶渊明对田园生活的深切感受,有的接近于口语,有的直抒胸臆,直接表明了作者酷爱躬耕生活之情,语言平淡而自然,浑厚而又绝不缺少色彩,给人一种清新、淳美的感觉、诗情画意的感受。
公务员考试行测数学运算:牛吃草问题
公务员考试:牛吃草问题关键有三点1 设一头牛1天吃1份草2 算出草增加或者减少的速度3 算出总量牛吃草三步法:1、算出增长速度(大的头数*天数-小的头数*天数)/(天数差)2、根据增长速度算出总量3、得出答案例题1牧场上有一片青草,每天牧草都匀速生长,这片草可供10头牛吃20天,或者可供15头牛吃10天。
问可供25头牛吃多少天?---------------------------------------解析:设1头牛1天吃1份草,原有草量M,草长的速度为X10头牛20天吃的草量=原有草量+20天长出来的草量15头牛10天吃的草量=原有草量+10天长出来的草量观察上面的式子发现:原有草量M是不变的所以:10*20-15*10=(20-10)XX=5再来算原有草量:10*20-20*5=100(或者15*10-10*5=100)设25头牛可以吃Y天所以100+5Y=25Y----------------------Y=5PS:一般做熟悉了,直接就是(10*20-15*10)/(20-10)=5--------------草长的速度10*20-5*20=100---------------------------------原有量100+5X=25XX=5例题2一只船发现漏水时,已经进了一些水,水匀速进入船内,如果10人淘水,3小时淘完;如果5人淘水,8小时淘完,如果要求2小时淘完,要安排多少人?--------------------------------------------------------------------------此题是牛吃草问题的变型!设每人每小时淘水量为“1”每小时漏进船的水量为:(5*8-10*3)/(8-3)=2发现时船内的水量为:5*8-2*8=2424+2*2=2*XX=14(人)例题3超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。
行测数量关系题型:牛吃草模型的巧解方法
行测数量关系题型:牛吃草模型的巧解方法行测数量关系题型:牛吃草模型的巧解方法在行测数量关系的常考题目中,牛吃草是一类常见的考题类型,而最常考的两类题型是追及型牛吃草和相遇型牛吃草,只要掌握这类题型的做题原理和方法,就能快速准确地选出正确答案。
一、追及型牛吃草例1.一片草地上草每天都均匀地生长,假如放24头牛,那么6天吃完牧草;假如放21头牛,那么8天吃完牧草。
问假如放16头牛,几天可以吃完牧草?如下图,用M表示草地上的原始草量,牛吃草使草量减少,草在匀速生长使草量增加,牛吃完草的时候相当于牛追上了正在生长的草,构成了一个追及问题,而原始草量M就是牛比草多走的路程。
我们假设每头牛单位吃草量为1,草单位时间生长量为x,设16头牛t天可以吃完,那么原始草量M=〔24-x〕×6=〔21-x〕×8=〔16-x〕×t,解得x=12,t=18,所以16头牛18天可以吃完牧草。
根据这道题,我们可以得出追及型牛吃草的做题公式,假设每头牛单位吃草量为1,草单位时间生长量为x,牛吃草的时间记为T,那么原始草量M=〔牛的数量-x〕×T。
二、相遇型牛吃草例2.一片草地上草每天都匀速枯萎,假如放2头牛,7天可以吃完;假如放3头牛,6天可以吃完。
假设要在3天内吃完,那么需要多少头牛?如下图,我们仍然用M表示草地上的原始草量,牛吃草使草量减少,草在匀速枯萎也使草量减少,牛吃完草的时候相当于牛与正在枯萎的草相遇了,构成了一个相遇问题,而原始草量M就是牛与草走的路程和。
假设每头牛单位吃草量为1,草单位时间枯萎量为x,设y头牛3天可以吃完,那么原始草量M=〔2+x〕×7=〔3+x〕×6=〔y+x〕×3,解得x=4,y=10,所以10头牛3天可以吃完牧草。
根据这道题,我们可以得出相遇型牛吃草的做题公式,假设每头牛单位吃草量为1,草单位时间枯萎量为x,牛吃草的时间记为T,那么原始草量M=〔牛的数量+x〕×T。
行测数量关系考点:牛吃草问题知识点储备
辽宁中公教育:
更多公务员资料详情:/?wt.mc_id=ak11709 行测数量关系考点:牛吃草问题知识点储备
一、考情分析
牛吃草问题虽然现在出现的频率没有那么高了,但是在近几年的国家公务员考试中还是偶有出现,因此大家仍然不可以忽略这种题型。
牛吃草问题本身难度就很大,近期考查中又出现了多种变形,因此需要考生更加细致地去掌握这些知识。
二、基本概念
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的总量随牛吃的天数不断地变化。
牛吃草问题存在两个不变量:草地最初的总草量和每天生长出来的草量。
三、技巧方法
(一)推导法
推导法的步骤:
①假设1头牛1天吃的草量为1,根据不同头数的牛所吃草的天数不同,计算出草地每天长草的量;
②计算草地原有的草量;
③计算所求的牛吃草的天数。
(二)公式法。
公务员牛吃草问题练习题及答案
公务员牛吃草问题练习题及答案1. 某市水库水量的增长速度是一定的,可供全市12万人使用20年,在迁入3万人之后,只能供全市人民使用15年,市政府号召大家节约用水,希望将水库的使用寿命延长至30年,那么居民平均需要节约用水量的比例是多少?A./5B./7C. 1/3D. 1/42. 林子里的猴子喜欢吃的野果,23只猴子,可以在9周吃光,21只猴子可以在12周吃光,问如果有33只猴子一起吃,则需要几周吃光?A.周B.周C.周D.周3. 有一池水,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机需抽多少小时?A. 16B.0C.4D.84. 水池装有一个排水管和若干个每小时注水量相同的注水管,注水管注水时,排水管同时排水,若用12个注水管注水,8小时可注满水池;若用9个注水管,24小时可注满水;现在用8个注水管注水,那么可用注满水池。
A. 12小时B.6小时C.8小时D.2小时5. 有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用台抽水机排水,则用40 分钟能排完;如果用台同样的抽水机排水,则用1分钟排完。
问如果计划用10 分钟将水排完,需要多少台抽水机?A.台B.台C.台D.台6. 有一块草地,2头羊可以吃40天,4头羊可以吃16天,8头牛吃12天,问够多少头羊吃10天?B.C.D.7. 一个水池有两个排水管甲和乙,一个进水管丙。
若同时开放甲、丙两管,20小时可将满池水排空;若同时开放乙、丙两水管,30小时可将满池水排空,若单独开丙管,60小时可将空池注满。
若同时打开甲、乙、丙三水管,要排空水池中的满池水,需要几小时?A.B.C. 10D. 118. 某矿井发生透水事故,且矿井内每分钟涌出的水量相等,救援人员调来抽水机排水,如果用两台抽水机抽水,预计40分钟可排完,如果用4台同样的抽水机,16分钟可抽完,为赢得救援时间,要在10分钟内抽完矿井内的水,那么至少需要抽水机A.台B.台C.台D.台9. 牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么,供25头吃几天?A.B.C.D.10. 一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果10人淘水,3小时可淘完;5人淘水8小时可淘完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】思路、方法、计划、问题、系统、和谐、保持、掌握、了解、根本、需要、素质、能力、办法、标准、速度、设置、分析、指导、教育、解决
公务员考试行测牛吃草问题考点
通过新的、公务员考试大纲可以了解到,《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,测试内容包括言语理解与表达能力、判断推
理能力、数理能力、常识应用能力和综合分析能力。
黑龙江中公教育整理了供考生备
考学习。
需要更多指导,请选择一对一解答。
牛吃草问题行测常考的一种题型,刚开始考生们对这类问题很抵触,老是找不着思路,往往最后都是随便图一个选项而了之。
惜哉!其实经过我们中公培训后这类问题就根本不是问题,考生们正需要考试中出现这种题型,因为这正可以在考场上做到秒杀,爽哉!
在这里中公教育专家就给大家分享一下怎么在考场上做到秒杀:
我们先来看看什么叫做牛吃草问题,牛吃草问题又称为消长问题或牛顿问题,草在不
断生长且生长速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间。
我们在解决这类问题的方法是:转化为相遇或追及模型来考虑。
一、追及模型
原有草量=(牛每天吃掉的草-每天生长的草)×天数
例1:一个牧场长满青草,牛在吃草而草又在不断生长,已知牛10头,20天把草吃尽,同样一片牧场,牛15头,10天把草吃尽。
如果有牛25头,几天能把草吃尽?
中公解析:假设每头牛吃草速度是1份,按照公式列出:
(10-x)×20=(15-x)×10=(25-x)×t 解出 :t=5天。
二、相遇模型
原有草量=(牛每天吃掉的草+其他原因每天减少的草量)×天数
例2:牧场上长满牧草,秋天来了,每天牧草都均匀枯萎,这片牧场可供10头牛吃8
天草,可供15头牛吃6天。
可供25头牛吃多少天?
中公解析:假设每头牛吃草速度是1份,按照公式列出:
(10+x)×8=(15+x)×6=(25+x)×t 解出 :t=4天。
中公教育专家认为,只要考生们掌握以上两种基本模型,牛吃草问题就不再是困扰你的问题,即使是一种衍生题型也是一个办法-——秒杀!
例3:一个牧场长满青草,牛在吃草而草又在不断生长,已知牛10头,20天把草吃尽,同样一片牧场,牛15头,10天把草吃尽。
牧场上最多多少头牛,草永远吃不完?
解析:这是基于牛吃草问题追及模型的升级版,我们来一起理一下思路:题目与标准牛吃草中的追及问题相同,只是题目的问法进行了改变,问为了保持草永远吃不完,那么最多能放多少头牛吃?这其实是一种和谐的状态,既要牛最多又要草吃不完,考生们可以想想,是不是只有在牛吃草的速度等于草生长的速度时候,才能达到这种和谐状态啊。
其实问题最后落在你只要按照追及模型列式计算出x即可。
简单啊,岂是一个爽字能形容。
更多内容,一起来看看是如何设置教学的!
中公教育与辅导专家提醒您,备考有计划,才能在公考大战中拔得头筹!邀请您一同刷题!。